dr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = ["#,#]
|
|
- Judit Halászné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Gömbszimmetikus, M tömegű test köüli téidő vákuumban: 1) Vákuum: T " = 0 2) Ügyes koodinátaendsze-választással ki lehet használni a gömbszimmetiát. Az Einstein-egyenlet analitikusan is megoldható, a megoldás, Schwazschild-koodinátákkal felíva: Schwazschild-metika 1916): = 1 2M % 1 2M d 2 2 d* 2 2 sin 2 *d+ 2 t = [",] = 0, ] 2M % = [ 0, ] = [ 0,2 ] dτ: a két közeli esemény téidőbeli távolsága a két eseményt összekötő világvonalon haladó megfigyelő kaóáján mét időtatam), t, θ, ϕ: koodináták mentális konstukciók, méhető fizikai tatalmuk általában nincs) 1 Schwazschild-metika, tészeű intevallummal elválasztott eseménypáa: = 1 2M % + 1 2M d d* sin 2 *d+ 2 dσ: a két közeli esemény téidőbeli távolsága a két esemény közötti méteúdtávolság ) abban a lokális ineciaendszeben mét távolság a két esemény között, amelyben a két esemény egyidejű) Kétféle szingulaitást is észeveszünk: = 0: téidő-szingulaitás a geometia sajátja, fizikailag létezik) = 2M: koodináta-szingulaitás a szeencsétlen koodinátaválasztás eedménye) A Schwazschild-metika az egyenlítői síkban " = konst. = 90 0 ): = 1 2M % 1 2M d 2 2 d* 2 2 1
2 Painlevé-Gullstand-metika Painlevé: 1921, Gullstand: 1922): = 1 2M % ) dt 2 2 2M dtd d 2 2 d* 2 2 sin 2 *d+ 2 T = [",] = 0, ] = [ 0,% ] = [ 0,2% ] Kiküszöbüli a koodináta-szingulaitást = 2M-ben! Painlevé-Gullstand-metika az egyenlítői síkban " = konst. = 90 0 ): = 1 2M % ) dt 2 2 2M dtd d 2 2 d* 2 3 A metika: VARÁZSKÉPLET. Ebből az egyetlen egyenletből + a MÖE-ből) engeteg infomáció kinyehető. Példák: 1. A gömbszimmetikus test köé épített gömbhéjak távolsága. 2. Fénykúpdiagamok, eseményhoizont. 3. Az enegia E/m) és az impulzusmomentum L/m), mint mozgásállandók. 4. Szabad kő öppályája Schwazschild-, ill. Painlevé-Gullstand- téképen. 5. A Mekú peihélium-pecessziójának számétéke. 6. A GPS-nél fellépő elativisztikus effektusok. 7. Legfeljebb mennyi ideig lehet életben maadni egy fekete lyuk eseményhoizontján belül? 8. Ha beleesünk egy fekete lyukba, mennyi ideig tat az utazás fájdalmas szakasza? 9. Hogy néz ki egy fekete lyuk, ha egy gömbhéjat építünk köé, és onnan nézzük? Hogy néz ki akko, ha -iányban esünk felé? stb. 4 2
3 1. A gömbszimmetikus test köé épített gömbhéjak távolsága. = 1 2M % + 1 2M d d* 2 hivatalos neve: Schwazschild- koodináta : NEM a sugá!) Az -hez tásítható szemléletes név nem minden koodinátához van ilyen!): edukált keület [építünk egy gömbhéjat, méteudakkal megméjük a keületét, elosztjuk 2π-vel] Építsünk egy újabb gömbhéjat közvetlenül az első köé. Az új gömbhéj keülete legyen 2π+d). Mekkoa a két héj távolsága? dt = 0, dϕ = 0 d" = 1 1 2M d példák: Föld, neutoncsillag, fekete lyuk 5 2. Fénykúpdiagamok, eseményhoizont. Kitéő: sík téidő, fénykúpdiagam a 4D téidő [x,t] szeletén. Metika: d" 2 = dt 2 dx 2 dy 2 dz 2 [x,t] szelet y = konst., z = konst. dy = 0, dz = 0) A két eseményt fénysugá kösse össze dτ = 0 0 = dt 2 " dx 2 dt dx = ±1 diffeenciálegyenlet, leíja, hogy milyen alakúak a fénysugaak világvonalai ezen a téképen ) Megoldás: t " t A = ± x " x A ) 6 3
