A mikroskálájú modellek turbulencia peremfeltételeiről
|
|
- Zita Gáspár
- 6 évvel ezelőtt
- Látták:
Átírás
1 A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék / 7
2 Általános célú CFD megoldók alkalmazása BMW Sauber AG. c HiTech CFD c Desktop Engineering c Saját szimuláció (Stadion membrántető vizsgálata) / 7
3 Hidro-Termodinamikai Egyenletrendszer (HTE) Megmaradási tételek gázokra Impulzusmegmaradás (Navier Stokes egyenletek): u t + u u = ρ p + ν Tömegmegmaradás (kontinuitás): ρ t + (ρu) = Energiamegmaradás (energia egyenlet): [ 2 u + 3 ( u) ] + g (ρc p T ) + (ρc p T u) = (k T ) + H t Anyagtulajdonságok: Az ideális gáz állapotegyenlete: p = ρrt / 7
4 A HTE Numerikus közelítő megoldása (CFD) Mivel az általános analitikus megoldás ismeretlen, numerikus módszereket alkalmazunk Térbeli diszkretizáció (rács vagy cellahálózat) Időbeli diszkretizáció (időlépés) (a korlátos tartomány határain) Kezdeti feltételek (a rendszer kezdeti állapota) A hatékonyság érdekében: Egyszerűsítjük a geometriát Egyszerűsítjük az egyenleteket Időfüggés Összenyomhatóság Turbulens jelleg Ideális koordináta-rendszer Modellezzük a bonyolult folyamatokat (pl. a turbulenciát) / 7
5 Térbeli diszkretizáció Véges Térfogat Módszer n 4 f n (Φ) f 4(Φ) f 2(Φ) Φ n i 2 n 3 f 3(Φ) Φ t + f (Φ) = [ ] Φ t + f (Φ) dv = V V Φ t dv + A f (Φ) nda = V i Φ i t + j f j (Φ i ) na j = / 7
6 : Reynolds átlagolt N S (RANS) Felbontjuk a változókat: u(x, t) = u(x) + u (x, t) Visszahelyettesítés után átlagoljuk az egyenleteket Az átlagolt egyenletek nem zártak, magasabb rendű nem-lineáris tagok maradnak: u i u j u(x,t) ū (x) u (x,t) u [m/s] t/τ [-] / 7
7 A Reynolds feszültségek modellezése Egyszerűsítések a továbbiakban: Összenyomhatatlan közeg: ρ = konstans kg m 3 Nagy viszkozitás-arány: ν ν t Boussinesq hipotézis (ν t örvényviszkozitással): ( u i u j = ν vi t + v ) j 2 x j x i 3 kδ ij, ahol k = 2 u i u i a turbulens kinetikus energia (TKE). Örvényviszkozitás modellezése (két egyenletes modell): ν t = c klm, ahol l m = c 2 k.5 ɛ a keveredési úthossz. Transzport egyenletek a turbulens kinetikus energiára és disszipációjára (ɛ-ra) / 7
8 Inhomogenitás - légköri profilok elfajulása Általános célú megoldók turbulenciamodelljei légköri áramlásra: Elmélet: A teljesen kialakult légköri profilok mellett a határréteg áramlásirányban homogén Valóság: A mérési tapasztalatokkal jól egyező légköri profilok elfajulnak az áramlásirány mentén / 7
9 és a modell összhangja Ki kell elégíteniük az D turbulenciamodellt (k ɛ): z ( νt ɛ z σ ɛ z u ν t z = τ w = u 2 τ ( νt k σ k z ) + P k ɛ + S k = ) ɛ + C ɛ P k k C ɛ 2 ɛ2 k + S ɛ = Ahol a ν t örvényviszkozitásra és P k TKE produkcióra: ν t = C µ k 2 ɛ, P k = ν t ( ) U 2 z / 7
10 Megfelelő belépő peremfeltételek Mérési tapasztalatokkal jól egyező profilok: u(z) = u ( ) τ z + κ ln z ( ) ( ) z + z z + 2 ( ) z z + z k(z) = A ln + B + C + D z z z z ɛ(z) = u τ k C µ κ (z + z ) Kielégítik az D k ɛ modellt Megfelelő C µ, S k és S ɛ függvényekkel / 7
