α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1
|
|
- Emil Kelemen
- 7 évvel ezelőtt
- Látták:
Átírás
1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató vekto és a sebességük által beát sög állandó. Sajnos a lepkék gyakan össetévestik a Hold fényét egy gyetya fényével, amely sámuka végetes követkeményekkel já. α v e ϕ Kedetben a lepke távolsága van a gyetya lángjától. Adjuk meg a lepke sebességének e és e ϕ vektookkal páuamos komponenseit! Hogyan váltoik időben a lepke távolsága a gyetyától, a a sebességének a nagysága állandó? Mennyi ideig les még életben a lepke? Hasnáljunk polá koodinátákat! e A ábáól leolvasató: α v e φ ṙ = v cosα ϕ = v sinα = v cosαt t = v cosα, e aol t a a idő, amely alatt a lepke a gyetya lángjába é.
2 2. Feladat 2 pont Sámítsuk ki a otációját enge koodináta endseben a követkeő vektotének: A = m 3, aol m egy állandó vekto! Célseű a tengely iányát m-mel páuamosan válastani. Válassuk a tengelyt m-mel páuamosan! Ekko m = m = ρ cosϕ ρ sinϕ és a ossa = ρ A elyvektot a engekoodináta endse egységvektoaival a követkeőképpen adatjuk meg: = ρe + e, aol e = cosϕ sinϕ e ϕ = sinϕ cosϕ e = Íjuk fel elősö a A vektoteet a enge koodinátákkal: A = me ρe + e ϕ mρ = ρ /2 ρ e 3/2 ϕ = A ϕ e ϕ, teát a vektotének csak A ϕ komponense van. Hasnáljuk fel a otáció képletét: 1 A A = ρ ϕ A ϕ Aρ e + A e ϕ + 1 ρ ρ ρ ρa ϕ A ρ e. ϕ Miután csak A ϕ komponensünk van A = A ϕ e + 1 ρ ρ ρa ϕ e. mρ ρ = 3m ρ /2 ρ /2 ρ mρ 2 = m 22 ρ 2 ρ /2 ρ ρ, 5/2 vagyis 3ρ A = m ρ e 5/2 + m 22 ρ 2 ρ e 5/2.
3 3. Feladat 2 pont Egy omogén ρ sűűségű, sugaú gömb tetejét a köéppontjától magasságban a sugaáa meőleges síkkal lemetsük. Hatáouk meg a így kapott testnek a tömegköéppontját! Dolgounk enge koodináta endseben! A tömegköéppont megatáoásáo két integált kell megatáonunk: M = ρ dv tkp = 1 M ρ dv Elősö sámítsuk ki a első integált! Henge koodináta endseben a sugá a magasság függvénye: = 2 2, aol a csonkolt gömb sugaa. Figyelembe véve, ogy a Jacobi detemináns, a ámas integál a követkeő les: 2 2 M = ρ d d = ρπ 2 2 d = ρπ 2 2 dϕ = 2ρπ d d = 2ρπ = ρπ d Ellenőésként a =, akko vissakapjuk a gömb V = 4/3π 3 téfogatát. Hatáouk meg a második integált is. Könnyen ellenőietjük, ogy a enge simmetia miatt csak a tömegköéppont komponense különböik nullától. A integálási atáok váltoatlanok maadnak, csak a integandus módosul: tkp = 1 M ρ = 1 M ρπ 2 2 d d = 1 4M ρπ2 2 2 Vissaelyettesítve a M tömeget: dϕ = 1 M 2ρπ 2 2 d = 1 M ρπ tkp = d d = 2 1 M ρπ d = 1 1 M ρπ
4 4. Feladat 2 pont Hatáuk meg egy sugaú gömbe a felajtó eő nagyságát, a a nyomás a követkeőképpen váltoik a magassággal: p = p e +. A gömb köéppontja a oigóban van. Dolgounk gömbi koodináta endseben. A kisámítandó integál: F = pda. A felületelem vekto: da = ϑ ϕ = cosϑ cosϕ cosϑ sinϕ sinϑ A integál egyes komponensei teát: sinϑ sinϕ cosϕ = 2 sinϑ sinϑ cosϕ sinϑ sinϕ cosϑ F x = p e dϕ e cosϑ 2 sin 2 ϑ cosϕdϑ =, nyilvánvalóan a cosϕ integálja eltünik. Hasonlóan eltünik a eő y komponense is, így csak a iányú össetevőt kell megatáonunk: F = p e dϕ e cosϑ 2 cosϑ sinϑdϑ = 2πp e e cosϑ 2 cosϑ sinϑdϑ. Hasnáljuk a x = cosϑ elyettesítést, ekko dx = sinϑdϑ és a integál a követkeő alaka egyseűsödik: F = 2πp e 1 e x 2 xdx = 2π 2 p e x x e 1 F = 2π 2 p e e + e e e = 2π 2 p + 1 e x dx 1 + e 2 + e 2 1
5 5. Feladat 2 pont A ábán látató felületet a követkeőképpen paametiálatjuk: x = sinue u cosv y = sinue u sinv = u aol π/6 u π és v 2π. A Stokes tétel segítségével atáouk meg a e da integált a megadott felülete, aol e a iányú egységvekto! Felasnálatjuk, ogy otxe y = e. A Stokes tétel seint otvda = Vd. A mi esetünkben a felületi integál elyett egy olyan át göbe mentén kell integálni, amely köülöleli a felületet. Nyilvánvalóan a felület "nyakánál", amiko u = π/6, találató egy ilyen kö alakú kontú, amelynek a sugaa = sinπ/6e π/6. A felületi integál teát a küvetkeő köintegállal atáoatjuk meg: xe y d Polá koodinátákban: és Teát a integál étékét beelyettesítve: d = xe y d = sinv cosv e y d = cosv dv 2 cos 2 vdv = π 2. xe y d = π 1 4 eπ/3. A Stokes tétel ételmében tetsőleges olyan felületet válastatunk, amelyet köbeá a göbe, amely mentén integálunk. E a állítás megegyeik a fluxus megmaadásával. Integálandó felületnek válassuk a alakat nyakánál lévő koongot. Ennek a felületnek a nomál vektoa e, így a felületi integál egyseűen a koong 2 π teületével egyeik meg, ögtön solgáltatva a elyes eedményt!
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
RészletesebbenMozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
RészletesebbenKoordinátarendszerek
Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli
Részletesebben1. MATEMATIKAI ÖSSZEFOGLALÓ
1. MTEMTIKI ÖSSZEFOGLLÓ fejeet néhány olyan matematiai össefüggést foglal össe, ao egat bionyítása nélül, amelyete a Fiia I. c. tágy tágyalása soán felhasnálása eülne. 1.1. Vetoo, művelete vetooon 1.1.1.
RészletesebbenKétváltozós vektor-skalár függvények
Kétáltozós ekto-skalá függények Definíció: Az olyan függényt amely az ( endezett alós számpáokhoz ( R R ( ektot endel kétáltozós ekto-skalá függénynek neezzük. : ( ( ( x( i + y( j + z( k Az ektoal együtt
RészletesebbenMegjegyzés: jelenti. akkor létezik az. ekkor
. Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z
RészletesebbenRugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
RészletesebbenKettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.
2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T
RészletesebbenA Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
RészletesebbenKáprázás -számítási eljárások BME - VIK
Káprázás -számítási eljárások 2014.04.07. BME - VIK 1 Ismétlés: mi a káprázás? Hatása szerint: Rontó (disabilityglare, physiologische Blendung) Zavaró(discomfortglare, psychologischeblendung) Keletkezése
Részletesebbena térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
Részletesebben3. MOZGÁS GRAVITÁCIÓS ERŐTÉRBEN, KEPLER-TÖRVÉNYEK
3. MOZGÁS GRAVIÁCIÓS ERŐÉRBEN, KEPLER-ÖRVÉNYEK 3.. Eőobéma M nyugsik a oigóban és m ennek gavitációs eőteében moog. Miyenek a mogások? F = G m M m = gad A F = gad G M m A=G M m A megodásho, a mogások eeméséhe
RészletesebbenTérbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására
Tébeli polákoodináták alkalmazása egy pont helyének sebességének és gyosulásának leíásáa A címbeli feladat a kinematikával foglalkozó tankönyvek egyik alapfeladata: elmagyaázni levezetni az idevágó összefüggéseket
RészletesebbenFizika A2E, 5. feladatsor
Fiika A2E, 5. feladatsor Vida György Jósef vidagyorgy@gmail.com. feladat: Mi a homogén E térer sség potenciálja? A potenciál deníciója: E(x,y, = U(x,y,, amely kifejtve a három komponensre: Utolsó módosítás:
Részletesebben(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2
. Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =
Részletesebben4. STACIONÁRIUS MÁGNESES TÉR
4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt
RészletesebbenELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007
ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos
Részletesebben2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
RészletesebbenFogaskerekek III. Általános fogazat
Fogskeekek III. Áltlános fogt Elei, kopenált fogtok esetén: vlint: ostóköök gödülőköökkel egybeesnek áltlános fogt főbb jelleői: A tengelytáv: -ól -enő, A kpcsolósög α-ólα -e nő, A ostókö dés gödülőkö
Részletesebben0, különben. 9. Függvények
9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós
RészletesebbenAnalízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
RészletesebbenSugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy
Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény
RészletesebbenElektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i
0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni
RészletesebbenOptika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
RészletesebbenA Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
Részletesebben1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
RészletesebbenFizika és 3. Előadás
Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???
