Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban"

Átírás

1 Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban tanszékvezető, főiskolai docens a Magyar Építész Kamara tagja a Magyar Mérnöki Kamara tagja a fib Magyar Tagozatának tagja az ÉTE Debreceni Szervezetének elnöke Debreceni Egyetem Tudomány Napja október 26. 1

2 Az előadás felépítése Épitőérnöki tevékenységek A szerkezetépitő mérnök filozófiája Mérnöki modellalkotás szintjei Modell kísérlettől a VEM-ig Differenciálegyenletek alkalmazása rúdszerkezetek stabilitásvizsgálatában Véges differenciák módszere és alkalmazása lineárisan változó intenzitású normálerővel terhelt konzol esetében VEM mint a tartószerkezeti tervezés mindennapi eszköze Összefoglalás 2

3 Épitőmérnöki feladatok Szerkezetépítés magasépítés, mélyépítés Közlekedésépítés út- és vasútépítés Közműépítés vízellátás, csatornázás, szennyviztisztitás, vízépítés Geotechnika speciális alapozások, földalatti műtárgyak, alagutak Geodézia általános és ipari geodézia, térinformatika 3

4 Szerkezetépités Magasépités Őszinte erőjáték 4

5 Szerkezetépités Magasépités Őszinte erőjáték 5

6 Szerkezetépités Magasépités Őszinte erőjáték 6

7 Szerkezetépités Magasépités Nem hiszem el, hogy működik! 7

8 Szerkezetépités Magasépités Nem hiszem el, hogy működik! 8

9 Szerkezetépités Magasépités Nem hiszem el, hogy működik! 9

10 Szerkezetépités Magasépités Nemzeti jelleget! 10

11 Szerkezetépités Magasépités Legyen szakrális üzenete! 11

12 Szerkezetépités Magasépités Legyen szakrális üzenete! 12

13 Szerkezetépités Mélyépités Szolgálat 13

14 Szerkezetépités Mélyépités Biztonság 14

15 Szerkezetépités Mélyépités Környezet 15

16 Szerkezetépités Mélyépités Egyedi 16

17 Szerkezetépités Mélyépités Gazdaságos 17

18 Szerkezetépités Mélyépités Különleges 18

19 Problémamegoldás Mérnöki alkotó folyamat Igények és lehetőségek összehangolása Rendszerelvű szemlélet Modellalkotás 19

20 Modellalkotás szintjei Numerikus szimuláció lineáris, nem lineáris vizsgálat Anyagjellemzők homogén, inhomogén, izotróp, anizotrop lineárisan rugalmas, nem lineárisan rugalmas, képlékeny, viszkózus, reológiai jellemzők Szerkezeti viselkedés Modell kísérlet valós léptékű nem valós léptékű Környezet terhek, hatások, Mérnöki tartóssági kérdések modell statika, szilárdságtan, rugalmasságtan, dinamika Mérethatás size effect Debreceni Egyetem Informatikai Intézet 2. Gyires Béla Informatikai Nap május

21 Modell kísérlet Valós léptékű modellekből megállapitható tapasztalatok Dl Dl d D Debreceni Egyetem Informatikai Intézet 2. Gyires Béla Informatikai Nap május 14. d D 21

22 Modell kisérlet Nem valós léptékű modell 22

23 Modellkisérlet Nem valós léptékű modell 23

24 Modellkisérlet Nem valós léptékű modell 24

25 A tervezési folyamat útvesztője Optimális, azaz gazdaságos megoldás keresése Szerkezet összetettsége Megoldhatóság Megoldási idő Variálhatóság Megbízói igények Numerikus módszerek alkalmazása 25

26 Modellalkotás szintjei Numerikus szimuláció lineáris, nem lineáris vizsgálat Anyagjellemzők homogén, inhomogén, izotróp, anizotrop lineárisan rugalmas, nem lineárisan rugalmas, képlékeny, viszkózus, reológiai jellemzők Szerkezeti viselkedés Modell kísérlet valós léptékű nem valós léptékű Környezet terhek, hatások, Mérnöki tartóssági kérdések modell statika, szilárdságtan, rugalmasságtan, dinamika Mérethatás size effect 26