11 Megfelelő alsó (fali) peremfeltételek (u, k, ɛ, ν t, P k ) Sebesség a falon: u (z = ) = Turbulens kinetikus energia a falon: k = z z= Disszipáció a fal melletti első cellában: Turbulens egyensúlyt feltételezve: ( ) 2 u k 2 ( ) 2 u P k = ν t = C µ = ɛ z ɛ z Implementáció: ɛ = C.75 µ k.5 κ (z + z ) és P k = ν t u C µ.25 k.5 z κ (z + z ) Örvényviszkozitás a fal melletti első cellában: ( ) u τ w = u 2 u τ = ν t ν t z z ν t = κu τ z ( ) ln z+z z / 7
12 2D validáció valós skálán Tipikus légköri léptékű alkalmazás (L = 5km, H = 5m) 2D validáció laboratóriumi skálán CEDVAL A (L = 5m, H = m) TOKYO UNI WT (L = 5m, H =.5m) ERCOFTAC 69 (L = 5m, H =.6m) L Felső perem (Dirichlet) H Belépés (Dirichlet) Kilépés (Neumann) Alsó (fali) perem (Vegyes) / 7
13 Tipikus légköri léptékű alkalmazás Full-scale U Full-scale TKE Full-scale TKED Inlet Outlet RH Outlet PB Outlet BM U [ms -2 ] k [m 2 s -2 ] Full-scale N-D WSS.5... ε [m 2 s -3 ].25 τ w /τ w,theory [-].75 Ground RH Ground PB Ground BM x [km] / 7
14 CEDVAL A CEDVAL A- U Inlet BM Outlet BM Inlet PB Outlet PB Exp CEDVAL A- TKE CEDVAL A- TKED U [ms -2 ] k [m 2 s -2 ]. ε [m 2 s -3 ].5.25 CEDVAL A- N-D WSS Ground BM Ground PB τ w /τ w,theory [-] x [m] / 7
15 TOKYO UNI WT TOKYO UNI WT U Inlet BM Outlet BM Inlet PB Outlet PB Exp TOKYO UNI WT TKE TOKYO UNI WT TKED U [ms -2 ] k [m 2 s -2 ] TOKYO UNI WT N-D WSS Ground BM Ground PB... ε [m 2 s -3 ] τ w /τ w,theory [-] x [m] / 7
16 ERCOFTAC ERCOFTAC 69 U Inlet BM Outlet BM Inlet PB Outlet PB Exp ERCOFTAC 69 TKE ERCOFTAC 69 TKED U [ms -2 ] k [m 2 s -2 ] ERCOFTAC 69 N-D WSS Ground BM Ground PB.... ε [m 2 s -3 ] τ w /τ w,theory [-] x [m] / 7
17 Kérdések Köszönöm a figyelmet! / 7
18 A modell adaptációja komplex domborzat feletti áramlásokra A homogén légköri határrétegek modellezésére fejlesztett turbulencia modell komplex domborzat felett nem teljesít jól A határréteg szabad fejlődését korlátozzák a bevezetett forrástagok Tetszőleges felszín feletti határrétegekre: Közömbösítjük az S k és S ɛ forrástagokat A lokális sebességeltérés alapján ( u hom u lok ) Folytonosan sima átmenetet biztosítva Szinuszoidális átkeverő függvénnyel / 7
19 Az Askervein hegy (TU3-B) Háló ni nj n k xmin és ymin zmin Durva felbontás m.8m / 7
20 3D validáció (u h az A vonal mentén) U h [ms - ] meas. OpenFOAM C OpenFOAM O Fluent C Fluent O distance from HT [m] / 7
21 3D validáció (w az A vonal mentén) W [ms - ] distance from HT [m] / 7
SZAKDOLGOZAT VIRÁG DÁVID
SZAKDOLGOZAT VIRÁG DÁVID 2010 Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék SZÁRNY KÖRÜLI TURBULENS ÁRAMLÁS NUMERIKUS SZIMULÁCIÓJA NYÍLT FORRÁSKÓDÚ SZOFTVERREL VIRÁG
Numerikus szimuláció a városklíma vizsgálatokban
Numerikus szimuláció a városklíma vizsgálatokban BME Áramlástan Tanszék 2004. 1 Tartalom 1. Miért használunk numerikus szimulációt? 2. A numerikus szimuláció alapjai a MISKAM példáján 3. Egy konkrét MISKAM
Turbulencia és modellezése. lohasz [at] ara.bme.hu. Budapest Műszaki és Gazdaságtudományi Egyetem. GEA EGI Energiagazdálkodási Zrt
Dr. Márton Ph.D., külső óraadó lohasz [at] ara.bme.hu Budapest Műszaki és Gazdaságtudományi Egyetem Áramlástan Tanszék, GEA EGI Energiagazdálkodási Zrt. 2011. ősz definíciója és tulajdonságai Tulajdonságok
BME HDS CFD Tanszéki beszámoló
BME HDS CFD Tanszéki beszámoló Hős Csaba csaba.hos@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem CFD Workshop, 2007. június 20. p.1/16 Áttekintés Nyíltfelszínű áramlások Csatornaáramlások,
Biomechanika előadás: Háromdimenziós véráramlástani szimulációk
Biomechanika előadás: Háromdimenziós véráramlástani szimulációk Benjamin Csippa 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em www.hds.bme.hu Tartalom Mire jó a CFD? 3D szimuláció előállítása Orvosi képtől
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
Hő- és áramlástani feladatok numerikus modellezése
Foglalkoztatáspolitikai és Munkaügyi Minisztérium Humánerőforrás-fejlesztés Operatív Program Dr. Kalmár László Dr. Baranyi László Dr. Könözsy László Hő- és áramlástani feladatok numerikus modellezése Készült
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as
Folyami hidrodinamikai modellezés
Folyami hidrodinamikai modellezés Dr. Krámer Tamás egyetemi docens BME Vízépítési és Vízgazdálkodási Tanszék Numerikus modellezés 0D 1D 2D 3D Alacsony Kézi számítások Részletesség és pontosság Bonyolultság
Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát!
Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenletet differenciál alakban! Milyen mennyiségeket képviselhet
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
Gázturbina égő szimulációja CFD segítségével
TEHETSÉGES HALLGATÓK AZ ENERGETIKÁBAN AZ ESZK ELŐADÁS-ESTJE Gázturbina égő szimulációja CFD segítségével Kurucz Boglárka Gépészmérnök MSc. hallgató kurucz.boglarka@eszk.org 2015. ÁPRILIS 23. Tartalom Bevezetés
Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)
Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási
Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével
GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba
Aktuális CFD projektek a BME NTI-ben
Aktuális CFD projektek a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. szeptember 27. CFD Workshop, 2005. szeptember 27. Dr. Aszódi Attila,
Large Eddy Simulation FLUENT rendszerben, alkalmazás bordázott csatorna számítására
Large Eddy Simulation FLUENT rendszerben, alkalmazás bordázott csatorna számítására Lohász Máté Márton Konzulensek: Benocci C., Kristóf G., Rambaud P. BME Áramlástan Tsz., VKI EA Department 2004. December
Konvektív hıtranszport CFD vizsgálata
Konvektív hıtranszport CFD vizsgálata Tóth Sándor, egyetemi adunktus BME, Nukleáris Technikai Intézet Áramlások numerikus modellezése 2., 211. április 7. Tartalom Elméleti bevezetı Üzemanyag-kazetták termohidraulikáának
A CFD elemzés minőségéről és megbízhatóságáról. Modell fejlesztési folyamata. A közelítési rendszer. Dr. Kristóf Gergely Október 11.
A CFD elemzés minőségéről és megbízhatóságáról Dr. Kristóf Gergely 2016. Október 11. Modell fejlesztési folyamata I. Ellenőrzés: Jól oldjuk-e meg a leíró egyenleteket? Teljesülnek-e az elvárt konvergencia
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató
Technikai áttekintés SimDay 2013 H. Tóth Zsolt FEA üzletág igazgató Next Limit Technologies Alapítva 1998, Madrid Számítógépes grafika Tudományos- és mérnöki szimulációk Mottó: Innováció 2 Kihívás Technikai
Meteorológiai előrejelzések
Meteorológiai előrejelzések Balogh Miklós Okleveles meteorológus BME Áramlástan Tanszék baloghm@ara.bme.hu Tartalom Történeti áttekintés A számszerű előrejelzések Áramlástani modellek Atmoszférikus alkalmazások
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS Országos Meteorológiai Szolgálat 1 TARTALOM A numerikus modellezés alapjai Kategorikus és
Artériás véráramlások modellezése
Artériás véráramlások modellezése Csippa Benjamin 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em www.hds.bme.hu Előadás tartalma Bevezetés Aneurizmák Modellezési lehetőségek Orvosi képfeldolgozás Numerikus
Energiatételek - Példák
9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Artériás véráramlások modellezése
Artériás véráramlások modellezése Csippa Benjamin 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em www.hds.bme.hu Előadás tartalma Bevezetés Aneurizmák Modellezési lehetőségek Orvosi képfeldolgozás Numerikus
Győri HPC kutatások és alkalmazások
Győri HPC kutatások és alkalmazások dr. Horváth Zoltán dr. Környei László Fülep Dávid Széchenyi István Egyetem Matema5ka és Számítástudomány Tanszék 1 HPC szimulációk az iparban Feladat: Rába- futómű terhelés
Légköri szennyezőanyagok keveredése városi környezetben
Eötvös Loránd Tudományegyetem Földrajz- és Földtudományi Intézet Meteorológiai Tanszék Légköri szennyezőanyagok keveredése városi környezetben DIPLOMAMUNKA Készítette: Molnár Anna Eszter Meteorológus mesterszak,
Bevezetés az időjárás és az éghajlat numerikus (számszerű) előrejelzésébe
Bevezetés az időjárás és az éghajlat numerikus (számszerű) előrejelzésébe Szépszó Gabriella szepszo.g@met.hu Korábbi előadó: Horányi András Előadások anyaga: http://nimbus.elte.hu/~numelo Az előadás vázlata
Turbulens áramlás modellezése háromszög elrendezésű csőkötegben
Turbulens áramlás modellezése háromszög elrendezésű csőkötegben Mayer Gusztáv mayer@sunserv.kfk.hu 2005. 09. 27. CFD Workshop 1 Tartalom - Vzsgált geometra Motvácó Az áramlás jellemző Saját fejlesztésű
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.
Overset mesh módszer alkalmazása ANSYS Fluent-ben
Overset mesh módszer alkalmazása ANSYS Fluent-ben Darázs Bence & Laki Dániel 2018.05.03. www.econengineering.com1 Overset / Chimaera / Overlapping / Composite 2018.05.03. www.econengineering.com 2 Khimaira
MISKAM gyakorlat december 4. Beadandó az Áramlások modellezése környezetvédelemben c. tantárgyhoz. Titkay Dóra - CBAGKH
MISKAM gyakorlat Beadandó az Áramlások modellezése környezetvédelemben c. tantárgyhoz Titkay Dóra - CBAGKH 2011.december 4. Miskam gyakorlat A gyakorlat során a Miskam (Mikroskaliges Strömung-und Ausbreitungsmodell
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
Tartalomjegyzék. Typotex Kiadó, 2010
Tartalomjegyzék 15. Elliptikus egyenletek 7 15.1. Bevezetés: Elliptikus egyenletek alkalmazott feladatokban... 7 15.2. Elméleti háttér.......................... 9 15.3. Véges dierencia eljárások II...................
LEVEGŐZTETETT HOMOKFOGÓK KERESZTMETSZETI VIZSGÁLATA NUMERIKUS ÁRAMLÁSTANI SZIMULÁCIÓVAL
LEVEGŐZTETETT HOMOKFOGÓK KERESZTMETSZETI VIZSGÁLATA NUMERIKUS ÁRAMLÁSTANI SZIMULÁCIÓVAL KÉSZÍTETTE: MADARÁSZ EMESE (DOKTORANDUSZ, BME VKKT) KONZULENS: DR. PATZIGER MIKLÓS (EGYETEMI DOCENS, BME VKKT) 2016.02.19.
Lemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati
ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram
Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása
Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása Szépszó Gabriella Országos Meteorológiai Szolgálat Éghajlati Osztály, Klímamodellezı Csoport Együttmőködési lehetıségek a hidrodinamikai
A diplomaterv keretében megvalósítandó feladatok összefoglalása
A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
Changes of heat transfer coefficient of the flow in T- shape depending on several numerical methods and simulation models
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR VEGYIPARI GÉPEK TANSZÉKE T-IDOMBAN TÖRTÉNŐ ÁRAMLÁS HŐÁTADÁSI TÉNYEZŐJÉNEK ALAKULÁSA KÜLÖNBÖZŐ NUMERIKUS SZÁMÍTÁSI MÓDOK ÉS SZOFTVERES SZIMULÁCIÓS MODELLEK
6. TURBULENS MODELLEZÉS A CFD-BEN
6. TURBULENS MODELLEZÉS A CFD-BEN Mi is a turbulencia? A turbulens áramlás a viszkóz áramlások egyik fajtája (3 fajta viszkóz áramlás létezik: lamináris, átmeneti és turbulens). Turbulens áramlás esetén
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Modellezési esettanulmányok. elosztott paraméterű és hibrid példa
Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom
A Balaton szél keltette vízmozgásainak modellezése
Numerikus modellezési feladatok a Dunántúlon 2015. február 10. A Balaton szél keltette vízmozgásainak modellezése Torma Péter Vízépítési és Vízgazdálkodási Tanszék Budapesti Műszaki és Gazdaságtudományi
GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A
Fluid-structure interaction (FSI)
Fluid-structure interaction (FSI) Készítette: Bárdossy Gergely tanársegéd 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.hu Tartalom Bevezetés, alapfogalmak Áramlás
Ipari és kutatási területek Dr. Veress Árpád,
Ipari és kutatási területek Dr. Veress Árpád, 2014-05-17 Szakmai gyakorlatok, gyakornoki programok, projekt feladatok továbbá TDK, BSc szakdolgozat, MSc diplomaterv és PhD kutatási témák esetenként ösztöndíj
időpont? ütemterv számonkérés segédanyagok
időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei
A TERVEZETT M0 ÚTGYŰRŰ ÉSZAKI SZEKTORÁNAK 11. ÉS 10. SZ. FŐUTAK KÖZÖTTI SZAKASZÁN VÁRHATÓ LÉGSZENNYEZETTSÉG
Budapesti Műszaki és Gazdaságtudományi Egyetem Áramlástan Tanszék A TERVEZETT M0 ÚTGYŰRŰ ÉSZAKI SZEKTORÁNAK 11. ÉS 10. SZ. FŐUTAK KÖZÖTTI SZAKASZÁN VÁRHATÓ LÉGSZENNYEZETTSÉG Balczó Márton tudományos segédmunkatárs
Eddig csak a polinom x-ben felvett értékét kerestük
Interpolációs polinom együtthatói Eddig csak a polinom x-ben felvett értékét kerestük Ez jó, ha kevés x-re kell kiértékelni Ha sok ismeretlen f (x)-et keresünk, akkor jobb kiszámolni az együtthatókat,
Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .
Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban
CFX számítások a BME NTI-ben
CFX számítások a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. április 18. Dr. Aszódi Attila, BME NTI CFD Workshop, 2005. április 18. 1 Hűtőközeg-keveredés
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
Turbulencia és modellezése I.
és modellezése Budapest Műszaki és Gazdaságtudományi Egyetem Áramlástan Tanszék 2017. 2017. 1 / 44 Kivonat 1 2 3 A turbulencia definíciója és tulajdonságai 4 Tulajdonságok 5 6 i leírás 7 2017. 2 / 44 Történelem
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások
Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu
Áramlástan kidolgozott 2016
Áramlástan kidolgozott 2016 1) Ismertesse a lokális és konvektív gyorsulás fizikai jelentését, matematikai leírását, továbbá Navier-Stokes egyenletet! 2) Írja fel a kontinuitási egyenletet! Hogyan egyszerűsödik
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus
Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006
14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
A talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 2. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Új klímamodell-szimulációk és megoldások a hatásvizsgálatok támogatására
Új klímamodell-szimulációk és megoldások a hatásvizsgálatok támogatására Zsebeházi Gabriella Országos Meteorológiai Szolgálat KlimAdat hatásvizsgálói workshop 2018. december 7. TARTALOM 1. Klímamodellezés
HŐÁTADÁS MODELLEZÉSE
HŐÁTADÁS MODELLEZÉSE KOHÓMÉRNÖKI MESTERKÉPZÉSI SZAK HŐENERGIAGAZDÁLKODÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI TANSZÉK
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
Hidroszféra. Légkör. Tartalom. Klímaváltozás. Idıjárás és éghajlat. Éghajlati rendszer: a légkör és a vele kölcsönhatásban álló 4 geoszféra együttese
Éghajlatváltozás és matematika Hogyan modellezzünk és az eredményt hogyan használjuk fel? Krüzselyi Ilona (kruzselyi.i@met.hu) Kovács Mária, Szabó Péter, Szépszó Gabriella Tartalom Bevezetés Éghajlati
Dinamikus modellek felállítása mérnöki alapelvek segítségével
IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
Parabolikus feladatok dinamikus peremfeltétel mellett
Parabolikus feladatok dinamikus peremfeltétel mellett Kovács Balázs és Christian Lubich University of Tübingen SFB 1173 BME Alkalmazott Analízis Szeminárium 2016. november 10., Budapest Kovács B. (Tübingen)
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Turbulencia és modellezése jegyzet. Lohász Máté Márton, Régert Tamás. Áramlástan Tanszék. Saját használatra
Turbulencia és modellezése jegyzet Lohász Máté Márton, Régert Tamás Áramlástan Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2010. tavasz Frissítve: 2010. október 13. Tartalomjegyzék
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
ODE SOLVER-ek használata a MATLAB-ban
ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk
I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt
2005. december 15. I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt Kristóf Gergely egyetemi docens BME Áramlástan Tanszék Áramlás katalizátor blokkban /Mercedes-Benz/ Égés hengertérben
Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Vízépítési és Vízgazdálkodási Tanszék. Tudományos Diákköri Konferencia 2015
Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Vízépítési és Vízgazdálkodási Tanszék Tudományos Diákköri Konferencia 2015 és számítógépes vizsgálata Készítette: Kutai Rebeka Debóra Konzulensek:
MUNKA- ÉS ENERGIATÉTELEK
MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az
MUNKAGÖDÖR TERVEZÉSE
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER
HÍD METSZET ÁRAMLÁSTANI VIZSGÁLATA NAGY-ÖRVÉNY SZIMULÁCIÓVAL
HÍD METSZET ÁRAMLÁSTANI VIZSGÁLATA NAGY-ÖRVÉNY SZIMULÁCIÓVAL Lohász Máté Márton * - Lajos Tamás ** RÖVID KIVONAT Az M8-as Duna-híd hosszirányban ismétlődő szeletének nagy-örvény szimulációját végeztük
Meteorológiai Tudományos Napok 2008 november Kullmann László
AZ ALADIN NUMERIKUS ELŐREJELZŐ MODELL A RÖVIDTÁVÚ ELŐREJELZÉS SZOLGÁLATÁBAN Meteorológiai Tudományos Napok 2008 november 20-21. Kullmann László Tartalom ALADIN modell-család rövid ismertetése Operatív
KORSZERŐ ÁRAMLÁSMÉRÉS 1. - Dr. Vad János docens Általános áramlásmérési blokk: páratlan okt. h. kedd
KORSZERŐ ÁRAMLÁSMÉRÉS 1. - Dr. Vad János docens Általános áramlásmérési blokk: páratlan okt. h. kedd 14.15-16.00 Interaktív prezentációk - JUTALOMPONTOK Ipari esettanulmányok Laboratóriumi bemutatók Laboratóriumi
A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben
A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben Faragó István 1, Havasi Ágnes 1, Zahari Zlatev 2 1 ELTE Alkalmazott Analízis és Számításmatematikai Tanszék és MTA-ELTE Numerikus Analízis
Látogatás a BGU-n: jégkorszakokról a sivatagban
Látogatás a BGU-n: jégkorszakokról a sivatagban Márfy János ELTE Elméleti Fizikai Tanszék Probléma felvetése: A I mechanizmus: Amit eddig a jégkorszakokról megtudtunk. Mire keressük választ? A külső hajtás
Parciális dierenciálegyenletek
Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok
Áramlásszimulációk a víz- és szennyvíztechnológia témakörében
Áramlásszimulációk a víz- és szennyvíztechnológia témakörében Előadó: Dr. Csizmadia Péter BME Gépészmérnöki Kar, Hidrodinamikai Rendszerek Tanszék pcsizmadia@hds.bme.hu Innováció a szennyvíztisztításban
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
Differenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
Az SCWR-FQT tesztszakaszának CFD analízise: a be- és kilépő rész vizsgálata
Az SCWR-FQT tesztszakaszának CFD analízise: a be- és kilépő rész vizsgálata Kiss Attila, Vágó Tamás és Prf. Dr. Aszódi Attila BME, Nukleáris Technikai Intézet kissa@reak.bme.hu XII. Nukleáris Technikai
Evans-Searles fluktuációs tétel
Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
Lokális szennyezőanyag-terjedés modellezése
Lokális szennyezőanyag-terjedés modellezése Készítette: Leelőssy Ádám III. éves Fizika BSc szakos, meteorológia szakirányos hallgató Témavezető: Mészáros Róbert adjunktus Eötvös Loránd Tudományegyetem