Rugalmasságtan és FEM, 2005/2006. II. félév, I. ZÁRTHELYI, A
|
|
- Henrik Székely
- 8 évvel ezelőtt
- Látták:
Átírás
1 Rugalmasságtan és FEM, 5/6. II. félév, I. ZÁRTHELYI, A 6. április., Név: NEP T UN kod :. feladat Adott az elmozdulásmez½o: u = ( ax z i + bxz k) ; a = [mm ] ; b = [mm ].a., Írja fel az alakváltozási tenzor mátrixát az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.b., Határozza meg az x és z tengelypárok fajlagos szögváltozását az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.c., Adja meg az n T = [; ; ] irányhoz tartozó fajlagos nyúlást az (x = ; y = [mm] ; z = [mm]) koordinátájú pontban!. feladat A test egy adott pontjában a feszültségi állapotot a következ½o adatok jellemzik: x = [MP a] ; xy = 5 [MP a] ; sík-feszültségi állapot, a rugalmassági modulus értéke: 5 [MP a] ; a Poisson tényez½o értéke: :..a., Határozza meg az alakváltozási tenzor mátrixát!.b., Számítsa ki az (i j) (j) normálisú síkhoz tartozó feszültségvektort és normálfeszültséget!. feladat Adott az Airy-féle feszültségfüggvény: (x; y) = A 6 xy :.a., Határozza meg a Mohr szerinti egyenérték½u feszültség értékét sík-alakváltozási állapot esetén az (x = [mm] ; y = 5 [mm] ; z = [mm]) koordinátájú pontban az A = [N=mm ] állandó mellett! (a Poisson tényez½o értéke: :5).. feladat Az r b = [mm] sugarú furattal és R = [mm] küls½o sugárral bíró állandó szélesség½u tárcsát zsugorkötéssel szerelték a merev tengelyre. Az! = [=s] szögsebesség½u forgáskor a radiális feszültség a tárcsában SI mértékegységekkel a r (r) = : 7 : 5 r 7:5 6 r függvényként ismert. A Poisson tényez½o értéke: :..a., Mekkora nyomás ébred forgás közben a tengely és a tárcsa közt?.b., Mekkora a tárcsa anyagának s½ur½usége?.c., Mekkora tangenciális feszültség ébred a tárcsa küls½o sugaránál?
2 Megoldások. feladat Adott az elmozdulásmez½o: u = ( ax z i + bxz k) ; a = [mm ] ; b = [mm ].a., Írja fel az alakváltozási tenzor mátrixát az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.b., Határozza meg az x és z tengelypárok fajlagos szögváltozását az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.c., Adja meg az n T = [; ; ] irányhoz tartozó fajlagos nyúlást az (x = ; y = [mm] ; z = [mm]) koordinátájú pontban!.a., Írja fel az alakváltozási tenzor mátrixát az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban! " (ax z) = axz " (bxz ) = bxz " = ; @ = z) () @ = z) (bxz ) = ax + @ (bxz ) " = 6 axz (ax + bz ) (ax + bz ) bxz 7 5 Az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban az a = [mm ] és b = [mm ] állandók mellett: " = 5.b., Határozza meg az x és z tengelypárok fajlagos szögváltozását az
3 (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban! Az x és z tengelypárok fajlagos szögváltozása az xz mennyiség. Az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban az a = [mm ] és b = [mm ] állandók mellett: xz = ax + bz = : xz =.c., Adja meg az n T = [; ; ] irányhoz tartozó fajlagos nyúlást az (x = ; y = [mm] ; z = [mm]) koordinátájú pontban! Mivel n T i T, így (x = ; y = [mm] ; z = [mm]) koordinátájú pontban az a = [mm ] állandó esetén " n " x = axz = : " n " x =. feladat A test egy adott pontjában a feszültségi állapotot a következ½o adatok jellemzik: x = [MP a] ; xy = 5 [MP a] ; sík-feszültségi állapot, a rugalmassági modulus értéke: 5 [MP a] ; a