4 t " t A = ± x " x A ) fénykúpdiagam Az A eseményen jelen levő űhajós világvonala csakis az A-ból kiinduló fénykúpon belül folytatódhat. 7 Az eseményhoizont : fénysugaak által alkotott 3D hipefelület, amelyet csak egyik iányban léphet át egy anyagi észecske Az eseményhoizont tulajdonságai: 1. Nem látunk be mögé. Ha az N eseményben vagyunk, onnan az eseményhoizont mögötti eseményeket nem láthatjuk. Az eseményhoizonton túlól nem juthat el az N eseménybe infomáció. [Analóg a hétköznapi hoizont = látóhatá ) fogalmával.] 2. Ha egysze átlépünk ezen a felületen pl. m világvonal), akko má nem juthatunk vissza a szükével jelzett tatományba. 8 4
5 Fénykúpdiagam, Schwazschild- tékép, [,t]-szelet: = 1 2M % 1 2M d 2 2 d* 2 2 sin 2 *d+ 2 [,t] szelet, fénysugá dθ = 0, dϕ = 0, dτ = 0 0 = % 1 " 2M dt 2 1 " 1 " 2M d 2 dt d = ± " 2M Megoldás: diffeenciálegyenlet, leíja, hogy milyen alakúak a fénysugaak világvonalai a Schwazschild [,t]- téképen ) t " t A = ± " A + 2M ln M " 2 ) A % M " 2 ) 9 tömegpontok űhajósok, kövek, stb.) világvonalai [1] Miét pont ilyen iányokba ajzoltam a fénykúpokon a nyilakat? [2] Az = 2M felé kívülől közeledő kő végtelen Schwazschild-t múlva éi el az = 2M-et. Azaz soha nem éi el?! [3] Az < 2M tatományban egy űhajós úgy is haladhat, hogy a világvonalán dt < 0?! Visszafelé halad az időben?! [4] Az < 2M tatományban egy űhajós mozgásáa d/dt > 1 is teljesülhet?! Az ilyen űhajós gyosabban halad, mint a fény?! 10 5
6 Fénykúpdiagam, Painlevé-Gullstand- tékép, [,T]-szelet: = 1 2M % ) dt 2 2 2M dtd d 2 2 d* 2 2 sin 2 *d+ 2 [,T] szelet, fénysugá dθ = 0, dϕ = 0, dτ = 0 0 = % 1 " 2M dt 2 " 2 2M dtd " d 2 d dt = " 2M ±1 diffeenciálegyenlet, leíja, hogy milyen alakúak a fénysugaak világvonalai a Painlevé-Gullstand [,T]- téképen ) 11 Megoldás: 1. A,T A )-ból befelé haladó fénysugáa: T " T A = A " ) " 4M % A 2M " 2M % M ) ln% % 1 + A 2M 2M 2. B,T B )-ből kifelé haladó fénysugáa: T " T B = " B ) + 4M % 2M " B 2M % 1 " + 4M ) ln% % 1 " 2M B 2M 12 6
7 nincs koodinátaszingulaitás az = 2M-ben Az = 2M különleges hipefelület: 1) Eseményhoizont, hiszen fénysugaak által alkotott, egyiányú felület. 2) Ha egysze > 2M felől átlépünk ajta, akko a) többet soha nem juthatunk el = -be nincs menekvés ), és b) a világvonalunk véges sajátidőn belül az = 0-ban végződik biztos halál ) Az = 2M hipefelület a fekete lyuk ESEMÉNYHORIZONTJA. Emlékeztető: az = 0 hipefelület: téidő-szingulaitás.) 13 7
24 műhold (6 pályasíkban 4-4) & % ( )M * 26600km. T m. # 3870 m v m "1.29 #10 $5. # 460 m T a s
A GPS-nél fellépő relativisztikus effektusok. 4 műhold 6 pályasíkban 4-4 T m = 1 óra " Mm r m = mr m % T m T r m = m % M * 66km " v m [ m s ] = r m" 87 m v m "1.9 1 5 T m s Az Egyenlítőn álló vevőkészülék:
RészletesebbenAz időmérés pontossága fontos, mert a távolságmérést erre alapozzuk.
A GPS-nél fellépő relativisztikus effektusok. 24 műhold (6 pályasíkban 4-4) T m = 12 óra Az Egyenlítőn álló vevőkészülék: r a = 6370km 1 Az időmérés pontossága fontos, mert a távolságmérést erre alapozzuk.
RészletesebbenEikonál egyenlet az általános relativitáselméletben
Szegedi Tudományegyetem, TTIK Kiséleti Fizikai Tanszék SZAKDOLGOZAT Eikonál egyenlet az általános elativitáselméletben Készítette: Bombolya László Fizika BSc szakos hallgató Témavezeto: D. Keesztes Zoltán
RészletesebbenMETRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva:
METRIKA D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: dl = dx + dy Általános alak ha nem feltétlenül Descartes-koordinátákat használunk: dl =... dx 1 +... dx +...dx 1 dx +...dx
Részletesebben[ ]dx 2 # [ 1 # h( z,t)
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
Részletesebbenα v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1
Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató
RészletesebbenAnalízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
RészletesebbenERŐ-E A GRAVITÁCIÓ? 1. példa:
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási r rendszer, ahol érvényes Newton első törvénye ( F e = 0 " a r = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben
Részletesebben9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
RészletesebbenFizika és 3. Előadás
Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???
RészletesebbenANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
RészletesebbenTérkép és valóság. (b) Röviden írja le, milyen módon torzítja el ez a térkép a valódi világ viszonyait.
1. Térkép és valóság Képzeljük el, hogy egy négyzetrácsos sík papírlap a világ, amelyen laposlényekként élünk. A négyzetrács-vonalak az úthálózatot jelképezik. Az egyik irányt laposkelet-laposnyugatnak,
RészletesebbenRugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
RészletesebbenA gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
RészletesebbenÉ ű ű Í ű ű ű É ű Í Ü É Í Á Ó Á É Á Á Á É Á Á Ó Á Á ű Ő Á É É ű É É É ű ű Á É Á Á Í Á Á Á É Á É É ű ű ű ű Í ű Í Í ű ű ű Í ű É ű É ű Á ű Í ű Á ű ű Á ÉÍ É É ű ű ű ű Í ű Í Í ű Á Í Í ű Í Í É ű É Í Í ű ű ű
RészletesebbenÍ Ü ű É ü ú Ó Ó É Ü Ó Í Ü Ü ű Á É Á É Ü Ü É É É É Í Á É É Í Ó Ü ü Ő É Ő É É É É É É É É É É É É Á É Ú Á Ú É Á Ú É Ó ü ű É Á É Ü ű É Ü É É É Ü ű Ü ű É Ü Ú É Á Á Á É Ü Ü Ü É Ó Á Ő É Í É É É É Í Í ű ü ü Ó
RészletesebbenKétváltozós vektor-skalár függvények
Kétáltozós ekto-skalá függények Definíció: Az olyan függényt amely az ( endezett alós számpáokhoz ( R R ( ektot endel kétáltozós ekto-skalá függénynek neezzük. : ( ( ( x( i + y( j + z( k Az ektoal együtt
RészletesebbenFIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,
Részletesebben462 Trigonometrikus egyenetek II. rész
Tigonometikus egyenetek II ész - cosx N cosx Alakítsuk át az egyenletet a következô alakúa: + + N p O O Ebbôl kapjuk, hogy cos x $ p- Ennek az egyenletnek akko és csak akko van valós megoldása, ha 0 #
RészletesebbenIII. Differenciálszámítás
III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja
RészletesebbenA Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
RészletesebbenFIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu
RészletesebbenMegjegyzés: jelenti. akkor létezik az. ekkor
. Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z
RészletesebbenGeometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső
Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy
RészletesebbenDifferenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
RészletesebbenMozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
RészletesebbenKalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
RészletesebbenMetrikus terek. továbbra is.
Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d
Részletesebbenrnök k informatikusoknak 1. FBNxE-1
Fizika ménm nök k infomatikusoknak. FBNxE- Mechanika 7. előadás D. Geetovszky Zsolt. októbe. Ismétl tlés Centifugális és Coiolis eő (a Föld mint fogó von. endsze) Fluidumok mechanikája folyadékok szabad
RészletesebbenFizika 1 Mechanika órai feladatok megoldása 7. hét
Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:
Részletesebbenazonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
RészletesebbenERŐ-E A GRAVITÁCIÓ? 1
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási rendszer, ahol érvényes Newton első törvénye (! # = 0 ' = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben tett felfedezések:
Részletesebben(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e
Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x
Részletesebben(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2
. Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =
RészletesebbenKettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.
