MECHANIKA I. rész: Szilárd testek mechanikája
|
|
- Réka Gálné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre ható erőket redukáljuk a keresztmetszetbe. Függvényként való ábrázolásuk axonometrikusan, vagy vetülettel oldható meg. Igénybevételek térben II. z erő felbontása: Normálerő: a km. síkjára merőleges Nyíróerő(k): a km. síkjában (két komponens) nyomaték felbontása: Csavarónyomaték: a tartó tengelyével párhuzamos Hajlítónyomaték(ok): a km. síkjában (két komponens)
2 Igénybevételek térben III. (Központos) húzás-nyomás (Tiszta) nyírás Csavarás Hajlítás Egyenes Ferde Külpontos (hajlítással egyidejű) húzás-nyomás Hajlítással egyidejű nyírás Nyírás és csavarás Szilárdságtan bevezetés I. Szilárd test: korlátozottan alakváltozásra képes anyag szilárdságtan tárgya a szilárd test: alakváltozások elmozdulások feszültségek Szilárdságtan bevezetés II. kapcsolódó fizikai tulajdonságok a szilárdsági tulajdonságok z anyaggal szemben támasztható szilárdságtani követelmények: szilárdsági (teherbírási) merevségi (használhatósági) stabilitási
3 Szilárdságtan feladatai z alakváltozásra képes rúd keresztmetszeti igénybevételeiből a keresztmetszet mentén megoszló erők (feszültségek) z alakváltozások és az elmozdulások számítása Egyensúlyi helyzet jellemzése Szilárdságtan bevezetés III. vizsgált anyag: Folytonos függvényekkel leírható kontinuum, mely a teret gyűrődés- és hézagmentesen tölti ki. Viselkedése, mikroszerkezete szerint lehet: homogén, vagy inhomogén, izotróp, anizotróp vagy ortotróp, időfüggetlen, vagy időfüggő hőmérsékletfüggetlen, vagy hőmérsékletfüggő a terhelési történettől független, vagy függő stb. Vizsgált változók, egyenletek Elmozdulások Külső erők (terhek) Geometriai egyenletek Egyensúlyi egyenletek lakváltozások nyagegyenletek Feszültségek (belső erők)
4 (Mechanikai) Feszültségek I. test részei egyensúlyban vannak. z n normálisú elemi felület mentén megoszló erő: Feszültségvektor: p n = lim 0 Q =d Q d nagysága és iránya is n irányától függ tenzor -t az eredeti, vagy a megváltozott helyzetben nézzük? (nemlinearitás) Feszültségek II. Feszültségvektor felbontása: normál- és nyírófeszültségre p n = n n n n, n n Komponensek számítása: n = p n n n= n n n = p n n = nt t nyírófeszültség indexelése: első (egyetlen) index: felület normálisa második index (ha van): irány Fajlagos nyúlás: lakváltozások I. x = l 0 Fajlagos szögtorzulás:, xy = xy xy,, = y l x x l y
5 nyagegyenletek I. nyag homogén izotróp lineárisan rugalmas időfüggetlen anyag Teher statikus, kvázi-statikus Rúdmodell Tengely, keresztmetszetek nyag z-vel párhuzamos, ill. xy-síkban Sík keresztmetszetek elve Megmerevítés elve Kis elmozdulások Rudak keresztmetszeti jellemzői Terület = d Statikai nyomaték S x = y d, S y = x d Tehetetlenségi nyomaték = y 2 d, = Centrifugális nyomaték x 2 d, I 0 = r 2 d= y =C xy = xy d(ha x vagy y szimmetriatengely, akkor 0)
6 Súlypont S x =S y =0 x S ' = y S ' = x ' d d = S y ' y ' d d = S x ' Steiner-tétel Koordinátarendszer eltolása S x =S y =0 (súlypont) 2 ' = t x 2 ' = t y C x ' y ' =C xy t x t y Inerciaszámítás Koordinátarendszer elforgatása,,c xy,α adott I, I,C =? I = 2 d, etc. =x cos y sin = x sin y cos I = 2 cos 2 C 2 xy sin 2
7 Főinerciák I. I, I harmonikus függvények szélsőértékek d I d =0 ahol C =0 tan 2 0 = 2C xy, tehetetlenségi főirány 0 k 90 is megoldás I 0 főtehetetlenségi nyomaték, I 1 I 2 Megjegyzések: C 12 =0! szimmetriatengely főirány I 1,2 = + 2 ± ( I 2 x 2 2 ) + C xy Főinerciák II. Tehetetlenségi Mohr-kör Normálfeszültségek - igénybevételek Sík km.:ε z =α x+ β y+ γ σ z =E ε z =a x+ b y+ c N = σ z d M x = M y = σ z y d σ z xd c =N a C xy + b =M x a + bc xy = M y [ C xy 1 C xy ] = 1 C 2 xy [ C xy C xy ]