Poisson tényez½o értéke: :..a., Határozza meg az alakváltozási tenzor mátrixát!.b., Számítsa ki az (i j) (j) normálisú síkhoz tartozó feszültségvektort és normálfeszültséget!.a., Határozza meg az alakváltozási tenzor mátrixát! A feszültségi tenzor mátrixa ( z = ): 5 = 5 5 [MP a] : Az alakváltozás komponensek sík-feszültségi állapot esetén: " x = E ( x y ) = E x = " y = E ( y x ) = E x = xy = G xy = " z = ( + ) xy = E (" x + " y ) = ( [MP a]) = 5 5 [MP a] : ( [MP a]) = 5 [MP a] ( + :) 5 ( 5 [MP a]) = 6 5 [MP a] : : (5 :) =
4 Az alakváltozási tenzor mátrixa: " = 5 5 : (i j) (j) normálisú síkhoz tartozó feszültségvektort és normálfeszült-.b., Számítsa ki az séget! A sík normálisa Így tehát a normálfeszültség pedig: (i j) (j) = k j = i n i! n = n i = n = n n n i = [ ; 5; ] 5 5 [MP a] ; 5 [MP a] = [MP a]:. feladat Adott az Airy-féle feszültségfüggvény: (x; y) = A 6 xy :.a., Határozza meg a Mohr szerinti egyenérték½u feszültség értékét sík-alakváltozási állapot esetén az (x = [mm] ; y = 5 [mm] ; z = [mm]) koordinátájú pontban az A = [N=mm ] állandó mellett! (a Poisson tényez½o értéke: :5). A feszültség komponensek: x (x; A 6 = Axy; y (x; = xy (x; Sík-alakváltozási állapot esetén: A 6 z = ( x + y ) = Axy: = A 6 = A feszültségi tenzor mátrixa: = 6 Axy Ay Ay 7 5 ; Axy
5 amely az (x = [mm] ; y = 5 [mm] ; z = [mm]) koordinátájú pontban az A = [N=mm ] állandó mellett 5 = 5 [MP a] = 5 5 [MP a]! = [MP a] = 5 [MP a] A Mohr szerinti egyenérték½u feszültség: M = = 5 ( 5) = [MP a] : M = [MP a]. feladat Az r b = [mm] sugarú furattal és R = [mm] küls½o sugárral bíró állandó szélesség½u tárcsát zsugorkötéssel szerelték a tengelyre. Az! = [=s] szögsebesség½u forgáskor a radiális feszültség a tárcsában SI mértékegységekkel a r (r) = : 7 : 5 r 7:5 6 r függvényként ismert. A Poisson tényez½o értéke: :..a., Mekkora nyomás ébred forgás közben a tengely és a tárcsa közt?.b., Mekkora a tárcsa anyagának s½ur½usége?.c., Mekkora tangenciális feszültség ébred a tárcsa küls½o sugaránál?.a., Mekkora nyomás ébred forgás közben a tengely és a tárcsa közt? A radiális feszültség az r b = [mm] sugárnál a tengely és a tárcsa közt ébred½o nyomást adja negatív el½ojellel: r (r = r b ) = p = : 7 : 5 : 7:5 6 : = 5:99 8 [P a] p = 59:9 [MP a] :.b., Mekkora a tárcsa anyagának s½ur½usége? Az adott függvényben az A, B és C állandók beazonosíthatók r (r) = : 7 {z } A : {z } 5 r 7:5 {z 6 } r : B C A C értékéb½ol a s½ur½uség számítható: C = + 8! = + : = 7:5 6! = 8 8 7:5 6 : = 9 kg m
6 kg = 9 : m.c., Mekkora tangenciális feszültség ébred a tárcsa küls½o sugaránál? Az A, B és C állandók ismeretében a tangenciális feszültség képlete felírható: t = A + B r + C r ; ahol C = +! = + : 9 = 8 8 P a C = :75 6 : m A tangenciális feszültség függvénye ekkor P a :75 6 m t (r) = A + B r + C r = : 7 + : 5 r :75 6 r ; amely felhasználásával a tangenciális feszültség értéke a tárcsa küls½o sugaránál (R = : [m]) t (r = R) = : 7 + : 5 : :75 6 : = :6 7 [P a] t (r = R) = 6: [MP a]
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január
Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!
1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy
Gyakorlati példák Dr. Gönczi Dávid
Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános
Gyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel.