RészletesebbenFizika és 6. Előadás
Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn
RészletesebbenT obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
RészletesebbenFIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,
RészletesebbenMegjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
RészletesebbenMakromolekulák fizikája
Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés
Részletesebben6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk
Részletesebben1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c
RészletesebbenFelügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
RészletesebbenNULLADIK MATEMATIKA szeptember 7.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke
Részletesebben1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
RészletesebbenA Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :
Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye
Részletesebben17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög.
17. tétel kö és észei, kö és egyenes kölcsönös helyzete (elemi geometiai tágyalásban). Keületi szög, középponti szög, látószög. Def: Kö: egy adott ponttól egyenlő távolsága levő pontok halmaza a síkon.
Részletesebben3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
RészletesebbenFIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu
Részletesebben1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
RészletesebbenA +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
RészletesebbenMODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
RészletesebbenTevékenység: Olvassa el a jegyzet oldalain található tananyagát! Tanulmányozza át a segédlet 11. fejezetében lévı kidolgozott feladatot!
3.2. Lánchajtások Tevékenység: Olvassa el a jegyet 163-173 oldalain található tananyagát! Tanulmányoa át a segédlet 11. fejeetében lévı kidolgoott feladatot! A tananyag tanulmányoása köben a alábbiakra
RészletesebbenSzilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség
Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd
RészletesebbenHARDVEREK VILLAMOSSÁGTANI ALAPJAI
HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat ellenőizte Macsa Dániel, okl. villamosménök Széchenyi István
Részletesebbenazonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
RészletesebbenIVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI
IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat
RészletesebbenSíkbeli polárkoordináta-rendszerben a test helyvektora, sebessége és gyorsulása általános esetben: r = r er
Fizika Mechanika óai felaatok megolása 5. hét Síkbeli polákooináta-enszeben a test helyvektoa, sebessége és gyosulása általános esetben: = e Ha a test köpályán mozog, akko = konst., tehát sebessége : éintő
RészletesebbenQ 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
RészletesebbenFizika 1 Mechanika órai feladatok megoldása 9. hét. , ahol ρ a sűrűség (ami lehet helyfüggő is), és M = ρ dv az össztömeg. ϕ=104,45 d=95,84 pm !,!
Fiika 1 Mechanika órai feladatok megoldása 9. hét Tömegköéppont (súlpont) Pontrendser esetén a m i tömegű, r i helvektorú tömegpontok tömegköéppontja a tömegekkel súloott átlagos helvektor: = =, ahol M
RészletesebbenOptika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
RészletesebbenKirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Részletesebben15. Többváltozós függvények differenciálszámítása
5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =
Részletesebbendr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = ["#,#]
Gömbszimmetikus, M tömegű test köüli téidő vákuumban: 1) Vákuum: T " = 0 2) Ügyes koodinátaendsze-választással ki lehet használni a gömbszimmetiát. Az Einstein-egyenlet analitikusan is megoldható, a megoldás,
RészletesebbenBME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
Részletesebbensin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Részletesebben17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
RészletesebbenJelölések. GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok. Unger János. x;y) )?
GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Jelölések R/m = alapfelületi
Részletesebben5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás
5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )
RészletesebbenKalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
RészletesebbenVALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI
D. Gausz Tamás VALÓSÁGOS ÖRVÉNYEK Az aeodinamikában igen gyakan találkozunk az övény fogalmával. Ez az övény a epülőgép köüli áamlásban kialakuló otációból (fogásból) számazik. Egy általában kis téész
RészletesebbenÁ Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú
RészletesebbenÉ ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í
Részletesebbenű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö
RészletesebbenÉ á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á
Részletesebbenó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő
RészletesebbenOptika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)
Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az
RészletesebbenA stacionárius elektromos áram és a mágneses tér kapcsolata
A stacionáius elektomos áam és a mágneses té kapcsolata I. Az áamtól átfolyt vezető mágneses tee. Oested és Ampèe kíséletei. Az elektomos és mágneses jelenségek sokban hasonlítanak egymása, és ezét égóta
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
RészletesebbenFizika Előadás
Fizika 11 1. Előadás Fonos-e egy manage-nek fiziká anulnia????? Mié fonos egy manage-nek fiziká anulnia??? Az euo/usd keeszáfolyam göbéje. A legnagyobb őzsdei guuk sem udják megállapíani, melyik az öpeces,
RészletesebbenMatematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.
Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos
Részletesebben2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLASZOK EGYETEMI MÉRNÖKHALLGATÓK SZÁMÁRA
2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLSZK EGYETEMI MÉRNÖKHLLGTÓK SZÁMÁR (1) Mi a mechanika tága? nagi endseek (testek) heletváltotatással jáó mogásainak és a eeket létehoó hatásoknak (e knek) a visgálata. heletváltoást
RészletesebbenA Maxwell-egyenletrendszer:
Maxwell-egyenletendsze: Ez a XIX. sz. egyik legnagyobb hatású egyenletendszee, főleg azét, met ebből az egyenletendszeből vezették le az elektomágneses hullámok létezését.. mpèe-maxwell féle gejesztési
RészletesebbenElektrodinamika. Bevezetés
Elektodinamika Bevezetés A Kíséleti Fizika tantágyban má megismekedtünk a Mawell egyenletekkel amelyek segítségével megéteni és magyaázni tudjuk a hétköznapjainkban tapasztalható elektomágneses jelenségeket.
Részletesebbenanal2_04_implicit_es_integral.nb 1
anal implicit_es_integral.nb H L H Implicit függvény tétel L H L
RészletesebbenKettős és többes integrálok
Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin
RészletesebbenModern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
RészletesebbenKomplex számok. (a, b) + (c, d) := (a + c, b + d)
Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)
RészletesebbenMatematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
RészletesebbenTrigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda
Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett
RészletesebbenTervezés I. Belsőtér BME-VIK 1
Tervezés I. Belsőtér 2013.03.25. BME-VIK 1 Tervezés 1. Ami kimaradt a lámpatestekből 2. Tervezési alapok 3. Létesítési előírások 4. Számítási elvek 1. Belsőtér 2. Külsőtér 3. Gépi számítások Bárány Péter
RészletesebbenMezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA
Mősimuláció végslm-módsl hái fladat HNGSZÓRÓ LENGŐTEKERCSÉRE HTÓ ERŐ SZÁMÍTÁS Késíttt: Gaamvölgyi Zsolt, 2007 visgált nds ábán látható fogássimmtikus nds komponnsi a kövtkők: állandómágns gyűű fémlmk tkcs
RészletesebbenFIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
RészletesebbenElektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp
Elektomos állapot Göög tudomány, Thales ηλεκτρνboostyán (elekton) Elektomos állapot alapjelenségei Kétféle elektomos állapot pozitív üveg negatív ebonit Elektoszkóp Tapasztalatok Testek alapállapota semleges
Részletesebben4. Előadás A mátrixoptika elemei
4. Előadás A mátixoptika elemei Amiko optikai endszeek elemeinek pozicionálását tevezzük, a paaxiális optika eszközeie támaszkodunk. Fénysugaak esetében ez az optikai tengelyhez közeli, azzal kis (< 5º)
RészletesebbenEgyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
RészletesebbenMatematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
RészletesebbenIV x. 2,18 km magasan van a hôlégballon.
8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk
Részletesebben1. Az előző előadás anyaga
. Az előző előadás anyaga Egy fiú áll az A pontban és azt látja, hogy a barátnője fuldoklik a B pontban egy tóban. Milyen plyán kell a fiúnak mozognia, hogy a leggyorsabban a barátnőjéhez érjen, ha a parton
RészletesebbenNE HABOZZ! KÍSÉRLETEZZ!
NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10
RészletesebbenKomplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
RészletesebbenCIKLOIS TÍPUSÚ GÖRBÉK ÁBRÁZOLÁSA GEOGEBRÁVAL
CIKLOIS TÍPUSÚ GÖRBÉK ÁBRÁZOLÁSA GEOGEBRÁVAL SZAKDOLGOZAT Készítette: Szabó Katalin, tanái szakiányos hallgató Matematika BSc Témavezető: Csikós Balázs egyetemi docens Geometiai Tanszék Eötvös Loánd Tudományegyetem
RészletesebbenRezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
RészletesebbenMegoldások. 25. x y Aszimptoták: y = ±x 29. Aszimptoták: y = ±x. 31. Aszimptoták: y = ±2x 33. Aszimptoták: y = ± x 2
Megoldások. fejezet.... Kúpszeletek és másodfokú egenletek. = 8, F,, vezéregenes: = 5. + = 7. Aszimptoták: = ± 9. Aszimptoták: = ±. = 6, F, /, vezéregenes: = / 5. 9 =, F±,, V±,, aszimptoták: = ± 7. + =,
Részletesebben5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
RészletesebbenTömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Részletesebben4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval
4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6
RészletesebbenAntennák és hullámterjedés 6 óra
Antennák és ullámtejeés 6 óa. Antennák óa.a. Antennák alapfogalmak aás, vétel, szóás.b. Antennák elektomos tulajonságai bemeneti ill. sugázási jellemzők. Antennák típusai uzalantennák, apetua antennák,
Részletesebben