8 Normálfeszültségek c= N a= M xc xy + M y b= M x M y C xy C 2 xy C 2 xy σ z = N + M xc xy + M y x+ M x M y C xy y C 2 xy C 2 xy Speciális eset: x és y főirány (C xy =0) σ z = N + M y x+ M x y= N + M x y M y x Semleges tengely Def.: ahol a normálfeszültség nulla: egy egyenes egyenlete Speciális eset: normálerő zérus 0= M x 0= N + M x y M y y M y Nem párhuzamos a nyomatékvektorral ferde hajlítás N csak eltolja ezt az egyenest x x y= M y M x x Hajlítás és húzás-nyomás Legyen C xy =0 és M y =0: σ z = N + M x semleges tengely M x -szel párhuzamos egyenes hajlítás N és M x eredője egy nem a súlypontban ható erő külpontos húzás-nyomás Speciális eset: M x =M y =0: Központos húzás-nyomás y σ z = N
9 Hooke-tv. alapján: lakváltozások ε z = σ z E = N E + M x C xy + M y E (C 2 xy ) x+ M x M y C xy E(C 2 xy ) x és y együtthatói: κ y = M xc xy + M y E (C 2 xy ) görbületek (y-, x-tengelyre) a keresztmetszet alakváltozása Egyenes hajlítás esetén: κ x = M x M y C xy E (C 2 xy ) κ x = M x E y Mintapélda Nyírófeszültségek, igénybevételek Nyíróerőből: Tiszta nyírás esetén Hajlítással egyidejű nyírás esetén Csavarónyomatékból (csavarásból) Kör(gyűrű) keresztmetszetben Középponttól távolodva lineárisan növekvő Egyéb keresztmetszetben: Gátolatlan csavarás öblösödés Gátolt csavarás normálfeszültség
10 Tiszta nyírás Feszültség: τ= T lakváltozás: γ= τ G = T G Hajlítással egyidejű nyírás Nyíróerő változó hajlítónyomaték változó normálfeszültség Metszet egyensúlya: F iz : τ yz Reciprocitás: τ zy =τ yz = S xt y b Zsuravszkij-képlet Feszültség: Szögtorzulás: Kör(gyűrű) csavarása τ z = M cs r, ahol I I 0 a poláris inercia 0 γ z = τ z G = M cs G I 0 r keresztmetszet alakváltozása: κ z = M cs G I 0 fajlagos elcsavarodottság
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
Kizárólag oktatási célra használható fel!
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:
BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
Lemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
Navier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
Gyakorlat 04 Keresztmetszetek III.
Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)
GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A
Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!
1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA Anyagmérnök BSc Szak Évfolyamszintű tárgy Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet 1. Tantárgyleírás Tantárgy neve: Mechanika Tantárgy
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
HELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.
Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
Statikailag határozatlan tartó vizsgálata
Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben
Szilárdságtan-1 munkaközi jegyzet ver. 1.0.
1 Szilárdságtan-1 munkaközi jegyzet ver. 1.0. Dr. Domokos Gábor előadásjegyzetei alapján összeállította Dr. Sipos ndrás Árpád. z ábrákat tajzolta: Domokos Réka és Kapsza Enikő. BME Szilárdságtani és Tartószerkezeti
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
MUNKA- ÉS ENERGIATÉTELEK
MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az
Pere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január
Végeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
Használhatósági határállapotok. Alakváltozások ellenőrzése
1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)
Ábragyűjtemény levelező hallgatók számára
Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított
TANTÁRGY ADATLAP és tantárgykövetelmények Cím:
TANTÁRGY ADATLAP és tantárgykövetelmények Cím: MECHANIKA II. (Szilárdságtan) Tárgykód: PMKSTNE143 Heti óraszám 1 : 2 ea, 4/2 gy, 0 lab Kreditpont: 7 / 5 Szak(ok)/ típus 2 : Építőmérnök BSc., Gépészmérnök
A talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
Merev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági
1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi
Rugalmasságtan és FEM, 2005/2006. II. félév, I. ZÁRTHELYI, A
Rugalmasságtan és FEM, 5/6. II. félév, I. ZÁRTHELYI, A 6. április., 7 5 8 Név: NEP T UN kod :. feladat Adott az elmozdulásmez½o: u = ( ax z i + bxz k) ; a = [mm ] ; b = [mm ].a., Írja fel az alakváltozási
Gyakorlat 03 Keresztmetszetek II.
Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)
Határfeszültségek alapanyag: σ H = 200 N/mm 2, σ ph = 350 N/mm 2 ; szegecs: τ H = 160 N/mm 2, σ ph = 350 N/mm 2. Egy szegecs teherbírása:
ervezze meg az L10.10.1-es szögacélpár eltolt illesztését L100.100.1-es hevederekkel és Ø1 mm-es szegecsekkel. nyagminőség: 8, szegecs: SZ. atárfeszültségek alapanyag: 00 /mm, p 50 /mm szegecs: τ 160 /mm,
Gyakorlati példák Dr. Gönczi Dávid
Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános
Energiatételek - Példák
9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l
1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra!
1. Határozzuk meg az alábbi tartó vasalását majd ellenőrizzük a tartót használhatósági határállapotokra! Beton: beton minőség: beton nyomószilárdságnak tervezési értéke: beton húzószilárdságának várható
TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK
TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.04.09. VASBETON ÉPÜLETEK MEREVÍTÉSE Az épületeink vízszintes terhekkel szembeni ellenállását merevítéssel biztosítjuk. A merevítés lehetséges módjai: vasbeton
Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.
Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív
DEME FERENC okl. építőmérnök, mérnöktanár
DEME FERENC okl. építőmérnök, mérnöktanár web-lap : www.sze.hu/~deme e-mail : deme.ferenc1@gmail.com HÁROMCSUKLÓS TARTÓ KÜLSŐ ÉS BELSŐ REAKCIÓ ERŐINEK SZÁMÍTÁSA, A TARTÓ IGÉNYBEVÉTELI ÁBRÁINAK RAJZOLÁSA
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
BME, SZILÁRDSÁGTANI ÉS TARTÓSZERKEZETI TANSZÉK. Példatár. Szilárdságtan 1. című tantárgyhoz. Összeállította: O. Csicsely Ágnes
BME, SZILÁRDSÁGTANI ÉS TARTÓSZERKEZETI TANSZÉK Példatár Szilárdságtan 1. című tantárgyhoz Összeállította: O. Csicsely Ágnes A jelenlegi példatár a Kőrössi Tibor, Laki Tamás, Dr. Rusznák György: Szilárdságtani
Dr. Szabó Bertalan. Hajlított, nyírt öszvértartók tervezése az Eurocode-dal összhangban
Dr. Szabó Bertalan Hajlított, nyírt öszvértartók tervezése az Eurocode-dal összhangban Dr. Szabó Bertalan, 2017 Hungarian edition TERC Kft., 2017 ISBN 978 615 5445 49 1 Kiadja a TERC Kereskedelmi és Szolgáltató
- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági
1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
EC4 számítási alapok,
Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4
Külpontosan nyomott keresztmetszet számítása
Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben
Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez
Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Pécs, 2015. június . - 2 - Tartalomjegyzék 1. Felhasznált irodalom... 3 2. Feltételezések... 3 3. Anyagminőség...
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Gyakorló feladatok a 2. zárthelyihez. Kidolgozott feladatok
Gakorló feladatok a. zárthelihez Kidolgozott feladatok. a) Határozzuk meg a függesztőrúd négzetkeresztmetszetének a oldalhosszát cm-re kerekítve úg, hog a függesztőrúdban ébredő normálfeszültség ne érje
Építészeti tartószerkezetek II.
Építészeti tartószerkezetek II. Vasbeton szerkezetek Dr. Szép János Egyetemi docens 2019. 05. 03. Vasbeton szerkezetek I. rész o Előadás: Vasbeton lemezek o Gyakorlat: Súlyelemzés, modellfelvétel (AxisVM)
TERMÉKSZIMULÁCIÓ I. 9. elıadás
TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris
Az igénybevételi függvényekről és ábrákról
1 Az igénybevételi függvényekről és ábrákról Úgy tűnik, hogy a technikusi minősítő vizsgára való felkészítő tanulási / tanítási feladatok egyik legnehezebb része a tartók igénybevételeivel kapcsolatos.
MECHANIKA II. Szilárdságtan
MECHANIKA II. Szilárdságtan Legeza, László dr. Mónika, Bakosné Diószegi Tibor dr., Goda MECHANIKA II. Szilárdságtan
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
Fogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk
Vasbeton tartók méretezése hajlításra
Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei
Izotrop és anizotrop anyagú gerendák modelljeinek összehasonlítása 3D numerikus szimulációk eredményeivel
HAZAY MÁTÉ ÉPÍTŐMÉRNÖK HALLGATÓ (M. Sc.) Izotrop és anizotrop anyagú gerendák modelljeinek összehasonlítása 3D numerikus szimulációk eredményeivel TDK DOLGOZAT Konzulens: Dr. Bojtár Imre egyetemi tanár
23. Hooke-törvény, szerkezeti anyagok jelleggörbéi
23. Hooke-törvény, szerkezeti anyagok jelleggörbéi F/A =F/A F a pillanatnyilag érvényes húzóerő A a próbatest keresztmetszet-területe Az deformációt úgy állapítjuk meg, hogy a próbatesten kijelölt (tengellyel
A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA
A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A FÖDÉMSZERKEZET: helyszíni vasbeton gerendákkal alátámasztott PK pallók. STATIKAI VÁZ:
T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról
Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Úgy találjuk, hogy a kötelek statikájának népszerűsítése egy soha véget nem érő feladat. Annyi szép dolog tárháza
Rugalmasan ágyazott gerenda. Szép János
Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai
Hegesztett gerinclemezes tartók
Hegesztett gerinclemezes tartók Lemezhorpadások kezelése EC szerint dr. Horváth László BME Hidak és Szerkezetek Tanszéke Bevezetés Gerinclemezes tartók vékony lemezekből: Bevezetés Összetett szelvények,
Földstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei A véges elemes analízis (Finite Element Method) alapjai Folytonos közeg (kontinuum) mechanikai állapotának leírása Egy pont mechanikai állapotjellemzıi és egyenletek
Budapesti Műszaki és Gazdaságudományi Egyetem
Szilárdságtan példatár Járműváz- és Könnyűszerkezetek Tanszék udapesti Műszaki és Gazdaságudományi Egyetem ii iii bstract Ez a példatár elsősorban a Közlekedésmérnöki és Járműmérnöki Kar Sc hallgatóinak
Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról
1 Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról Előző dolgozatunkban melynek címe: ED: Az ötszög keresztmetszetű élszarufa σ - feszültségeinek számításáról elkezdtük / folytattuk
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
Cölöpcsoport elmozdulásai és méretezése
18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
Földstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
Példa: Háromszög síkidom másodrendű nyomatékainak számítása
Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög
Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.
Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2012.10.27. Tartalom Öszvér oszlopok szerkezeti
K - K. 6. fejezet: Vasbeton gerenda vizsgálata Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása.
6. fejezet: Vasbeton gerenda vizsgálata 6.1. Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása. pd=15 kn/m K - K 6φ5 K Anyagok : φ V [kn] VSd.red VSd 6φ16 Beton:
Magasépítési acélszerkezetek
Magasépítési acélszerkezetek Egyhajós acélszerkezetű csarnok tervezése Szabó Imre Gábor Pécsi Tudományegyetem Műszaki és Informatikai Kar Építőmérnök Tanszék 1. ábra. Acél csarnoképület tipikus hierarchikus
KERESZTMETSZETI JELLEMZŐK
web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,
A szerkezeti anyagok tulajdonságai és azok vizsgálata
A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minőség, élettartam A termék minősége
Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.
Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2016.11.11. Tartalom Öszvér oszlopok szerkezeti
SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ
2008 PJ-MA SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ Tanszék: K épület, mfsz. 10. & mfsz. 20. Geotechnikai laboratórium: K épület, alagsor 20. BME
V. fejezet: Vasbeton keresztmetszet ellenõrzése nyírásra
: Vasbeton keresztmetszet ellenõrzése nyírásra 5.. Koncentrált erõvel tehelt konzol ellenõrzése nyírásra φ0/00 Q=0 kn φ0 φ0 Anyagok : Beton: C5/30 Betonacél: B60.0 Betonfedés:0 mm Kedv.elm.: 0 mm Kengy.táv:
Tartószerkezetek előadás
Tartószerkezetek 1. 7. előadás Hajlított-nyírt szerkezeti elemek viselkedése Hajlított-nyírt fa tartók vizsgálata Szilárdság, stabilitás, alakváltozás Építőmérnöki BSc hallgatók számára Bukovics Ádám egy.
Nyomott oszlopok számítása EC2 szerint (mintapéldák)
zéhenyi István Egyetem zerkezetépítési és Geotehnikai Tanszék yomott oszlopok számítása E szerint 1. Központosan nyomott oszlop Központosan nyomott az oszlop ha e = 0 (e : elsőrendű, vagy kezdeti külpontosság).
Egy háromlábú állvány feladata. 1. ábra forrása:
1 Egy háromlábú állvány feladata Az interneten találtuk az alábbi versenyfeladatot 1. ábra Az egyforma hosszúságú CA, CB és CD rudak a C pontban gömbcsuklóval kapcsolódnak, az A, B, D végükön sima vízszintes
Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015
Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 05 Példák (folyt.) 5. feladat Fajlagos térfogatváltozás DDKR-ben és HKR-ben. dv = [ e x e y e z]dxdydz dv = [( a x
Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ
Öszvérszerkezetek 3. előadás Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ készítette: 2016.10.28. Tartalom Öszvér gerendák kifordulása
PONTOKON MEGTÁMASZTOTT SÍKLEMEZ FÖDÉMEK ÁTSZÚRÓDÁSA
PONTOKON MEGTÁMASZTOTT SÍKLEMEZ FÖDÉMEK ÁTSZÚRÓDÁSA A pontokon megtámasztott síklemez födémek a megtámasztások környezetében helyi igénybevételre nyírásra is tönkremehetnek. Ezt a jelenséget: Nyíróerı
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
Példa keresztmetszet másodrendű nyomatékainak számítására
Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált
Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
VASBETON SZERKEZETEK Tervezés az Eurocode alapján
VASBETON SZERKEZETEK Tervezés az Eurocode alapján A rácsostartó modell az Eurocode-ban. Szerkezeti részletek kialakítása, méretezése: Keretsarkok, erőbevezetések, belső csomópontok, rövidkonzol. Visnovitz
GÉPELEMEK 2. GYAKORLAT
GÉPELEMEK 2. GYAKORLAT Összeállította: Kerényi György Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék, 4. Gépelemek 2. 1 4. Gépelemek 2. 2 Három feladat: ventillátor faipari
ELŐFESZÍTETT TARTÓ TERVEZÉSE
ELŐFESZÍTETT TARTÓ TERVEZÉSE Határozza meg az adott terhelésű kéttámaszú, előfeszített tartó keresztmetszeti méreteit, majd a szükséges feszítőerőt a középső keresztmetszetben keletkező igénybevételekre.
Acélszerkezetek II. 1. előadás Keresztmetszetek osztályozása, 4. osztályú keresztmetszet, oldalirányban megtámasztott gerendák.
Acélszerkezetek II. 1. előadás Keresztmetszetek osztályozása, 4. osztályú keresztmetszet, oldalirányban megtámasztott gerendák Szabó Imre Gábor Pécsi Tudományegyetem Pollack Mihály Műszaki és Informatikai
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt
ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]
ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november
Mechanika. I. előadás február 25. Mechanika I. előadás február / 31
Mechanika I. előadás 2019. február 25. Mechanika I. előadás 2019. február 25. 1 / 31 Elérhetőségek, információk Tantárgy: Mechanika (GEMET266-ZD-B) Előadó: Dr. Lengyel Ákos József Elérhetőségek: Iroda:
Acélszerkezetek. 3. előadás 2012.02.24.
Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel
Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; vonalzók.
A 27/2012. (VIII. 27.) NGM rendelet, a 27/2012. (VIII. 27.) NGM rendelet a 12/2013. (III. 28.) NGM rendelet által módosított és a 27/2012. (VIII. 27.) NGM rendelet a 4/2015. (II. 19.) NGM rendelet által
A ferde tartó megoszló terheléseiről
A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki