INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES"

Átírás

1 INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES Ecsedi István, Pofesso Emeitus, Miskolci Egyetem, Műszaki Mechanikai Intézet; Baksa Attila, egyetemi docens, PhD, Miskolci Egyetem, Műszaki Mechanikai Intézet ÖSSZEFOGLALÁS (ABSTRACT). The object of this pape is to detemine the stesses in hollow inhomogeneous elastic conical body caused by inne and oute pessues applied to its mantles. It is assumed that the nonhomogeneous elastic mateial is incompessible, that is the Poisson s atio is 0.5. An analytical method is developed to solve the bounday value poblem of elastic equilibium. Two types of nonhomogeneity ae consideed, fist case is the layeed conical body and the second case deals with the functionally gadient mateial (FGM). 1. BEVEZETÉS Az 1. ába szemlélteti a vizsgálat tágyát képező üeges kúpalakú testet. Az üeges kúpalakú testet az O csúcspontú és kökúp felületek, V 1 V V V 4 valamint az O középpontú és gömbfelületek hatáolják. A mechanikai feladata megfogalmazásáa az O gömbkoodináta-endszet használtuk (1. ába). A statikai peeméték feladat megoldásával kapcsolatban feltételezzük, hogy 1. Az alakváltozások és az elmozdulások kicsinyek.. Nincs téfogati tehelés.. A test anyaga ideálisan ugalmas, összenyomhatatlan, vagyis a Poisson tényező Rétegzett inhomogenitás esetében a étegek kapcsolata tökéletes, mindenfajta elcsúszás, elválás kizát. 5. FGM anyag esetében a G csúsztató ugalmassági modulus a gömbi koodináta folytonos függvénye. Jelölje e, e és az O gömbi koodináta- e endsze egységvektoait. A tanulmány tágyát alkotó statikai peemétékfeladatot az alábbi peemfeltételek hatáozzák meg: u 0, 0, PV V, (1) 4 0, p1, P V1, () 0, p, P V. () 1. ába. Üeges kökúp alakú test Az elmozdulás vekto skalá koodinátáit u, u, u, míg a feszültségi tenzo elemeit pedig,,,,, jelöli az O gömbi koodináta-endszeben [1,,,4]. Az (1) egyenletben megfogalmazott vegyes peemfeltételek sima, meev gömbfelületekkel töténő megtámasztás évén ealizálhatók, hasonlóan a véges hosszúságú síkalakváltási állapotban lévő ugalmas testekhez. Ez utóbbi esetben az axiális elmozdulást sima meev síkkal való megtámasztás teszi lehetetlenné. A kitűzött statikai feladat megoldását az alábbi elmozdulás mezőből számaztatjuk: u u 0, u U ( ). (4) A fenti elmozdulásoknak megfelelő alakváltozások [1-]

2 0, (5) U, Uctg. Az izotop, lineáisan ugalmas összenyomhatatlan test anyagtövénye alapján [-7] íható, hogy 0 0 (6) G, G, (7) G, G, () 0 G, G, (9) 0, (10) 1 1 sin ctg 0. (1) G G ( ) 0 ahol G a csúsztató ugalmassági modulust jelöli. A tanulmány tágyát képező inhomogén ugalmas test esetében a csúsztató ugalmassági modulus a gömbi koodináta függvénye, vagyis. A (7) és () egyenletekben a közepes nomál feszültséget jelöli [-7] 0. (11) A fenti egyenleteket a jelen poblémáa alkalmazva, azt kapjuk, hogy G, G, (1) 0 0 0, (1) U Uctg 0. (14) A (14) egyenletből az következik, hogy K U ( ), 1. (15) sin 1 és A gömbi koodinátákat a. ába ételmezi, továbbá K egy integációs állandó. A mechanikai egyensúly egyenletei zéus téfogati tehelés esetén gömbi koodináta endszeben az alábbi alakban adhatók meg [1,] 1 1 sin (16) ctg 0, 1 1 sin ctg 0, (17). ába. Az üeges kökúp alakú test meidián metszete A feladat fogásszimmetiájából az következik, hogy a feszültségek polászög szeinti paciális deiváltjai identikusan zéussal egyenlők. Belátható, hogy a (16), (17) egyensúlyi egyenletek a vizsgált peeméték feladatban identikusan teljesülnek és a (1) egyensúlyi egyenletből pedig az következik, hogy d ctg 0. d (19) A (6) egyenletből azt kapjuk, hogy cos cos K, K. sin sin (0) A (1), (1) egyenletek és a (0) egyenlet kombinálásával nyejük a (1) egyenletet cos GK 0, sin (1) cos GK 0. sin A (1) egyenletek (19) egyenletbe való helyettesítése az alábbi eedménye vezet d cos 4 KG. () d sin. RÉTEGZETT RUGALMAS KÚP A. ába szemlélteti a meidián metszetét a vizsgált kompozit kúpalakú testnek. Ai i 1 ( i 1,..., n) szögkoodinátával, valamint az R R4 sugákoodinátával kijelölt ugalmas tatomány jele i ( i 1,..., n).

3 A felít képletekben szeeplő ismeetlen mennyiségeket K, c1, c,..., c n az alábbi peem és illesztési feltételek kielégítéséből nyejük: ( ) p, ( ) p, (9) n n 1 n 1 lim i i 1 0 ( i1) i1 0, ( i1,,..., n 1). (0). ába. Rétegzett üeges kúpalakú test Az előző fejezet egyenletei alapján íható, hogy cos i GK i i0( ), sin () ( i i 1), cos i GK i i0( ), sin (4) ( i i 1), ahol az i jelű kúpalakú összenyomhatatlan ugalmas test csúsztató ugalmassági modulusát jelöli. A (19) és a (1) egyenletekből az következik, hogy G i d i0 d cos GK i d d sin (5) cos 4GK i 0. sin A (5) egyenlet integálásával azt kapjuk, hogy i0( ) i ( ) KGi ln tan no- ci, i i 1, ( i 1,..., n). Egyszeű számolással adódik a i és a málfeszültségeke az alábbi két képlet cos i ( ) KGi sin ln tan,, i (6) (7) ci i i 1 cos i ( ) KGi sin ln tan,. () ci i i 1 A (9) egyenletek a 1 és n 1 egyenletekkel kijelölt kúpfelületekhez tatozó feszültségi peemfeltételekhez kapcsolódó egyenletek, ahol és az alkalmazott tehelések (nyomások) p 1 pn 1 étékeit jelölik. Az egyes étegek hatáfelületein a nomálfeszültség folytonos függvénye a változónak. Ez utóbbi feltétel fennállását a (0) egyenlet biztosítja. 4. FUNKCIONÁLISAN GRADIENS ANYAGÚ KÚPALAKÚ TEST Funkcionálisan gadiens anyagú összenyomhatatlan ugalmas kúp alakú test esetében G a szögkoodináta folytonos függvénye, azaz G G ( ). A vizsgált test meidián metszetét és az alkalmazott tehelést a. ába szemlélteti a () egyenlet és a (. ába) ( ) p, ( ) p, (1) 1 1 statikai peemfeltételek kombinálásával jutunk a állandó étékéhez K p1 p K. cos () 4 G( ) d 1 sin A () egyenlet integálásával közvetlenül megkapható a ( ) feszültség képlete p1 p ( ) p1 cos G( ) d 1 sin () cos G( ) d. 1 sin A (1) egyenletből egyszeű számolással adódik, hogy

4 p1 p 0 p1 cos G( ) d 1 sin (4) cos cos G( ) d G( ). 1 sin sin A ( ) nomál feszültség számítása az alábbi egyenlet alapján töténik cos (5) 4 KG( ) ( ). sin Részletes számítás az alábbi eedménye vezet p1 p p1 cos G( ) d 1 sin (6) cos cos G( ) d G( ). 1 sin sin K 0, (7) Az 5. ába a ( ), a 6. ába a ( ) és a 7. ába a 0 ( ) feszültségeket szemlélteti a változó függvényeként. A von Mises feszültség M M( ) függvényét a. ába mutatja be. Egyszeű számolással azt kapjuk, hogy max M ( ) 1 () 7 9, Pa. 4. NUMERIKUS PÉLDÁK 4.1. Funkcionálisan gadiens anyagú kúpalakú test A numeikus példában az alábbi adatokat használtuk (4. ába) 1,, G G0 exp( a ), a 0,, 0 G 0,110 Pa, p 0, p 510 Pa Mivel az alakváltozások és feszültségek függetlenek az sugá koodinátától az R, R 4 ( R R ) étékét nem adtuk meg ába. A ( ) FGM kúpa. 6. ába. ( ) FGM kúpa 7. ába. A ( ) FGM kúpa 4. ába. Funkcionálisan gadiens anyagú üeges kúpalakú test A () képlet alkalmazásával azt kaptuk, hogy 4.. Rétegezett összenyomhatatlan ugalmas kúpalakú test. A bemutatása keülő numeikus példa négy étegből felépülő kompozit kúpa vonatkozik. Az

5 egyes étegeket meghatáozó szögkoodináták az alábbiak: 1,,, 4, A 1. ába szemlélteti az összenyomhatatlan ugalmas anyagú tömö kúpalakú test meidián metszetét és az alkalmazott tehelést. A G csúsztató ugalmassági modulus és a szögkoodináta tetszőleges pozitív étékű függvénye. Lehet folytonos, illetve szakaszonként folytonos a intevallumban. 0. ába. A M M( ) FGM kúpa Az alkalmazott tehelések 6 p Pa. a G1 G0 exp 1 a G G0 exp a G G0 exp 4 a G4 G0 exp 4 5 G 0 1, Pa, 1, Pa, 1, Pa, 1, Pa, p1 0, (9) (40) (41) (4) Itt és a étékét a 4.1. feladatban adtuk meg. A csúsztató ugalmassági modulusok fenti megválasztásával egy közelítő módsze alkalmazásáa nyílik lehetőség a FGM anyagú kúpalakú teste levezetett megoldásnak az ellenőzésée. A számítások eedményeit a 9. a 10. a 11. és a 1. ába szemlélteti. max M ( ) 1 5 (4) 7 9, Pa. 5. TÖMÖR KÚPALAKÚ TEST 9. ába. A ( ) étegzett kompozit kúpa 10. ába. A ( ) étegzett kompozit kúpa 11. ába. A ( ) étegzett kompozit kúpa 1. ába. A M M( ) étegzett kompozit kúpa

6 Az elmozdulások véges voltából az következik, hogy, azaz, vagyis a test minden pontjában K 0 függetlenül a U 0 u u u 0 (44) G G ( ) függvénytől és a p teheléstől. A (16-1) mechanikai egyensúlyi egyenletek és az (1-) egyenletekben megfogalmazott peemfeltételi előíások nyilván teljesülnek, ha a test minden pontjában p (45) 0, vagyis a vizsgált ugalmas tömö kúp hidosztatikus feszültségi állapotban van, melyet a és 16. ábákon szemléltettünk a végeselemes megoldás alapján. olyan adatokkal számoltuk ki, amiko is a étegzett kompozit kúpa vonatkozó megoldás a funkcionálisan gadiens anyagú kúpa vonatkozó analitikus megoldás egy közelítő megoldásaként intepetálható. Köszönetnyilvánítás: A tanulmány elkészítését a Nemzeti Kutatási és Fejlesztési Hivatal (NKFIH) K pojekte támogatta. A cikkben ismetetett kutató munka az EFOP jelű Fiatalodó és Megújuló Egyetem Innovatív Tudásváos a Miskolci Egyetem intelligens szakosodást szolgáló intézményi fejlesztése pojekt észeként a Széchenyi 00 keetében az Euópai Unió támogatásával, az Euópai Szociális Alap tásfinanszíozásával valósul meg. 15. ába. A és a feszültségek 16. ába. A feszültség 1. ába. Tömö kúpalakú összenyomhatatlan ugalmas test meidián metszete ( 1 0) 14. ába. Az u elmozdulásmező 6. KÖVETKEZTETÉSEK A dolgozat tágyát inhomogén, összenyomhatatlan, ugalmas kúpok egy statikai peemétékfeladata alkotja. A kúpok külső és belső palást felületein előít nomál felületi tehelés (nyomás) működik. Analitikus megoldás keült kidolgozása a étegzett kompozit kúpoka és a funkcionálisan gadiens anyagú kúpa. A numeikus példákat 6. IRODALOM [1] W.S. Slaughte, The lineaized Theoy of Elasticity, Bikhäuse, Basel, 00. [] I.S. Soloknikoff, Mathematical Theoy of Elasticity, (nd ed.), McGaw-Hill, New Yok, [] I. Ecsedi, A. Baksa, Spheical stain state of incompessible elastic bodies, Jounal of Computational and Applied Mechanics, 11(1), pp.17-, 016. [4] I. Golecki, On the fundamentals of the theoy of elasticity of plane incompessible non-homogeneous media, Lectue in I.U.T.A.M. Symposium of Non-homogeneous in Elasticity and Plasticity, Wasaw, [5] I. Golecki, On the assumption of incompessibility in plane poblems of elasticity, Ach. Mech. Stos., 9(), pp.97-01, [6] I. Golecki, Statics of an incompessible elastic solid, Ach. Mech. Stos., 1(4), pp.5-46, [7] M.E. Gutin, The Linea Theoy of Elasticity in Handbuch de Physik II/., (Ed. S. Flüge), Spinge, Belin, 197.

Kétváltozós vektor-skalár függvények

Kétváltozós vektor-skalár függvények Kétáltozós ekto-skalá függények Definíció: Az olyan függényt amely az ( endezett alós számpáokhoz ( R R ( ektot endel kétáltozós ekto-skalá függénynek neezzük. : ( ( ( x( i + y( j + z( k Az ektoal együtt

Részletesebben

Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására

Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására Tébeli polákoodináták alkalmazása egy pont helyének sebességének és gyosulásának leíásáa A címbeli feladat a kinematikával foglalkozó tankönyvek egyik alapfeladata: elmagyaázni levezetni az idevágó összefüggéseket

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Tartalom Bevezetés Motiváció A peridinamikus anyagmodell Irodalmi áttekintés Korábbi kutatási eredmények

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI

A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI SZENT ISTVÁN EGYETEM GÖDÖLLŐ MECHANIKAI ÉS GÉPTANI INTÉZET A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI Dr. M. Csizmadia Béla egyetemi tanár, az MMK Gépészeti Tagozatának elnöke Budapest 2013. október. 25. BPMK

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules)

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) Atomok (molekulák) fotoionizációja soán jelentkező ezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) BORBÉLY Sándo, NAGY László Babeş-Bolyai Tudományegyetem, Fizika ka, 484

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

IV x. 2,18 km magasan van a hôlégballon.

IV x. 2,18 km magasan van a hôlégballon. 8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk

Részletesebben

3. Egy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva?

3. Egy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva? . z és események függetlensége melyik összefüggéssel van definiálva? P () + P () = P ( ) = P ()P () = P ( ) = P () P () 2. z alábbi összefüggések közül melyek igazak, melyek nem igazak tetszőleges és eseményeke?

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

A queueing model for Spectrum Renting and handover calls in Mobile Cellular Networks

A queueing model for Spectrum Renting and handover calls in Mobile Cellular Networks Mobil hálózatok véges foású modellezése spectum enting és handove hívások használatával A queueing model fo Spectum Renting and handove calls in Mobile Cellula Netwoks Tamás Béczes a, János Sztik a, Jinting

Részletesebben

III. Differenciálszámítás

III. Differenciálszámítás III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja

Részletesebben

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása Numeikus módszeek A. Egyenletek gyökeinek numeikus meghatáozása A1) Hatáozza meg az x 3 + x = egyenlet (egyik) gyökét éintı módszeel. Kezdje a számítást az x = helyen! Megoldás: x 1, Megoldás 3 A függvény

Részletesebben

Bé ni. Barna 5. Benc e. Boton d

Bé ni. Barna 5. Benc e. Boton d Egy asztalon háom halomban 009 db kavics van Egyet eldobok belőle, és a többit két kupacba osztom Ezután megint eldobok egyet az egyik halomból (amelyikben egynél több kavics van) és az egyik halmot ismét

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Segédlet a Tengely gördülő-csapágyazása feladathoz

Segédlet a Tengely gördülő-csapágyazása feladathoz Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3 októbe 7 technológia és a költségek dualitása oábban beláttuk az alábbi összefüggéseket: a) Ha a munka hatáteméke nő akko a hatáköltség csökken

Részletesebben

Csavarkötés mérése ), (5) μ m a menetes kapcsolat súrlódási tényezője, β a menet élszöge. 1. Elméleti alapok

Csavarkötés mérése ), (5) μ m a menetes kapcsolat súrlódási tényezője, β a menet élszöge. 1. Elméleti alapok GEGE-AGG labormérések Csavarkötés mérése. Elméleti alapok Csavarkötéseknél az összekapcsolt alkatrészek terhelés alatti elmozdulásának megakadályozása céljából előfeszítést kell alkalmazni, amelynek nagyságát

Részletesebben

Mikroelektromechanikai szerkezetek szilárdsági és megbízhatósági vizsgálata

Mikroelektromechanikai szerkezetek szilárdsági és megbízhatósági vizsgálata OTKA nyilvántartási szám: T 049848 Mikroelektromechanikai szerkezetek szilárdsági és megbízhatósági vizsgálata Témavezetı: Dr. Kovács Ádám egyetemi docens, BME Mőszaki Mechanikai Tanszék Kutatási beszámoló:

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

A hullámegyenlet megoldása magasabb dimenziókban

A hullámegyenlet megoldása magasabb dimenziókban A hullámegyenlet megoldása magasabb dimenziókban Orbán Ágnes Fábián Gábor Kolozsi Zoltán 2009. október 29. A hullámegyenlet Hullámegyenletnek nevezzük a következ lineáris parciális dierenciálegyenletet:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

462 Trigonometrikus egyenetek II. rész

462 Trigonometrikus egyenetek II. rész Tigonometikus egyenetek II ész - cosx N cosx Alakítsuk át az egyenletet a következô alakúa: + + N p O O Ebbôl kapjuk, hogy cos x $ p- Ennek az egyenletnek akko és csak akko van valós megoldása, ha 0 #

Részletesebben

IV. Reinforced Concrete Structures III. / Vasbetonszerkezetek III. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár

IV. Reinforced Concrete Structures III. / Vasbetonszerkezetek III. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár IV. Reinfoced Concete Stuctues III. Vasbetonszekezetek III. - Oszlopok kihajlási hossza, külpontosságok, oszlopvizsgálat - D. Kovács Ime PhD tanszékvezető főiskolai taná E-mail: d.kovacs.ime@gmail.com

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban tanszékvezető, főiskolai docens a Magyar Építész Kamara tagja a Magyar Mérnöki Kamara tagja a fib Magyar Tagozatának tagja az ÉTE Debreceni

Részletesebben

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

KÉPLÉKENYALAKÍTÁS ELMÉLET

KÉPLÉKENYALAKÍTÁS ELMÉLET KÉPLÉKENYALAKÍTÁS ELMÉLET KOHÓMÉRNÖK MESTERKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ANYAGTUDOMÁNYI INTÉZET Miskolc, 2008. 1. TANTÁRGYLEÍRÁS

Részletesebben

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.? FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Egy általánosabb súrlódásos alapfeladat

Egy általánosabb súrlódásos alapfeladat Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI

KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI ANYAGMÉRNÖK ALAPKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR FÉMTANI, KÉPLÉKENYALAKÍTÁSI ÉS NANOTECHNOLÓGIA

Részletesebben

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki! 1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

feszültségek ábrázolása a cső vastagsága mentén sugár irányban.

feszültségek ábrázolása a cső vastagsága mentén sugár irányban. SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem analízis 4. gyakorlat (kidolgozta: Aczél Ákos egyetemi tanársegéd, Bojtár Gergely egyetemi tanársegéd) Feladat: Sík-alakváltozás (vastag

Részletesebben

Mivel a fenti összefüggéseket kíséleti eedmények is alátámasztják, azok oly métékben pontosnak tekinthetők, hogy a feszültségoptikában elengedhetetlen

Mivel a fenti összefüggéseket kíséleti eedmények is alátámasztják, azok oly métékben pontosnak tekinthetők, hogy a feszültségoptikában elengedhetetlen Diagonálisan tehelt anizotóp fakoong feszültségállapota Hantos Zoltán A eflexiós feszültségoptika egy látványos és célszeű oncsolásmentes anyagvizsgálati eljáás. Mivel a módsze a bevont anyag felületének

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

A síkbeli Statika egyensúlyi egyenleteiről

A síkbeli Statika egyensúlyi egyenleteiről 1 A síkbeli Statika egyensúlyi egyenleteiről Statikai tanulmányaink egyik mérföldköve az egyensúlyi egyenletek belátása és sikeres alkalmazása. Most egy erre vonatkozó lehetséges tanulási / tanítási útvonalat

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. 1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók

Részletesebben

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Vas Gabriella 204. február A feladatgy jtemény a TÁMOP-4.2.4.A/2-/-202-000 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

időpont? ütemterv számonkérés segédanyagok

időpont? ütemterv számonkérés segédanyagok időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások

Részletesebben

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Úgy találjuk, hogy a kötelek statikájának népszerűsítése egy soha véget nem érő feladat. Annyi szép dolog tárháza

Részletesebben

XVII. econ Konferencia és ANSYS Felhasználói Találkozó

XVII. econ Konferencia és ANSYS Felhasználói Találkozó XVII. econ Konferencia és ANSYS Felhasználói Találkozó Hazay Máté, Bakos Bernadett, Bojtár Imre hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA GEMET001-B Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet MM/37/2018. Miskolc, 2018. február 5. HIRDETMÉNY Statika(GEMET201NB és GEMET001-B)

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

PÉLDATÁR 12. 2. FÉLÉVI HÁZI FELADAT FURATOS LEMEZ ANALITIKUS ÉS VÉGESELEM MEGOLDÁSA

PÉLDATÁR 12. 2. FÉLÉVI HÁZI FELADAT FURATOS LEMEZ ANALITIKUS ÉS VÉGESELEM MEGOLDÁSA PÉLDATÁR.. FÉLÉVI HÁZI FELADAT FURATOS LEMEZ ANALITIKUS ÉS VÉGESELEM MEGOLDÁSA Szező: D. Szekényes Andás D. Szekényes Andás, BME www.tankonyvta.hu Fuatos lemez analitikus és végeselem megoldása. FURATOS

Részletesebben

dr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = ["#,#]

dr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = [#,#] Gömbszimmetikus, M tömegű test köüli téidő vákuumban: 1) Vákuum: T " = 0 2) Ügyes koodinátaendsze-választással ki lehet használni a gömbszimmetiát. Az Einstein-egyenlet analitikusan is megoldható, a megoldás,

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

MATEK-INFO UBB verseny április 6.

MATEK-INFO UBB verseny április 6. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATEK-INFO UBB verseny 219. április 6. Írásbeli próba matematikából FONTOS MEGJEGYZÉS: 1) Az A. részben megjelenő feleletválasztós

Részletesebben

1. Feladat. a) Mekkora radiális, tangenciális és axiális feszültségek ébrednek a csőfalban, ha a csővég zárt?

1. Feladat. a) Mekkora radiális, tangenciális és axiális feszültségek ébrednek a csőfalban, ha a csővég zárt? 1. Feladat Egy a = mm első és = 150 mm külső sugarú cső terhelése p = 60 MPa első ill. p k = 30 MPa külső nyomás. a) Mekkora radiális, tangenciális és axiális feszültségek érednek a csőfalan, ha a csővég

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

Poncelet egy tételéről

Poncelet egy tételéről 1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés

Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés Hazay Máté hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 5. előadás: /22 : Elemi reakciók kapcsolódása. : Egy reaktánsból két külön folyamatban más végtermékek keletkeznek. Legyenek A k b A kc B C Írjuk fel az A fogyására vonatkozó

Részletesebben

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Végeselem módszer 5. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test elmozdulás- és feszültség állapotának vizsgálata

Végeselem módszer 5. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test elmozdulás- és feszültség állapotának vizsgálata SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 5. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test elmozdulás- és feszültség állapotának vizsgálata Adottak

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Rugalmasan ágyazott gerenda. Szép János

Rugalmasan ágyazott gerenda. Szép János Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

A mikroskálájú modellek turbulencia peremfeltételeiről

A mikroskálájú modellek turbulencia peremfeltételeiről A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása

Részletesebben

Egy rugalmas megtámasztású tartóról

Egy rugalmas megtámasztású tartóról Egy rugalmas megtámasztású tartóról Ezzel a témával gyakran találkozunk, még ha nem is így nevezzük azt. Ne feledjük, hogy a statikailag határozatlan tartók megoldásához szinte mindig alakváltozási felté

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

ÖSSZEFÜGGÉSEK A LINEÁRIS REGRESSZIÓS MODELLBEN

ÖSSZEFÜGGÉSEK A LINEÁRIS REGRESSZIÓS MODELLBEN MÓDSETANI TANULMÁNOK ÖSSEFÜGGÉSEK A LINEÁIS EGESSIÓS MODELLBEN D HAJDU OTTÓ A tanulmány a lineáis egessziós modell alavető mutatóit tágyala E mutatókat egymásból vezeti le olymódon hogy azok statisztikai

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Tásulat Aany Dániel Matematikai Tanulóveseny 017/018-as tanév 1. foduló Haladók III. kategóia Megoldások és javítási útmutató 1. Anna matematika házi feladatáa áfolyt a tinta.

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y =

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y = 1. feladat a = 3 m b = 4 m F = 400 N φ = 60 fok Első lépésként alkossuk meg a számítási modellt. A kényszereket helyettesítsük a bennük ébredő lehetséges erőkkel (második ábra). Az F erő felbontásával

Részletesebben

INDUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MODELLEZÉSÉRE 3

INDUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MODELLEZÉSÉRE 3 Ráz Gábo 1 Veess Ápád INUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MOELLEZÉSÉRE A BME 4 Vasúti Jáműek, Repülőgépek és Hajók Tanszék munkatásai számos

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar

KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA Anyagmérnök BSc Szak Évfolyamszintű tárgy Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet 1. Tantárgyleírás Tantárgy neve: Mechanika Tantárgy

Részletesebben