27 Mérnöki modell I. Kompozit anyag alkotóelem viselkedéseinek modelljei e S m S m f t S f e C m e p m f t Beton (Mátrix) S f f y Lineárisan rugalmas tökéletesen rideg anyag C e f e p f f y e Acélszálak (Szálerősítés) Lineárisan rugalmas tökéletesen képlékeny anyag 27

28 Mérnöki modell Kompozit anyag mechanikai modellje az alkotóelemek viselkedéseivel S e e m p C m S f S m f t f t M C f e p f f y e e f y Anyagra jellemző paraméter 28

29 Mérnöki modell III. Kompozit anyag makroszkopikus és parciális feszültségeinek függvényei a mechanikai modell erőfolyama alapján s m = C m (e e m p ) - M (e m p e f p ) s f = C f (e e f p ) + M (e m p e f p ) S = C m (e e m p ) + C f (e e f p ) 29

30 Mérnöki modell IV. Kompozit anyag makroszkopikus és parciális feszültségeinek függvényei a mechanikai modell erőfolyama alapján S K 0 K 1 K 2 f y C m C f e 30

31 Modellalkotás szintjei Numerikus szimuláció lineáris, nem lineáris vizsgálat Anyagjellemzők homogén, inhomogén, izotróp, anizotrop lineárisan rugalmas, nem lineárisan rugalmas, képlékeny, viszkózus, reológiai jellemzők Szerkezeti viselkedés Modell kísérlet valós léptékű nem valós léptékű Környezet terhek, hatások, Mérnöki tartóssági kérdések modell statika, szilárdságtan, rugalmasságtan, dinamika Mérethatás size effect 31

32 Numerikus modell alapjai Az általánosított (3-D) anyagmodell termodinamikai, energetikai alapja C m f t Beton (Mátrix) e e m p M Helmholtz féle energiafüggvény: 1 Kapcsolati modulus e C f e p f f y Acélszálak (Szálerősítés) Y = C m ( e e m p ) 2 + M ( e m p e f p ) 2 + C f ( e e f p ) 2 2 Clausius-Duhem egyenlőtlenség: 1 2 j dt = S de dy 0 j dt = s m de m p + s f de f p

33 Numerikus modell alapjai Az M kapcsolati modulust a Maxwell szimmetria definiálja S 2 Y C m + C f = = e e 2 S s m C m = = = e p m e S s f C f = = = e p f e s m s f M = = = e p f e p m 2 Y e e m p 2 Y e e p f 2 Y e m p e f p 33

34 34 Numerikus modellalkotás VEM A termodinamikai, energetikai módszer segítségével az 1-D modell skalár paraméterei az általánosított 3-D modellben azok tenzoriális megfelelőivel azonosítjuk p f f p m f p f f p f p m m m p m m p f f p m m f m M C M C M M C C C C C C e e e e Y s e e e e Y s e e e e Y S Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

35 Modellalkotás szintjei Numerikus szimuláció lineáris, nem lineáris vizsgálat Anyagjellemzők homogén, inhomogén, izotróp, anizotrop lineárisan rugalmas, nem lineárisan rugalmas, képlékeny, viszkózus, reológiai jellemzők Szerkezeti viselkedés Modell kísérlet valós léptékű nem valós léptékű Környezet terhek, hatások, Mérnöki tartóssági kérdések modell statika, szilárdságtan, rugalmasságtan, dinamika Mérethatás size effect 35

36 Megoldási módszerek Differenciálegyenletek csak speciális területeken alkalmazott a numerikus megoldások sem kellően pontosak állatorvosi ló típusú feladatokra alkalmazható Megoldási idő Probléma összetettsége Véges differenciák módszere felületszerkezetek esetén használható, korlátok között a gyakorlati feladatok szintjén pontosnak tekinthető egyedi problémákra alkalmas nagy munkaigénnyel ad megoldást VEM általános érvényű módszer a pontosság az elemszám és az elemtulajdonságok függvénye 36