Alkalmazások síkalakváltozásra: Gakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. SAF1. Az ábrán vázolt zárt vastagfal csövet
MECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
1. Feladat. a) Mekkora radiális, tangenciális és axiális feszültségek ébrednek a csőfalban, ha a csővég zárt?
1. Feladat Egy a = mm első és = 150 mm külső sugarú cső terhelése p = 60 MPa első ill. p k = 30 MPa külső nyomás. a) Mekkora radiális, tangenciális és axiális feszültségek érednek a csőfalan, ha a csővég
Végeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA Anyagmérnök BSc Szak Évfolyamszintű tárgy Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet 1. Tantárgyleírás Tantárgy neve: Mechanika Tantárgy
BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
Pere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
Példa: Háromszög síkidom másodrendű nyomatékainak számítása
Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög
Fogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
Statikailag határozatlan tartó vizsgálata
Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben
Fizika 1 Mechanika órai feladatok megoldása 7. hét
Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)
Végeselem analízis 3. gyakorlat (kidolgozta: Aczél Ákos egyetemi tanársegéd, Bojtár Gergely egyetemi tanársegéd)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem analízis 3. gyakorlat (kidolgozta: Aczél Ákos egyetemi tanársegéd, Bojtár Gergely egyetemi tanársegéd) Feladat: Általánosított síkfeszültségi
Példa keresztmetszet másodrendű nyomatékainak számítására
Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált
Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 2013. szeptember 6. 1. Folytonos
BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból
BEMUTATÓ FELADATOK () 1/() Egy mozdony vízszintes 600 m-es pályaszakaszon 150 kn állandó húzóer t fejt ki. A vonat sebessége 36 km/h-ról 54 km/h-ra növekszik. A vonat tömege 1000 Mg. a.) Mekkora a mozgási
Lemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták
TERMÉKSZIMULÁCIÓ I. 9. elıadás
TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris
Számítás végeselem módszerrel Topológia
Soil Boring co. Tarcsai út. 57/8 - Budapest Számítás végeselem módszerrel Topológia Projekt Dátum : 8.0.05 Globális beállítások Projekt típusa : Számítás típusa : Alagutak : Bővített adatbevitel : Részletes
SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)
SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A
Navier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.
1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd
Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás
Kizárólag oktatási célra használható fel!
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar. Járműelemek és Hajtások Tanszék. Siklócsapágyak.
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM K ö z l e k e d é s m é r n ö k i K a r Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Járműelemek és Hajtások Tanszék Járműelemek és
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása
3. FEJEZET A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása 3.1. Az alapkísérletek célja Hétköznapi megfigyelés, hogy ugyanazon szilárd test alakváltozásainak mértéke függ a testet
KÉPLÉKENYALAKÍTÁS ELMÉLET
KÉPLÉKENYALAKÍTÁS ELMÉLET KOHÓMÉRNÖK MESTERKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ANYAGTUDOMÁNYI INTÉZET Miskolc, 2008. 1. TANTÁRGYLEÍRÁS
MECHANIKA II. Szilárdságtan
MECHANIKA II. Szilárdságtan Legeza, László dr. Mónika, Bakosné Diószegi Tibor dr., Goda MECHANIKA II. Szilárdságtan
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015
Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 05 Példák (folyt.) 5. feladat Fajlagos térfogatváltozás DDKR-ben és HKR-ben. dv = [ e x e y e z]dxdydz dv = [( a x
Alagútfalazat véges elemes vizsgálata
Magyar Alagútépítő Egyesület BME Geotechnikai Tanszéke Alagútfalazat véges elemes vizsgálata Czap Zoltán mestertanár BME Geotechnikai Tanszék Programok alagutak méretezéséhez 1 UDEC 2D program, diszkrét
ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Építészeti és építési alapismeretek emelt szint 0812 ÉRETTSÉGI VIZSGA 2010. október 18. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS
Vasbeton tartók méretezése hajlításra
Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból
Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Földstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek
STAAD-III véges elemes program Gyakorlati tapasztalatok a FÕMTERV Rt.-nél
STAAD-III véges elemes program Gyakorlati tapasztalatok a FÕMTERV Rt.-nél A cikkben számtalan konkrét tervezõi munka közül válogatva rövid áttekintést nyújtunk felhasználói szemmel a STAAD-III kimondottan
KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI
KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI ANYAGMÉRNÖK ALAPKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR FÉMTANI, KÉPLÉKENYALAKÍTÁSI ÉS NANOTECHNOLÓGIA
1. szemináriumi. feladatok. Ricardói modell Bevezetés
1. szemináriumi feladatok Ricardói modell Bevezetés Termelési lehetőségek határa Relatív ár Helyettesítési határráta Optimális választás Fogyasztási pont Termelési pont Abszolút előny Komparatív előny
Segédlet a Tengely gördülő-csapágyazása feladathoz
Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy
Adatsor feldolgozása Scilab-bal
Széchenyi István Egyetem Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA Adatsor feldolgozása Scilab-bal (kidolgozta: Fehér Lajos egyetemi tanársegéd) Feladat: az alább található mérési adatsor feldolgozása.
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
Koordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
10. Laboratóriumi gyakorlat TENZOMETRIKUS ÁTALAKÍTÓK
10. Loratóriumi gyakorlat TENZOMETIKS ÁTALAKÍTÓK 1.A gyakorlat célja Mechanikai megnyúlások mérése nyúlásmérő bélyegekkel. Nyúlásmérő átalakítokjellegzetes mérőköreinek tanulmányozása. A mért elektromos
Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015
Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 2015 Egyenletek a hengerkoordináta-rendszerben (HKR) SP = OQ = r z QP = z e r = cos ϕ e x + sin ϕ e y e ϕ = sin ϕ
Méréssel kapcsolt 3. számpélda
Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
A betonok összetételének tervezése
A betonok összetételének tervezése A beton összetételének tervezése: (1m 3 ) A megoldásakor figyelembe kell venni: - az előírt betonszilárdságot - megfelelő tartósságot (környezeti hatások) - az adalékanyag
merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható
Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Használhatósági határállapotok. Alakváltozások ellenőrzése
1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
VIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám
Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.
Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.
10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Műszaki paraméterek táblázata. AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100
AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100 Hajlítási erő tonna 60 60 100 Hajlítási hossz ( A ) mm 1250 2050 2550 Oszlopok közötti távolság ( B ) mm 1050 1700 2200 Y tengely gyorsjárati
Rugalmasan ágyazott gerenda. Szép János
Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai
Név:...EHA kód:... 2007. tavasz
VIZSGA_FIZIKA II (VHNB062/210/V/4) A MŰSZAKI INFORMATIKA SZAK Név:...EHA kód:... 2007. tavasz 1. Egy 20 g tömegű testet 8 m/s sebességgel függőlegesen felfelé dobunk. Határozza meg, milyen magasra repül,
1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak
1. feladat CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak Vetületek képzése, alkatrészrajz készítése (formátum: A4) Készítse el a gyakorlatvezető által kiadott,
Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA
Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Nonprofit Kft. Győr, 2010 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
Anyagvizsgálatok. Mechanikai vizsgálatok
Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA
TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA GEMET001-B Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet MM/37/2018. Miskolc, 2018. február 5. HIRDETMÉNY Statika(GEMET201NB és GEMET001-B)
Szádfal szerkezet tervezés Adatbev.
Szádfal szerkezet tervezés Adatbev. Projekt Dátum : 0..005 Beállítások (bevitel az aktuális feladathoz) Nyomás számítás Aktív földnyomás számítás : Passzív földnyomás számítás : Földrengés számítás : Ellenőrzési
VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]
Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.
Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk
GÉPÉSZETI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Szádfal szerkezet ellenőrzés Adatbev.
Szádfal szerkezet ellenőrzés Adatbev. Projekt Dátum : 8.0.05 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : Acél szerkezetek : Acél keresztmetszet teherbírásának
Fogasléchajtások, Sorozat TRR Elfordulási szög: 0-360 Ø32-100 mm mágneses dugattyúval Fogasléces ikerdugattyú Csillapítás: pneumatikus, beállítható
1 Üzemi nyomás min/max 1,5 bar / 10 bar Környezeti hőmérséklet min./max. -20 C / +80 C Közeghőmérséklet min./max. -20 C / +80 C Közeg Sűrített levegő Részecskeméret max. 5 µm A sűrített levegő olajtartalma
Versenyző kódja: 43 15/2008. (VIII. 13.) SZMM rendelet 54 521 01 0000 00 00-2013 MAGYAR KERESKEDELMI ÉS IPARKAMARA
54 521 01 0000 00 00-2013 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 521 01 0000 00 00 SZVK rendelet száma: 15/2008. (VIII. 13.) SZMM
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
0. Teszt megoldás, matek, statika / kinematika
0. Teszt megoldás, matek, statika / kinematika Mechanika (ismétlés) statika, kinematika Dinamika, energia Áramlástan Reológia Optika find x Teszt: 30 perc, 30 kérdés Matek alapfogalmak: Adattípusok: Természetes,
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1
Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,
QP és QX mélykútszivattyúk 4"
QP 4A-8 0,25 2,8 A - 20 681 mm 11,5 kg 1 1/4" QP 4A-12 0,37 3,3 A 1,6 A 20 761 mm 12,0 kg 1 1/4" QP 4A-18 0,55 4,4 A 1,7 A 25 896 mm 13,5 kg 1 1/4" QP 4A-25 0,75 5,8 A 2,5 A 35 1061 mm 15,4 kg 1 1/4" QX