Külpontosan nyomott keresztmetszet számítása
|
|
- Anna Fodorné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben minden nyomaték a GEOMETRIAI középpontra van kiszámítva. A második rész a TEHERBÍRÁSI középpontra történő áttérést (transzformálást) ismerteti. Kiindulási adatok: b = 300 mm h = 500 mm Beton: C30/5 Betonacél: B400 f cd = f ck = 0 =13,33 N mm γ c 1,5 f yd = f yk = 347,8 N mm γ s ξ c0 = 560 f yd = , = 0,534 b ξ c0 = f yd = = 6Φ0 = 1885 mm =3Φ18=763 mm ,8 =1,59 a d1 h d a 1 =50 mm d 1 =h a 1 = = 450 mm d =45 mm TARTÓSZERKEZETEK I. 1 Teherbírási vonal számítása
2 1. PONT: ELVI KÖZPONTOS NYOMÁS (MAXIMÁLIS NYOMÓERŐHÖZ TARTOZÓ PONT) ε= ' A tiszta nyomásnál figyelembe vehető betonacél feszültség: s =min{f yd ; 400 N mm } =min{347,8; 400 N mm } = 347,8 N mm N Rd,1 =b h f cd + ( + ) s = ,33 + ( ) 347,8 = 90,5 kn M Rd,1 = s ( h d ) s (d 1 h ) = ,8 (500 = 76,7 knm 45) ,8 ( ) TARTÓSZERKEZETEK I. Teherbírási vonal számítása
3 . PONT: AZ BETONACÉLBAN ε s1 =0 x=d 1 ε s1 =0 ' x=d 1 = 450 mm x c = 0,8 x = 0,8 450 = 360 mm = 360 =8,0>ξ d 45 c0 = 1,59, vagyis a nyomott oldali betonacél megfolyik ( s =f yd ) N Rd, =b x c f cd + f yd = , ,8 = 1705,01 kn M Rd, = f yd ( h d ) +b x c f cd ( h x c ) = ,8 ( ) ,33 ( ) = 155,18 knm x c TARTÓSZERKEZETEK I. 3 Teherbírási vonal számítása
4 3. PONT: AZ BETONACÉL A KÉPLÉKENY ÉS A RUGALMAS ÁLLAPOT HATÁRÁN VAN (MAXIMÁLIS POZITÍV NYOMATÉKHOZ TARTOZÓ PONT) ' x c =x c0 x c =x c0 =ξ c d 1 = 0, = 40,3 mm Az alapfeltétel miatt: s1 =f yd = 40,3 =5,34>ξ d 45 c0 = 1,59, vagyis a nyomott oldali betonacél is megfolyik ( s =f yd ) N Rd,3 =b x c0 f cd + f yd f yd = ,3 13, , ,8 = 570,73 kn M Rd,3 =b x c0 f cd ( h x c0 ) + f yd ( h d ) + f yd (d 1 h ) = ,3 13,33 ( ,3 ) ,8 (500 ( ) = 310,3 knm 45) ,8 TARTÓSZERKEZETEK I. 4 Teherbírási vonal számítása
5 4. PONT: TISZTA HAJLÍTÁS + ' Először azt feltételezzük, hogy mindkét oldalon megfolynak a betonacélok ( és is) N Rd,4 =0 Vetületi egyenlet (nyomott betonzóna magasságának számítása): b x c f cd + f yd f yd =0 ( ) 347,8 =97,6 mm ,33 x c = ( ) f yd b f cd = d 1 = 97,6 450 =0,17<ξ c0 = 0,534, vagyis az tényleg megfolyik = 97,6 =,17>ξ d 45 c0 = 1,59,vagyis az tényleg megfolyik M Rd,4 =b x c f cd ( h x c ) + f yd ( h d ) + f yd (d 1 h ) = ,6 13,33 ( ,6 ) ,8 (500 ( ) = 64,05 knm 45) ,8 TARTÓSZERKEZETEK I. 5 Teherbírási vonal számítása
6 5. PONT: AZ BETONACÉL ELÉRI A HATÁRNYÚLÁS ÉRTÉKÉT ε s,1 = ε uk d 1 ε s1 = ε uk =0 + x=1,5 x c ' x c =0,8 x x c x= x c 0,8 =1,5 x c Háromszögek hasonlóságából kiindulva: 1,5 x c ε cu 1,5 x c 3,5 = d 1 1,5 x c ε uk = 450 1,5 x c 0 3,5 450 x c = =53,6 mm 1,5 (0 + 3,5) = 53,6 =0,119<ξ d c0 = 0,534, vagyis megfolyik. = 53,6 =1,191<ξ d 45 c0 = 1,59, vagyis nem folyik meg, redukálni kell a betonacél feszültségét. s = = = 9,9 N mm ξ c 1,191 N Rd,5 =b x c f cd + s f yd = ,6 13, , ,8 = 65,8 kn M Rd,5 =b x c f cd ( h x c ) + s ( h d ) + f yd (d 1 h ) = ,6 13,33 ( ,6 ) ,9 (500 ( ) = 14,9 knm 45) ,8 TARTÓSZERKEZETEK I. 6 Teherbírási vonal számítása
7 6. PONT: MINDKÉT BETONACÉL ( ÉS ) HÚZOTT ÉS MEGFOLYIK (MAXIMÁLIS HÚZÓERŐHÖZ TARTOZÓ PONT) + ε s1 =ε s =ε uk =0 ' N Rd,6 = ( + ) f yd = ( ) 347,8 = 90,97 kn M Rd,6 = f yd ( h d ) + f yd (d 1 h ) = ,8 (500 =76,71 knm 45) ,8 ( ) TARTÓSZERKEZETEK I. 7 Teherbírási vonal számítása
8 7. PONT: AZ BETONACÉLBAN ε s =0 x=h d ε s =0 Ebben az esetben az betonacél nyomott. x c =0,8 x=0,8 (h d ) =0,8 (500 45) = 364 mm a = =7,8>ξ c0 = 1,59 N Rd,7 =b x c f cd + f yd = , ,8 = 111, kn x c M Rd,7 = f yd (d 1 h ) b x c f cd ( h x c ) = ,8 ( ) ,33 ( ) = 30,1 knm TARTÓSZERKEZETEK I. 8 Teherbírási vonal számítása
9 8. PONT: AZ BETONACÉL A KÉPLÉKENY ÉS A RUGALMAS ÁLLAPOT HATÁRÁN VAN + ' x c =x c0 Ebben az esetben az betonacél a nyomott, az betonacél pedig a húzott oldalon van. x c =x c0 =ξ c (h d ) = 0,534 (500 45) = 4,97 mm Az alapfeltétel miatt: s =f yd = 4,97 =4,86>ξ a 50 c0 = 1,59, vagyis a nyomott oldali betonacél is megfolyik ( s1 =f yd ) N Rd,8 =b x c0 f cd + f yd f yd = 300 4,97 13, , ,8 = 1361,9 kn M Rd,8 = b x c0 f cd ( h x c0 ) f yd (d 1 h ) f yd ( h d ) = ,3 13,33 ( ,3 500 ) ,8 (450 ) ,8 ( ) = 310,3 knm TARTÓSZERKEZETEK I. 9 Teherbírási vonal számítása
10 9. PONT: TISZTA HAJLÍTÁS + ' Ebben az esetben az betonacél a nyomott, az betonacél pedig a húzott oldalon van. Azt feltételezzük, hogy az betonacél megfolyik, viszont az betonacél nem folyik meg. s1 = = 560 a 700 ξ c x c s =f yd = 347,8 N mm b x c f cd + s1 s =0 b x c f cd + ( 560 a 700) A x s f yd =0 c b x c f cd + (560 a 700 x c ) f yd x c =0 x c b f cd x c (700 + f yd ) a = 0 x c ,33 x c ( ,8) = 0 x c 3999 x c , = 0 x c x c 396, ,3 = 0 x c = 396,3 396, ,3 36,7 mm ξ c = x c = 36,7 =0,081<ξ h d c0 = 0,534, vagyis megfolyik. = 36,7 =0,734<ξ a 50 c0 = 1,59, vagyis valóban nem folyik meg, jó volt a kezdeti feltételezés. s1 = 560 a 700 = = 6,94 N mm x c 36,7 N Rd,9 =b x c f cd + s1 f yd = ,7 13, , ,8 0 kn M Rd,9 = b x c f cd ( h x c ) s1 (d 1 h ) f yd ( h d ) = ,7 13,33 ( ,7 500 ) ,94 (450 ) ,8 ( ) = 11,1 knm TARTÓSZERKEZETEK I. 10 Teherbírási vonal számítása
11 A geometriai középpontra felírt teherbírási görbe pontjai és ábrázolása Geometriai középpontra felírt teherbírási görbe pontjai N Rd1 = 91 kn M Rd1 = 77 knm N Rd = kn M Rd = 155 knm N Rd3 = 571 kn M Rd3 = 310 knm N Rd4 = 0 kn M Rd4 = 64 knm N Rd5 = 66 kn M Rd5 = 15 knm N Rd6 = 91 kn M Rd6 = 77 knm N Rd7 = 111 kn M Rd7 = 30 knm N Rd8 = 1 36 kn M Rd8 = 310 knm N Rd9 = 0 kn M Rd9 = 11 knm TEHERBÍRÁSI VONAL Geometriai kp.pontra knm, 91 kn knm, 111 kn. 155 knm, kn knm, 1 36 kn knm, 0 kn knm, 571 kn knm, 0 kn knm, 66 kn knm, 91 kn TARTÓSZERKEZETEK I. 11 Teherbírási vonal számítása
12 A (nyomási) teherbírási középpont helyzetének meghatározása z d' N Rd,1 = 91 kn a c t M Rd,1 = 77 A teherbírási középpont geometriai középponttól mért távolsága: a d h t= M Rd,1 77 knm = = 6 mm N Rd,1 91 kn A teherbírási középpont távolsága a húzott vasak súlyvonalától: ' c= h a t= = 174 mm Áttérés a teherbírási középpontra h/ M geom N h/ t M teherb =M geom t N N TARTÓSZERKEZETEK I. 1 Teherbírási vonal számítása
13 A teherbírási középpontra felírt teherbírási görbe pontjai és ábrázolása Geometriai középpontra t [mm] Korrekció= t N Teherbírási középpontra (M teherb =M geom t N) N Rd1 = 91 kn M Rd1 = 77 knm knm N Rd1 = 91 kn M Rd1 = 0 knm N Rd = kn M Rd = 155 knm knm N Rd = kn M Rd = 00 knm N Rd3 = 571 kn M Rd3 = 310 knm knm N Rd3 = 571 kn M Rd3 = 35 knm N Rd4 = 0 kn M Rd4 = 64 knm knm N Rd4 = 0 kn M Rd4 = 64 knm N Rd5 = 66 kn M Rd5 = 15 knm knm N Rd5 = 66 kn M Rd5 = 08 knm N Rd6 = 91 kn M Rd6 = 77 knm knm N Rd6 = 91 kn M Rd6 = 53 knm N Rd7 = 111 kn M Rd7 = 30 knm knm N Rd7 = 111 kn M Rd7 = 175 knm N Rd8 = 1 36 kn M Rd8 = 310 knm knm N Rd8 = 1 36 kn M Rd8 = 75 knm N Rd9 = 0 kn M Rd9 = 11 knm knm N Rd9 = 0 kn M Rd9 = 11 knm TEHERBÍRÁSI VONAL Geometriai kp.pontra Teherbírási kp.pontra knm, 91 kn 1. 0 knm; 91 kn knm, 111 kn knm, 1 36 kn knm; 111 kn knm; 1 36 kn. 155 knm, kn. 00 knm; kn knm, 571 kn knm, 0 kn knm; 571 kn knm; 0 kn knm, 0 kn knm; 0 kn knm, 66 kn knm; 66 kn knm, 91 kn knm; 91 kn TARTÓSZERKEZETEK I. 13 Teherbírási vonal számítása
Vasbeton tartók méretezése hajlításra
Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból
Nyomott oszlopok számítása EC2 szerint (mintapéldák)
zéhenyi István Egyetem zerkezetépítési és Geotehnikai Tanszék yomott oszlopok számítása E szerint 1. Központosan nyomott oszlop Központosan nyomott az oszlop ha e = 0 (e : elsőrendű, vagy kezdeti külpontosság).
II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)
II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
Központosan nyomott vasbeton oszlop méretezése:
Központosan nyomott vasbeton oszlop méretezése: Központosan nyomott oszlopok ellenőrzése: A beton által felvehető nyomóerő: N cd = A ctot f cd Az acélbetétek által felvehető nyomóerő: N sd = A s f yd -
2. fejezet: Vasbeton keresztmetszet ellenõrzése hajlításra
. ejezet: Vasbeton keresztmetszet ellenõrzése hajlításra.1. Ellenõrizze az alábbi keresztmetszetet M S =105 knm hajlítónyomatékra! Beton: C16/0 Betonaél: B60.50 φ0 1.15!! = 10.667 N y = 3.783 N φ π A s
K - K. 6. fejezet: Vasbeton gerenda vizsgálata Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása.
6. fejezet: Vasbeton gerenda vizsgálata 6.1. Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása. pd=15 kn/m K - K 6φ5 K Anyagok : φ V [kn] VSd.red VSd 6φ16 Beton:
V. fejezet: Vasbeton keresztmetszet ellenõrzése nyírásra
: Vasbeton keresztmetszet ellenõrzése nyírásra 5.. Koncentrált erõvel tehelt konzol ellenõrzése nyírásra φ0/00 Q=0 kn φ0 φ0 Anyagok : Beton: C5/30 Betonacél: B60.0 Betonfedés:0 mm Kedv.elm.: 0 mm Kengy.táv:
Használhatósági határállapotok. Alakváltozások ellenőrzése
1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának. meghatározása és vasalási tervének elkészítése
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának Kiindulási adatok: meghatározása és vasalási tervének elkészítése Geometriai adatok: l = 5,0 m l k = 1,80 m v=0,3
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának. meghatározása és vasalási tervének elkészítése
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának Kiindulási adatok: meghatározása és vasalási tervének elkészítése Geometriai adatok: l = 5,0 m l k = 1,80 m v=0,3
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának. meghatározása és vasalási tervének elkészítése
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának Kiindulási adatok: meghatározása és vasalási tervének elkészítése Geometriai adatok: l = 5,0 m l k = 1,80 m v
MSZ EN Betonszerkezetek tervezése 1-1. rész: Általános szabályok, Tervezés tüzteherre. 50 év
Kéttámaszú vasbetonlemez MSZ EN 1992-1-2 Betonszerkezetek tervezése 1-1. rész: Általános szabályok, Tervezés tüzteherre Geometria: fesztáv l = 3,00 m lemezvastagság h s = 0,120 m lemez önsúlya g 0 = h
ELŐFESZÍTETT TARTÓ TERVEZÉSE
ELŐFESZÍTETT TARTÓ TERVEZÉSE Határozza meg az adott terhelésű kéttámaszú, előfeszített tartó keresztmetszeti méreteit, majd a szükséges feszítőerőt a középső keresztmetszetben keletkező igénybevételekre.
Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban
Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban /Határnyomaték számítás/ 4. előadás A számítást III. feszültségi állapotban végezzük. A számításokban feltételezzük, hogy: -a rúd
PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTŐMÉRNÖKI KAR HIDAK ÉS SZERKEZETEK TANSZÉKE PÉLDATÁR a Vasetonszerkezetek I. című tantárgyhoz Budapest, 007 Szerzők: Friedman Noémi Huszár Zsolt Kiss Rita
Gyakorlat 03 Keresztmetszetek II.
Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
Schöck Isokorb W. Schöck Isokorb W
Schöck Isokorb Schöck Isokorb Schöck Isokorb típus Konzolos faltárcsákhoz alkalmazható. Negatív nyomaték és pozitív nyíróerő mellett kétirányú horizontális erőt tud felvenni. 115 Schöck Isokorb Elemek
Nyomott oszlopok számítása
zéhenyi István Egyetem zerkezetépítési és Geotehniki Tnszék 5 6.GYAKORLAT yomott oszlopok számítás 1. Külpontosn nyomott oszlop (kiskülpontos nyomás) 1.1 Ellenőrzés normálerő tervezési értékéhez trtozó
Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók.
A 27/2012 (VIII. 27.) NGM rendelet a 29/2016. (VIII. 26.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 582 03 Magasépítő technikus
MSZ EN Betonszerkezetek tervezése 1-1. rész: Általános szabályok, Tervezés tőzteherre. 50 év
Vasbeton kéttámaszú tartó MSZ EN 1992-1-2 Betonszerkezetek tervezése 1-1. rész: Általános szabályok, Tervezés tőzteherre Geometria: fesztáv l = 6,00 m tartó magassága h = 0,60 m tartó szélessége b = 0,30
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
Vasalt falak: 4. Vasalt falazott szerkezetek méretezési mószerei Vasalt falak 1. Vasalás fekvőhézagban vagy falazott üregben horonyban, falazóelem lyukban. 1 2 1 Vasalt falak: Vasalás fekvőhézagban vagy
PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTŐMÉRNÖKI KAR HIDAK ÉS SZERKEZETEK TANSZÉKE PÉLDATÁR a Vasetonszerkezetek I. című tantárgyhoz Budapest, 007 Szerzők: Friedman Noémi Huszár Zsolt Kiss Rita
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez
Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Pécs, 2015. június . - 2 - Tartalomjegyzék 1. Felhasznált irodalom... 3 2. Feltételezések... 3 3. Anyagminőség...