37 Differenciálegyenlet alkalmazása Mindkét végén csuklósan megtámasztott síkbeli nyomott rúd kihajlása x y x y Mx EIy" EIy" M x y k 2 y" k 2 y EI

38 Differenciálegyenlet alkalmazása Mindkét végén csuklósan megtámasztott síkbeli nyomott rúd kihajlása x y mx y Ke y' mx mke y x M x y" 2 Ke mx m 38

39 Differenciálegyenlet alkalmazása Mindkét végén csuklósan megtámasztott síkbeli nyomott rúd kihajlása x y" k 2 y 0 y Ke mx m 2 k 2 0 y x M x m ik i 1 y ikx C e ikx 1 2 C e 39

40 Differenciálegyenlet alkalmazása Mindkét végén csuklósan megtámasztott síkbeli nyomott rúd kihajlása x y e ikx cos kxi sinkx A ic ic 1 2 y x M x B C C 1 2 y Asinkx Bcos kx 40

41 Differenciálegyenlet alkalmazása Mindkét végén csuklósan megtámasztott síkbeli nyomott rúd kihajlása x y L x y M x 1. Kerületi feltétel: x 0 y B 0 2. Kerületi feltétel: x L L AsinkL y Asin y 0 L kx 0 41

42 Differenciálegyenlet alkalmazása Mindkét végén csuklósan megtámasztott síkbeli nyomott rúd kihajlása x y L x y M x Megoldások: a) A 0 akkor k és bármilyen értékű lehet a rúd egyenes marad (triviális meg.) b) sin krit kl 2 L 0 EI 2 42

43 Véges differenciák módszere Az ismeretlen függvénynek csak egyes előirt pontokban felvett értékeit határozzuk meg, közelítően. Ezen értékekből a differenciálegyenletben szereplő differenciálhányadosokat differenciahányadosokkal közelítjük. Keressünk közelítő összefüggést az f függvény egyik kitüntetett pontjában. A pontok távolsága dx. A függvényértéket Taylor-sorral közelítjük: f ( x dx ) f ( x ) df dx x dx 2 d f 2 dx x dx 2! 2 f ( x dx ) f ( x ) df dx x ( dx ) 2 d f 2 dx x ( dx ) 2! 2 43

44 Véges differenciák módszere Az ismeretlen függvénynek csak egyes előirt pontokban felvett értékeit határozzuk meg, közelítően. Ezen értékekből a differenciálegyenletben szereplő differenciálhányadosokat differenciahányadosokkal közelítjük. A két egyenlet különbségéből kapjuk az első derivált közelítését: df dx x f ( x dx ) f ( x dx ) 2dx A két egyenlet összegéből pedig a második derivált közelítését: 2 d f 2 dx x f ( x dx ) 2 f ( x ) 2 ( dx ) f ( x dx ) 44

45 Véges differenciák módszere Lineárisan változó intenzitású normálerővel terhelt konzol vizsgálata p(x) = ax EA = konst. (szerkezetre jellemző állandó) x, u Három valódi és egy fiktiv pont felvételével: x, u 45

46 Véges differenciák módszere Lineárisan változó intenzitású normálerővel terhelt konzol vizsgálata u 0 0 u 1 2 u 2 u x, u Differenciaegyenlet az 1. pontra felírva: Differenciaegyenlet a 2. pontra felírva: u2 0 u1 2u2 u3 a 2 2u1 u 2 ( / 2 ) a( / 2 ) EA ( / 2 ) EA 46

47 Véges differenciák módszere Lineárisan változó intenzitású normálerővel terhelt konzol vizsgálata igyelembe véve a peremfeltételeket az alábbi lineáris egyenletrendszerre és megoldására jutunk: u u a 4EA 3 3a 8EA 2 EA 1 u u 1u 2 u 1,pontos 2,pontos a a 48EA 3 a 3EA 1 2 Eltérés: + 9% Eltérés: + 12,5% 47

48 Végeselem módszer gyakorlati alkalmazása ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 48

49 Végeselem módszer gyakorlati alkalmazása ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 49

50 Végeselem módszer gyakorlati alkalmazása ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 50

51 Végeselem módszer gyakorlati alkalmazása ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 51

52 Végeselem módszer gyakorlati alkalmazása III. ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 52

53 Végeselem módszer gyakorlati alkalmazása ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 53

54 Végeselem módszer gyakorlati alkalmazása ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 54

55 Végeselem módszer gyakorlati alkalmazása a mélyépitésben ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 55

56 Végeselem módszer gyakorlati alkalmazása III. ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 56

57 Végeselem módszer gyakorlati alkalmazása III. ARCHI STAT Komplex Mérnökiroda Kft. Szellemi Terméke Irodavezető / Tervező: tanszékvezető főiskolai docens 57

58 Homo fabric ARCHI STAT Komplex Mérnökiroda Kft. Irodavezető: tanszékvezető főiskolai docens 58

59 Homo fabric ARCHI STAT Komplex Mérnökiroda Kft. Irodavezető: tanszékvezető főiskolai docens 59

60 Homo fabric ARCHI STAT Komplex Mérnökiroda Kft. Irodavezető: tanszékvezető főiskolai docens 60

61 Homo fabric ARCHI STAT Komplex Mérnökiroda Kft. Irodavezető: tanszékvezető főiskolai docens 61

62 Homo fabric ARCHI STAT Komplex Mérnökiroda Kft. Irodavezető: tanszékvezető főiskolai docens 62

63 Összefoglalás Modell kísérlet Mérnöki modellalkotás Numerikus modellalkotás Problémamegoldási módszerek és szintek Differenciálegyenletek Véges differenciák módszere Végeselem módszer gyakorlati alkalmazása Homo abric 63

64 Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban tanszékvezető, főiskolai docens a Magyar Építész Kamara tagja a Magyar Mérnöki Kamara tagja a fib Magyar Tagozatának tagja az ÉTE Debreceni Szervezetének elnöke 64

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szrkztk numrikus modllzés az éítőmérnöki gakorlatban intéztigazgató hltts, tanszékvztő, őiskolai docns a Magar Éítész Kamara tagja, a Magar Mérnöki Kamara tagja a ib Nmztközi Btonszövtség Magar Tagozatának

Részletesebben

INNOVATIV IRÁNYZAT NAPJAINK BIOÉPITÉSZETÉBEN

INNOVATIV IRÁNYZAT NAPJAINK BIOÉPITÉSZETÉBEN INNOVATIV IRÁNYZAT NAPJAINK BIOÉPITÉSZETÉBEN KOVÁCS IMRE okl. építőmérnök DE-MFK Mély- és Szerkezetépitési Tanszék tanszékvezető főiskolai docens ARCHI STAT KOMPLEX MÉRNÖKIRODA KFT. 1 Mi a bioépitészet?

Részletesebben

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22. TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke 1 Tartalom Méretezési alapelvek Numerikus modellezés Analízis és

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Ipari matematika 2. gyakorlófeladatok

Ipari matematika 2. gyakorlófeladatok Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,

Részletesebben

A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI

A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI SZENT ISTVÁN EGYETEM GÖDÖLLŐ MECHANIKAI ÉS GÉPTANI INTÉZET A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI Dr. M. Csizmadia Béla egyetemi tanár, az MMK Gépészeti Tagozatának elnöke Budapest 2013. október. 25. BPMK

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

időpont? ütemterv számonkérés segédanyagok

időpont? ütemterv számonkérés segédanyagok időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

KETTŐSFALÚ SZENDVICSSZERKEZET MINT A PLASZTIKUS FOMAALKOTÁS ÚJ LEHETŐSÉGE

KETTŐSFALÚ SZENDVICSSZERKEZET MINT A PLASZTIKUS FOMAALKOTÁS ÚJ LEHETŐSÉGE KETTŐSFALÚ SZENDVICSSZERKEZET MINT A PLASZTIKUS FOMAALKOTÁS ÚJ LEHETŐSÉGE KOVÁCS IMRE okl. építőmérnök DE-MFK Mély- és Szerkezetépitési Tanszék tanszékvezető főiskolai docens ARCHI STAT KOMPLEX MÉRNÖKIRODA

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I

A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I GÉPÉSZMÉRNÖKI, INFORMATIKAI ÉS VILLAMOSMÉRNÖKI KAR ALKALMAZOTT MECHANIKA TANSZÉK A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek

Részletesebben

Szerkezeti elemek globális stabilitási ellenállása

Szerkezeti elemek globális stabilitási ellenállása Szerkezetépítés II. 014/015 II. élév Előadás / 015. ebruár 11. (szerda) 9 50 B- terem Szerkezeti elemek globális stabilitási ellenállása előadó: Papp Ferenc Ph.D. Dr.habil eg. docens Szerkezetépítés II.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 5. elıadás Tervezési folyamat Szerkezetek mérete, modellje Végeselem-módszer elve, alkalmazhatósága Tervezési folyamat, együttmőködés más szakágakkal: mérnök építész mőszaki

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

A tartószerkezeti méretezés módszereinek történeti fejlődése

A tartószerkezeti méretezés módszereinek történeti fejlődése Szakmérnök képzés 2012 Terhek és hatások 1. ELŐADÁS A tartószerkezeti méretezés módszereinek történeti fejlődése Dr. Visnovitz György Szilárdságtani és Tartószerkezeti Tanszék 2012. március 1. Szakmérnök

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

ANSYS alkalmazások a BME Hidak és Szerkezetek Tanszékén. Hidak és Szerkezetek Tanszéke

ANSYS alkalmazások a BME Hidak és Szerkezetek Tanszékén. Hidak és Szerkezetek Tanszéke ANSYS alkalmazások a BME Hidak és Szerkezetek Tanszékén Joó Attila László Ansys konferencia és partneri találkozó 2008. 10. 10. Építőmérnöki Kar Szerkezetvizsgáló Laboratórium, Szerkezetinformatikai Laboratórium

Részletesebben

A tartószerkezeti méretezés módszereinek történeti fejlődése

A tartószerkezeti méretezés módszereinek történeti fejlődése Szakmérnök képzés 2014 Terhek és hatások 1. ELŐADÁS A tartószerkezeti méretezés módszereinek történeti fejlődése Dr. Visnovitz György Szilárdságtani és Tartószerkezeti Tanszék 2014. február 27. Szakmérnök

Részletesebben

KOMPOZITLEMEZ ORTOTRÓP

KOMPOZITLEMEZ ORTOTRÓP KOMPOZITLEMEZ ORTOTRÓP ANYAGJELLEMZŐINEK MEGHATÁROZÁSA ÉS KÍSÉRLETI IGAZOLÁSA Nagy Anna anna.nagy@econengineering.com econ Engineering econ Engineering Kft. 2019 H-1116 Budapest, Kondorosi út 3. IV. emelet

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 5. előadás: /22 : Elemi reakciók kapcsolódása. : Egy reaktánsból két külön folyamatban más végtermékek keletkeznek. Legyenek A k b A kc B C Írjuk fel az A fogyására vonatkozó

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás

Részletesebben

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Tartalom Bevezetés Motiváció A peridinamikus anyagmodell Irodalmi áttekintés Korábbi kutatási eredmények

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben

Dr. Kisgyörgy Lajos, BME Út és Vasútépítési Tanszék

Dr. Kisgyörgy Lajos, BME Út és Vasútépítési Tanszék Építőmérnökök képzése Dr. Kisgyörgy Lajos, BME Út és Vasútépítési Tanszék Institutum Geometrico-Hydrotechnicum Alapítva 1782 o Építőmérnöki Kar o Gépészmérnöki Kar o Építészmérnöki Kar o Vegyészmérnöki

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTŐMÉRNÖKI KAR KARI TANÁCS

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTŐMÉRNÖKI KAR KARI TANÁCS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTŐMÉRNÖKI KAR KARI TANÁCS a Kari Tanács határozatai a 2016. október 12-i ülésről 1 A Kari Tanács határozatképes (25 fő jelen, 3 fő távol 89,3 %) Napirendi

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

Építészmérnök (BSc) lev. 1, Hét A (szept.6-7, szept.20-21, okt.4-5, okt.18-19, nov.8-9, nov.22-23, dec.6-7)