2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T
RészletesebbenLagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
RészletesebbenNumerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása
Numeikus módszeek A. Egyenletek gyökeinek numeikus meghatáozása A1) Hatáozza meg az x 3 + x = egyenlet (egyik) gyökét éintı módszeel. Kezdje a számítást az x = helyen! Megoldás: x 1, Megoldás 3 A függvény
Részletesebben17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög.
17. tétel kö és észei, kö és egyenes kölcsönös helyzete (elemi geometiai tágyalásban). Keületi szög, középponti szög, látószög. Def: Kö: egy adott ponttól egyenlő távolsága levő pontok halmaza a síkon.
RészletesebbenLendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
RészletesebbenTérbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására
Tébeli polákoodináták alkalmazása egy pont helyének sebességének és gyosulásának leíásáa A címbeli feladat a kinematikával foglalkozó tankönyvek egyik alapfeladata: elmagyaázni levezetni az idevágó összefüggéseket
RészletesebbenSzéchenyi István Egyetem
polár 3D gömbi Széchenyi István Egyetem Téglalapon vett integrál polár 3D gömbi Legyenek [a, b], [c, d] R véges intervallumok, és jelölje T az [a, b] [c, d] = {(x, y) R : a x b, c y d } téglalapot. Legyen
RészletesebbenA Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :
Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye
RészletesebbenEmlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ
Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből
RészletesebbenMATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
RészletesebbenSzeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium
Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus
Részletesebbenf r homorú tükör gyűjtőlencse O F C F f
0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp
Részletesebben2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)
. Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()
RészletesebbenAz R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Részletesebben1. Az előző előadás anyaga
. Az előző előadás anyaga Egy fiú áll az A pontban és azt látja, hogy a barátnője fuldoklik a B pontban egy tóban. Milyen plyán kell a fiúnak mozognia, hogy a leggyorsabban a barátnőjéhez érjen, ha a parton
RészletesebbenNem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Részletesebben{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek
1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és
RészletesebbenAz éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
RészletesebbenAZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.
AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás
RészletesebbenBevezetés a görbe vonalú geometriába
Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.
RészletesebbenAz Einstein egyenletek alapvet megoldásai
Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann
RészletesebbenFelügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
RészletesebbenGruber József, a hidrodinamikai szingularitások művelője
Gube József, a hidodinamikai szingulaitások művelője Czibee Tibo Személyes kapcsolatom Gube pofesszoal: Egyetemi tanulmányaimat a miskolci Nehézipai Műszaki Egyetemen végezvén nem hallgathattam egyetemi
RészletesebbenT obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
Részletesebben2. Reprezentáció-függvények, Erdős-Fuchs tétel
2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív
Részletesebben1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)
Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I
Részletesebben10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása
. tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb
RészletesebbenDiffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
RészletesebbenHenger körüli áramlás Henger körüli áramlás. Henger körüli áramlás. ρ 2. R z. R z. = 2c. c A. = 4c. c p. = c cos. y/r 1.5.
Henger körüli áramlás y/r.5 x/r.5 3 3 R w z + z R R iϑ e r R R z ( os ϑ + i sin ϑ ) Henger körüli áramlás ( os ϑ i sin ϑ ) r R + [ ϑ + sin ϑ ] ( ) ( os ) r R r R os ϑ + os ϑ + sin ϑ 444 3 r R 4 r [ os
RészletesebbenAtomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules)
Atomok (molekulák) fotoionizációja soán jelentkező ezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) BORBÉLY Sándo, NAGY László Babeş-Bolyai Tudományegyetem, Fizika ka, 484
RészletesebbenKétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
RészletesebbenDávid Gyula néhány (egész estét betöltő) előadásának az elérhetősége: Matematikusok a fekete lyukban a fizikai és matematikai végtelen
Fekete lyuk Egy interaktív kalandra hívunk főleg a Schwarzschild-féle fekete lyukak világába. Bár a bemutató enélkül is követhető, de a teljes élményhez a bemutatóhoz is használt Geogebra állományt ajánljuk.
RészletesebbenKinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
RészletesebbenDifferenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
RészletesebbenCIKLOIS TÍPUSÚ GÖRBÉK ÁBRÁZOLÁSA GEOGEBRÁVAL
CIKLOIS TÍPUSÚ GÖRBÉK ÁBRÁZOLÁSA GEOGEBRÁVAL SZAKDOLGOZAT Készítette: Szabó Katalin, tanái szakiányos hallgató Matematika BSc Témavezető: Csikós Balázs egyetemi docens Geometiai Tanszék Eötvös Loánd Tudományegyetem
RészletesebbenMobilis robotok irányítása
Mobiis obotok iánítása. A gakoat céja Mobiis obotok kinematikai modeezése Matab/Simuink könezetben. Mobiis obotok Ponttó Pontig (PTP) iánításának teezése és megaósítása.. Eméeti beezet Mobiis obotok heátoztatása
RészletesebbenHidrosztatikai problémák
Hidrsztatikai prblémák 11 hidrsztatikai nymással kapcslats gndlatmenetek Szájával lefelé frdíttt, vízzel telt mérőhengert kiemelünk egy nagybb kád vízből Kössünk rugós erőmérőt a mérőhengerre, s annál
RészletesebbenINHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES
INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES Ecsedi István, Pofesso Emeitus, Miskolci Egyetem, Műszaki Mechanikai Intézet; Baksa Attila,
RészletesebbenGravitációs fényelhajlás gömbszimmetrikus téridőkben
SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar ELMÉLETI FIZIKA TANSZÉK Fizika BSc Szakdolgozat Gravitációs fényelhajlás gömbszimmetrikus téridőkben Deák Bence Témavezető: Dr. Keresztes
RészletesebbenMátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
Részletesebben2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Részletesebben1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
RészletesebbenEgy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása
1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű
RészletesebbenValószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Részletesebben3. Egy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva?
. z és események függetlensége melyik összefüggéssel van definiálva? P () + P () = P ( ) = P ()P () = P ( ) = P () P () 2. z alábbi összefüggések közül melyek igazak, melyek nem igazak tetszőleges és eseményeke?
RészletesebbenSugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy
Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény
Részletesebben2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
RészletesebbenOptika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 11. Bevezetés a speciális relativitáselméletbe I. Tér, Idő, Téridő Cserti József, jegyzet, ELTE, 2007 (Dávid Gyula jegyzete alapján). Maxwell-egyenletek
Részletesebben5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
RészletesebbenA közlegelı problémájának dinamikája Lotka - Volterra egyenletek felhasználásával
A közlegelı poblémájának dinamikája Lotka - Voltea egyenletek felhasználásával Bessenyei István Pécsi Tudományegyetem, Közgazdaságtudományi Ka A gazdaság világszete és különösen hazánkban tapasztalható
RészletesebbenTehetetlenségi nyomaték, impulzusmomentum-tétel, -megmaradás
Tehetetlenségi nyomaték, impulzusmomentum-tétel, -megmaradás Tehetetlenségi nyomaték számítása pontrendszerre: Θ = Σ m i l i, ahol l i az m i tömegű test távolsága a forgástengelytől, kiterjedt testre:
RészletesebbenPolinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
RészletesebbenReakciókinetika és katalízis
Reakciókinetika és katalízis 5. előadás: /22 : Elemi reakciók kapcsolódása. : Egy reaktánsból két külön folyamatban más végtermékek keletkeznek. Legyenek A k b A kc B C Írjuk fel az A fogyására vonatkozó
RészletesebbenLencsék fókusztávolságának meghatározása
Lencsék fókusztávolságának meghatáozása Elméleti összefoglaló: Két szabályos, de legalább egy göbe felület által hatáolt fénytöő közeget optikai lencsének nevezünk. Ennek speciális esetei a két gömbi felület
RészletesebbenAz atomok vonalas színképe
Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenÉgi mechanika tesztkérdések. A hallgatók javaslatai 2008
Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek
RészletesebbenOPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
RészletesebbenHHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
RészletesebbenAbszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
RészletesebbenKettős és többes integrálok
Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin
RészletesebbenLaplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
RészletesebbenSpeciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
Részletesebben