= 1, , = 1,6625 = 1 2 = 0,50 = 1,5 2 = 0,75 = 33, (1,6625 2) 0, (k 2) η = 48 1,6625 1,50 1,50 2 = 43,98
1. Egy vasbeton szerkezet tervezése során a beton nelineáris tervezési diagraját alkalazzuk. Kísérlettel egállapítottuk, hogy a beton nyoószilárdságának várható értéke fc = 48 /, a legnagyobb feszültséghez
Harántfalas épület két- és többtámaszú monolit vasbeton födémlemezének tervezése kiadott feladatlap alapján.
TERVEZÉSI FELADAT: Harántfalas épület két- és többtámaszú monolit vasbeton födémlemezének tervezése kiadott feladatlap alapján. Feladatok: 1. Tervezzük meg a harántfalas épület egyirányban teherhordó monolit
ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]
ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november
N.III. Vasbeton I. T1-t Gerendák I oldal
N.III. Vabeton I. T1-t Gerendák I. 01.0. 1. oldal 1.1. Négyzögkereztmetzet ellenőrzée hajlítára: normálian vaalt gerenda Feladat Ellenőrizze az ábrán adott vabeton gerendát hajlítára! Az állandó teher
Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.
Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2012.10.27. Tartalom Öszvér oszlopok szerkezeti
Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.
Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2016.11.11. Tartalom Öszvér oszlopok szerkezeti
Schöck Isokorb D típus
Schöck Isokorb típus Schöck Isokorb típus Többtámaszú födémmezőknél alkalmazható. Pozítív és negatív nyomatékot és nyíróerőt képes felvenni. 89 Elemek elhelyezése Beépítési részletek típus 1 -CV50 típus
A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA
A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A FÖDÉMSZERKEZET: helyszíni vasbeton gerendákkal alátámasztott PK pallók. STATIKAI VÁZ:
Tartószerkezetek II. Használhatósági határállapotok május 07.
Tartószerkezetek II. Használhatósági határállapotok 2010. május 07. Használhatósági határállapotok Használhatósági (használati) határállapotok: a normálfeszültségek korlátozása a repedezettség ellenırzése
V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt
. Gyakorlat: asbeton gerenák nyírásvizsgálata Készítették: Frieman Noémi és Dr. Huszár Zsolt -- A nyírási teherbírás vizsgálata A nyírási teherbírás megfelelő, ha a következő követelmények minegyike egyiejűleg
Tartószerkezetek I. Használhatósági határállapotok
Tartószerkezetek I. Használhatósági határállapotok Szép János A tartószerkezeti méretezés alapjai Tartószerkezetekkel szemben támasztott követelmények: A hatásokkal (terhekkel) szembeni ellenállóképesség
STNA211, STNB610 segédlet a PTE PMMK építész és építészmérnök hallgatói részére
EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK V A S B E T O N S Z E R K E Z E T E K STNA11, STNB610 segédlet a PTE PMMK építész és építészmérnök hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és
PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM ÉPÍTŐMÉRÖKI KAR HIDAK ÉS SZERKEZETEK TASZÉKE PÉLDATÁR a Vasbetonszerkezetek I. című tantárgyhoz Budapest, 007 Szerzők: Friedman oémi Huszár Zsolt Kiss Rita
Gyakorlat 04 Keresztmetszetek III.
Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)
1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra!
1. Határozzuk meg az alábbi tartó vasalását majd ellenőrizzük a tartót használhatósági határállapotokra! Beton: beton minőség: beton nyomószilárdságnak tervezési értéke: beton húzószilárdságának várható
EC4 számítási alapok,
Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4
Schöck Isokorb T D típus
Folyamatos födémmezőkhöz. Pozitív és negatív nyomaték és nyíróerők felvételére. I Schöck Isokorb vasbeton szerkezetekhez/hu/2019.1/augusztus 79 Elemek elhelyezése Beépítési részletek DL típus DL típus
Kizárólag oktatási célra használható fel!