Építészmérnök (BSc) lev. 1, Hét A (szept.6-7, szept.20-21, okt.4-5, okt.18-19, nov.8-9, nov.22-23, dec.6-7) 0 SZIE Ybl Miklós Építéstudományi Kar, Thököly út.., Budapest Építészmérnök (BSc) lev., Hét A (szept.-, szept.0-, okt.-, okt.-, nov.-, nov.-, dec.-) : - :00 : - 0:00 0: - :00 : - :00 : - :00 : - :00 :

Részletesebben

Rugalmasan ágyazott gerenda. Szép János

Rugalmasan ágyazott gerenda. Szép János Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai

Részletesebben

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész

Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Úgy találjuk, hogy a kötelek statikájának népszerűsítése egy soha véget nem érő feladat. Annyi szép dolog tárháza

Részletesebben

Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.

Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve. TTK, Matematikus alapszak Differenciálegyenletek 1 (BMETE93AM15) Elhangzott gyakorlati tananyag óránkénti bontásban Mindkét csoport Rövidítve 1 gyakorlat 017 szeptember 7 T01 csoport Elsőrendű közönséges

Részletesebben

Korrodált acélszerkezetek vizsgálata

Korrodált acélszerkezetek vizsgálata Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő

El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő fib Szimpózium La Plata, Argentina, 2005. Szeptember 28.-30. 1 El hormigón estructural y el

Részletesebben

Normák, kondíciószám

Normák, kondíciószám Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus

Részletesebben

Építészmérnöki Intézet Szakcsoport

Építészmérnöki Intézet Szakcsoport Építészmérnöki Intézet Ábrázoló Geometriai és Rajzi Épületszerkezettani, Építészettörténeti, Tervezési és Települési Épületgépészeti és Épületenergetikai Dr. Bölcskei Attila Babály Bernadett Kámán Előd

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek

Részletesebben

Reinforced Concrete Structures I. / Vasbetonszerkezetek I. II.

Reinforced Concrete Structures I. / Vasbetonszerkezetek I. II. II. Reinforced Concrete Structures I. Vasbetonszerkezetek I. - A beton fizikai és mechanikai tulajdonságai - Dr. Kovács Imre PhD tanszékvezető főiskolai tanár E-mail: dr.kovacs.imre@gmail.com Mobil: 6-3-743-68-65

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS 454 Iváncsa, Arany János utca Hrsz: 16/8 Iváncsa Faluház felújítás 454 Iváncsa, Arany János utca Hrsz.: 16/8 Építtető: Iváncsa Község Önkormányzata Iváncsa, Fő utca 61/b. Fedélszék ellenőrző számítása

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

Leggyakoribb fa rácsos tartó kialakítások

Leggyakoribb fa rácsos tartó kialakítások Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú

Részletesebben

Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés

Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés Hazay Máté hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó

Részletesebben

Korai vasbeton építmények tartószerkezeti biztonságának megítélése

Korai vasbeton építmények tartószerkezeti biztonságának megítélése Korai vasbeton építmények tartószerkezeti biztonságának megítélése Dr. Orbán Zoltán, Dormány András, Juhász Tamás Pécsi Tudományegyetem Műszaki és Informatikai Kar Építőmérnök Tanszék A megbízhatóság értelmezése

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

A MATEMATIKA NÉHÁNY KIHÍVÁSA

A MATEMATIKA NÉHÁNY KIHÍVÁSA A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Polinomok maradékos osztása

Polinomok maradékos osztása 14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik

Részletesebben

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék.   [1] ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november

Részletesebben

BSc mintatanterv 2011/2012. tanév 2. félév

BSc mintatanterv 2011/2012. tanév 2. félév Budapesti Műszaki és Gazdaságtudományi Egyetem BSc mintatanterv 2011/2012. tanév 2. félév Építőmérnöki Kar Szerkezet-építőmérnöki ágazat mintatanterv - 1 - Építőmérnöki ábrázolás BMEEOME K 2/2/f/4 Statika

Részletesebben