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:
SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS
454 Iváncsa, Arany János utca Hrsz: 16/8 Iváncsa Faluház felújítás 454 Iváncsa, Arany János utca Hrsz.: 16/8 Építtető: Iváncsa Község Önkormányzata Iváncsa, Fő utca 61/b. Fedélszék ellenőrző számítása
(+) Összetett axiális igénybevételu keresztmetszet teherbírása
Összetett axiális igénybevételu keresztmetszet teherbírása Összetett igénybevételnek egyrészt azt tekinthetjük, ha a keresztmetszetet a hajlítása nem a keresztmetszet szimmetriatengelyében történik, másrészt
Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15
Schöck Dorn Schöck Dorn Tartalom Oldal Termékleírás 10 Csatlakozási lehetőségek 11 Méretek 12-13 A dilatációs tüske méretezésének a folyamata 14 Acél teherbírása 15 Minimális szerkezeti méretek és tüsketávolságok
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék 3 4.GYAKORLAT
3 4.GYAKORLAT III. feszültségi állpot képlékeny feszültségi állpot A vsetonszerkezeteket teerírási tárállpotn III. feszültségi állpot feltételezésével méretezzük. A vsetonszerkezetek keresztmetszeti méretezési
A vasbetonszerkezet tervezésének jelene és jövője
MMK Szakmai továbbképzés A Tartószerkezeti Tagozat részére A vasbetonszerkezet tervezésének jelene és jövője Hajlítás, külpontos nyomás, nyírásvizsgálatok Dr. Bódi István, egyetemi docens Dr. Koris Kálmán,
MECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
Cölöpcsoport elmozdulásai és méretezése
18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,
Építészeti tartószerkezetek II.
Építészeti tartószerkezetek II. Vasbeton szerkezetek Dr. Szép János Egyetemi docens 2019. 05. 03. Vasbeton szerkezetek I. rész o Előadás: Vasbeton lemezek o Gyakorlat: Súlyelemzés, modellfelvétel (AxisVM)
54 582 03 1000 00 00 Magasépítő technikus Magasépítő technikus
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/20. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Reinforced Concrete Structures II. / Vasbetonszerkezetek II. VIII.
einforced Concrete Structures II. / Vasbetonszerkezetek II. einforced Concrete Structures II. VIII. Vasbetonszerkezetek II. - Vasbeton rúdszerkezetek kélékeny teherbírása - Dr. Kovács Imre PhD tanszékvezető
TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.
statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek
A.11. Nyomott rudak. A.11.1. Bevezetés
A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,
VASBETON SZERKEZETEK Tervezés az Eurocode alapján
VASBETON SZERKEZETEK Tervezés az Eurocode alapján A rácsostartó modell az Eurocode-ban. Szerkezeti részletek kialakítása, méretezése: Keretsarkok, erőbevezetések, belső csomópontok, rövidkonzol. Visnovitz
Dr. habil JANKÓ LÁSZLÓ. VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az EC és az MSZ összehasonlítása is TANKÖNYV I. AZ ÁBRÁK.
Dr. habil JANKÓ LÁSZLÓ VASBETON SZILÁRDSÁGTAN az EUROCODE 2 szerint (magasépítés) Az és az összehasonlítása is TANKÖNYV I. AZ ÁBRÁK N Ed M Edo (alapérték, elsőrendű elmélet) Mekkora az N Rd határerő? l
TARTÓSZERKEZETEK I gyakorlat
Nyírási vasalás tervezése NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (felhajlított hosszvasak) NYOMOTT RÁCSRUDAK (beton) HÚZOTT ÖV (hosszvasak) NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (kengyelek) NYOMOTT RÁCSRUDAK
Schöck Isokorb T K típus
(Konzol) Konzolosan kinyúló erkélyekhez. Negatív nyomaték és pozitív nyíróerők felvételére. A VV1 nyíróerő terhelhetőségi osztályú Schöck Isokorb KL típus negatív nyomatékot, valamint pozitív és negatív
Alumínium szerkezetek tervezése 4. előadás Hegesztett alumínium szerkezetek méretezése az Eurocode 9 szerint Számpéldák.
Szakmérnöki kurzus Alumínium szerkezetek tervezése 4. előadás Hegesztett alumínium szerkezetek méretezése az Eurocode 9 szerint Számpéldák. BME Szilárdságtani és Tartószerkezeti Tanszék Dr. Vigh László
Szádfal szerkezet ellenőrzés Adatbev.
Szádfal szerkezet ellenőrzés Adatbev. Projekt Dátum : 8.0.05 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : Acél szerkezetek : Acél keresztmetszet teherbírásának
Szabó Ferenc, dr. Majorosné dr. Lublóy Éva. Fa, vasbeton és acél gerendák vizsgálata tűz hatására
Szabó Ferenc, dr. Majorosné dr. Lublóy Éva Fa, vasbeton és acél gerendák vizsgálata tűz hatására Három különböző anyagú gerenda teherbírás-számítását végezték el szerzőink 180 percig tartó tűz hatására.
STRENG s.r.o. Vasbeton konzol. Geometria: szélesség b K = 50,0 cm mélység t K = 45,0 cm magasság h K = 57,0 cm
Vasbeton konzol a c Lager b Lager z=0.9d e Z sd V d H d b x=d/4 d 0.15a c vorne k h cseitlich c seitlich V d hlager a Lagen 1,2ø, min.2.0cm 2 Lagen, 4-schnittig 20d 15d D d a 1 b k 0.1d t k Szabvány: ÖNORM
Schöck Isokorb Q, Q-VV
Schöck Isokorb, -VV Schöck Isokorb típus Alátámasztott erkélyekhez alkalmas. Pozitív nyíróerők felvételére. Schöck Isokorb -VV típus Alátámasztott erkélyekhez alkalmas. Pozitív és negatív nyíróerők felvételére.
Vasbeton gerendák kísérleti és elméleti nyírásvizsgálata
Vasbeton gerendák kísérleti és elméleti nyírásvizsgálata DRASKÓCZY András egy.adjunktus BME, Szilárdságtani és Tartószerkezeti Tanszék EMT 2011 Csíksomlyó Draskóczy A.: Vasbeton gerendák nyírása 1. oldal
Lemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
Feszített vasbeton gerendatartó tervezése költségoptimumra
newton Dr. Szalai Kálmán "Vasbetonelmélet" c. tárgya keretében elhangzott előadások alapján k 1000 km k m meter m Ft 1 1 1000 Feszített vasbeton gerendatartó tervezése költségoptimumra deg A következőkben
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.
ELŐFESZÍTETT VASBETON TARTÓ TERVEZÉSE AZ EUROCODE SZERINT
BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke ELŐFESZÍTETT VASBETON TARTÓ TERVEZÉSE AZ EUROCODE SZERINT Segédlet v1.14 Összeállította: Koris Kálmán Budapest,
Hegesztett gerinclemezes tartók
Hegesztett gerinclemezes tartók Lemezhorpadások kezelése EC szerint dr. Horváth László BME Hidak és Szerkezetek Tanszéke Bevezetés Gerinclemezes tartók vékony lemezekből: Bevezetés Összetett szelvények,
VASBETON TARTÓSZERKEZETEK HASZNÁLHATÓSÁGI HATÁRÁLLAPOTA 1.
VASBETON TARTÓSZERKEZETEK HASZNÁLHATÓSÁGI HATÁRÁLLAPOTA 1. Követelmények. Alakváltozások ellenőrzése Dr. Visnovitz György Szakmérnöki képzés 2012. május 24. MEGLÉVŐ ÉPÜLETEK HASZNÁLHATÓSÁGA ekonstrukciót
TARTÓSZERKEZETEK II.-III.
TRTÓSZERKEZETEK II.-III. VSBETOSZERKEZETEK 29.3.7. VSBETO KERESZTMETSZET YOMÁSI TEHERBÍRÁSÁK SZÁMÍTÁS kereztmetzet teherbíráa megelelı ha nyomott km. eetén: Rd hol a normálerı tervezéi értéke (mértékadó
VIII. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár
Reinorce Concrete Structure I. / Vabetonzerkezetek I. VIII. Lecture VIII. / VIII. Előaá Reinorce Concrete Structure I. Vabetonzerkezetek I. - Vabeton kereztmetzet kötött é zaba tervezée hajlítára - Dr.
TARTÓSZERKEZETEK II.
készítette: Hlvx Ktlin TARTÓSZERKEZETEK II. 01.03.7. Széchenyi István Egyetem készítette: Hlvx Ktlin Féléves tervezési eldt: G1 gerend részletes sttiki számítás G1 gerend igényevételei üggőleges terhekől
Tartalomjegyzék. dr. Lublóy László főiskolai docens. Nyomott oszlop vasalásának tervezése
dr. Lulóy Lázló főikolai docen yomott ozlop vaaláának tervezée oldalzám: 7. 1. Tartalomjegyzék 1. Központoan nyomott ozlop... 1.1. Vaalá tervezée egyzerűített zámítáal... 1..Vaalá tervezée két irányan....
Korrodált acélszerkezetek vizsgálata
Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott
KÖZLEKEDÉSÉPÍTŐ ISMERETEK
ÉRETTSÉGI VIZSGA 2018. május 16. KÖZLEKEDÉSÉPÍTŐ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Közlekedésépítő
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:
Navier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei
Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás
Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok Dr. Szalai József Főiskolai adjunktus Tartalom Acélszerkezetek kapcsolatai Csavarozott kapcsolatok kialakítása Csavarozott kapcsolatok
Határfeszültségek alapanyag: σ H = 200 N/mm 2, σ ph = 350 N/mm 2 ; szegecs: τ H = 160 N/mm 2, σ ph = 350 N/mm 2. Egy szegecs teherbírása:
ervezze meg az L10.10.1-es szögacélpár eltolt illesztését L100.100.1-es hevederekkel és Ø1 mm-es szegecsekkel. nyagminőség: 8, szegecs: SZ. atárfeszültségek alapanyag: 00 /mm, p 50 /mm szegecs: τ 160 /mm,
Rugalmasan ágyazott gerenda. Szép János
Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai
Dr. Szabó Bertalan. Hajlított, nyírt öszvértartók tervezése az Eurocode-dal összhangban
Dr. Szabó Bertalan Hajlított, nyírt öszvértartók tervezése az Eurocode-dal összhangban Dr. Szabó Bertalan, 2017 Hungarian edition TERC Kft., 2017 ISBN 978 615 5445 49 1 Kiadja a TERC Kereskedelmi és Szolgáltató
Tartószerkezetek modellezése
Tartószerkezetek modellezése 20. Elıadás A kapcsolatok funkciója: - Bekötés: 1 2 - Illesztés: 1 1 A kapcsolás módja: - mechanikus (csavar, szegecs) - hegesztési varrat 1 A kapcsolatok részei: - Elemvég
Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás
tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés
TARTÓSZERKEZETEK II. Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ
Öszvérszerkezetek 3. előadás Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ készítette: 2016.10.28. Tartalom Öszvér gerendák kifordulása
Tervezés földrengés hatásra II.
Szerkezetépítés II. 204/205 II. félév Előadás /5 205. február 4., szerda, 9 50-30, B-2 terem Tervezés földrengés hatásra II. - energiaelnyelő viselkedés - hosszkötés egyszerűsített méretezése - Papp Ferenc
Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan, MOGA C;t;lin. Kolozsvári M=szaki Egyetem
Többtámaszú öszvértartók elemzése képlékeny tartományban az EUROCODE 4 szerint Plastic Analysis of the Composite Continuous Girders According to EUROCODE 4 Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan,
Tartalomjegyzék a felszerkezet statikai számításához
Tartalomjegyzék a felszerkezet statikai számításához 1. Kiindulási adatok 3. 1.1. Geometria; 3. 1.2. Terhelés; 6. 1.3. Szabványok; 6. 1.4. Anyagok, anyagmin ségek; 6. 2. A statikai számításról 7. 2.1.
Nyírt csavarkapcsolat Mintaszámítás
1 / 6 oldal Nyírt csavarkapcsolat Mintaszámítás A kapcsolat kiindulási adatai 105.5 89 105.5 300 1. ábra A kapcsolat kialakítása Anyagminőség S355: f y = 355 N/mm 2 ; f u = 510 N/mm 2 ; ε = 0.81 Parciális
Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!
Tanulmányozza a.3.6. ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Az alakváltozás mértéke hajlításnál Hajlításnál az alakváltozást mérnöki alakváltozási
Hajlított elemek kifordulása. Stabilitásvesztési módok
Hajlított elemek kifordulása Stabilitásvesztési módok Stabilitásvesztés (3.3.fejezet) Globális: Nyomott rudak kihajlása Hajlított tartók kifordulása Lemezhorpadás (lokális stabilitásvesztés): Nyomott és/vagy
Tervezés földrengés hatásra: bevezetés az Eurocode 8 alapú tervezésbe
artószerkezetek IV. 204/205 I. félév Előadás /9 204. október 3., péntek, 9 50-30, B- terem ervezés földrengés hatásra: bevezetés az Eurocode 8 alapú tervezésbe Alapvető fogalmak Földrengés hatás ervezési
MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:
Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók.
A 4/2015 (II. 19.) NGM rendelet és a 27/2012 (VIII. 27.) NGM rendelet a 12/2013 (III. 28.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése