Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével
|
|
- Henrik Gáspár
- 9 évvel ezelőtt
- Látták:
Átírás
1 GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba Budaörs,
2 Bevezetés Szívócsövek bemutatása Vizsgálatok okai Elméleti háttér, képletek Szimuláció Geometria ismertetése Háló felépítése Modell paramétereinek definiálása, peremfeltételek Eredmények kiértékelése Összefoglalás, előrelépési lehetőség
3 Szívócsövek bemutatása I. Szivattyú esetén A járókerék előtt elhelyezkedő csőszakasz A szívócsövön történik a folyadék beszívása Kialakítása: konfúzoros -> áramlás egyenletesítése Szívócső
4 Szívócsövek bemutatása II. Turbina esetén A járókerék után elhelyezkedő csőszakasz A szívócsövön történik a folyadék kiáramlása Kialakítása: diffúzoros Francis-turbina
5 Vizsgálatok okai Szivattyú: konkrét megrendelés Turbina: ajánlatkészítés Veszteségek csökkentése, hatásfok javítás Szivattyú: A kilépő keresztmetszeten a folyadék perdületmentes belépése a járókerékhez Turbina: A szívócső hatásfokának növelése és így a turbina összhatásfokának növelése
6 Elméleti háttér, veszteségek Veszteségmagasság, veszteségek A veszteséges Bernoulli egyenlet v 2 2 be p s, be Δp =p be -p ki [Pa] súrlódási veszteség, h = Δp ρ g [m] U be v 2 2 ki p p' veszteségmagasság, υ h = h %, relatív veszteség, H ahol turbina esetén az esés H t =4,3 [m], és szivattyú esetén a szállítómagasság H sz =2,95 [m] s, ki U ki
7 Elméleti háttér kilépő szögek - szivattyú Feltétel: szivattyú járókerekére történő perdületmentes belépés (szívócsőből kilépés) α > 5 előperdülettel már szabályozunk α: szívócsőből kilépő sebességek axiális irányhoz képesti szöge Sebességi háromszögek: 1 indexű: belépés
8 Szimuláció Víztér modell I. SolidWorks Közvetlenül a víztér geometria modellezése Szivattyú: egyféle, létező geometria ellenőrzése Turbina: többféle kialakítás vizsgálata Oka: S alakú szívócső hajlatában egy rövid konfúzoros szakasz
9 Szimuláció Víztér modell II. Szivattyú - CFZm 1800 ferde tengelyű szivattyú - Névleges tömegáram Q n =7500 [kg/m 3 ] - Szállítómagasság: 2,95 [m] - Szívócső befoglaló méretek: 6,3x2,5x4,3 [m] Turbina - S-turbina szívócső alapján készült modell - Névleges tömegáram Q n =57000 [kg/m 3 ] - Esés: 4,3 [m] - Szívócső befoglaló méretek: 31,8x8,2x6 [m]
10 Szimuláció Hálókészítés ANSYS alaphálózóját használtuk Többféle globális elemméret mellett futtattunk Határréteg sűrítéssel, 30<y + <300 értékének tartása mellett (Re szám alapján teljes turbulens tartomány)
11 Szimuláció Modell tulajdonságok ANSYS CFX Stacioner Közeg: víz Vizsgált turbulencia modellek: k-ε, SST, k-ω Peremfeltételek: Szivattyú Össznyomás = hidrosztatikai nyomás Szállított tömegáram ismert Turbina Belépő km. Össznyomás Tömegáram Kilépő km. Tömegáram Össznyomás
12 ν h [%] Szimuláció Eredmények - szivattyú Veszteségek 0,7 0,6 0,5 0,4 A veszteségek a tömegáram függvényében 0,3 0,2 νh[%] Polinom. (νh[%]) 0,1 p be = [bar] 0,0-0, Q [kg/s] Q [kg/s] p ki [bar] h' [m] E E E E E E E E E E-02 ν h [%]
13 Szimuláció Eredmények - szivattyú Sebességeloszlás a szimmetriasíkban
14 Szimuláció Eredmények - szivattyú Kilépő szögek I.
15 Szimuláció Eredmények - szivattyú Kilépő szögek II. 5
16 ν h [%] Szimuláció Eredmények - turbina Veszteségek Változat ν h [%] 1 2, , , , , , ,416 3,500 3,300 A különböző esetekben a ν h -k alakulása százalékosan 3,100 2,900 2, Változat
17 Szimuláció Eredmények - turbina Áramvonalak
18 Szimuláció Eredmények - turbina Sebességeloszlás a szimmetriasíkban
19 Összefoglalás Szivattyú: Leválás nincs, veszteség 1% alatt Egyenletes kilépés, perdületmentes kilépés nem teljesül a teljes keresztmetszeten Geometria optimalizálása: Szivattyú könyök utáni szakasz meghosszabbítása Ív sugarának növelése Turbina: Több geometria közül az optimális megtalálása A több változat közül sikerült egy olyan változatot megtalálni, ahol a konfúzoros hatás számunkra a legjobban érvényesül Továbblépési lehetőség: A modell egyszerűsítése szempontjából a szimmetriát kihasználva érdemes lenne fél modellel számolni Eredmények esetleges validálása mérésekkel
20 Köszönjük a figyelmet!
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as
SZAKDOLGOZAT VIRÁG DÁVID
SZAKDOLGOZAT VIRÁG DÁVID 2010 Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék SZÁRNY KÖRÜLI TURBULENS ÁRAMLÁS NUMERIKUS SZIMULÁCIÓJA NYÍLT FORRÁSKÓDÚ SZOFTVERREL VIRÁG
BME HDS CFD Tanszéki beszámoló
BME HDS CFD Tanszéki beszámoló Hős Csaba csaba.hos@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem CFD Workshop, 2007. június 20. p.1/16 Áttekintés Nyíltfelszínű áramlások Csatornaáramlások,
Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:
Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi
Propeller, szélturbina, axiális keverő működési elve
Propeller, szélturbina, axiális keverő működési elve A propeller egy axiális átömlésű járókerék, amit tolóerő létesítésére használnak repülőgépek, hajók hajtására. A propeller nyugvó folyadékban halad
Propeller és axiális keverő működési elve
Propeller és axiális keverő működési elve A propeller egy axiális átömlésű járókerék, amit tolóerő létesítésére használnak repülőgépek, hajók hajtására. A propeller nyugvó folyadékban halad előre, a propellerhez
Gázturbina égő szimulációja CFD segítségével
TEHETSÉGES HALLGATÓK AZ ENERGETIKÁBAN AZ ESZK ELŐADÁS-ESTJE Gázturbina égő szimulációja CFD segítségével Kurucz Boglárka Gépészmérnök MSc. hallgató kurucz.boglarka@eszk.org 2015. ÁPRILIS 23. Tartalom Bevezetés
A mikroskálájú modellek turbulencia peremfeltételeiről
A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása
Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.
Készítette: Gönczi Gábor. Fővárosi Vízművek Zártkörűen Működő Részvénytársaság www.vizmuvek.hu vizvonal@vizmuvek.hu
Műtárgyvizsgálatok Fővárosi Vízművek Zrt-nél. (Víztároló medencék üzemtani felülvizsgálata, Homokszűrők visszamosatási ciklusának vizsgálata, Ülepítő optimalizálás) Készítette: Gönczi Gábor 1 Fővárosi
Overset mesh módszer alkalmazása ANSYS Fluent-ben
Overset mesh módszer alkalmazása ANSYS Fluent-ben Darázs Bence & Laki Dániel 2018.05.03. www.econengineering.com1 Overset / Chimaera / Overlapping / Composite 2018.05.03. www.econengineering.com 2 Khimaira
PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám
Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.
7.GYAKORLAT (14. oktatási hét)
7.GYAKORLAT (14. oktatási hét) Lehetséges témakörök a 14. heti 7. gyakorlatra: - Gyakorlati anyag: az áramlások hasonlósága, a hidraulika és az áramlásba helyezett testekre ható erő témakörökre gyakorló
Numerikus szimuláció a városklíma vizsgálatokban
Numerikus szimuláció a városklíma vizsgálatokban BME Áramlástan Tanszék 2004. 1 Tartalom 1. Miért használunk numerikus szimulációt? 2. A numerikus szimuláció alapjai a MISKAM példáján 3. Egy konkrét MISKAM
Projektfeladatok 2014, tavaszi félév
Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:
IMI INTERNATIONAL KFT
Épületgépész Szakosztály IMI INTERNATIONAL KFT www.imi-international.hu IMI International, Department, Name Vörös Szilárd okl. épületgépész-mérnök 0//00 Mihez kezdesz egy kazánházban a Bernoulli-egyenlettel?.
Biomechanika előadás: Háromdimenziós véráramlástani szimulációk
Biomechanika előadás: Háromdimenziós véráramlástani szimulációk Benjamin Csippa 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em www.hds.bme.hu Tartalom Mire jó a CFD? 3D szimuláció előállítása Orvosi képtől
Aktuális CFD projektek a BME NTI-ben
Aktuális CFD projektek a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. szeptember 27. CFD Workshop, 2005. szeptember 27. Dr. Aszódi Attila,
MMK Auditori vizsga felkészítő előadás Hő és Áramlástan 1.
MMK Auditori vizsga felkészítő előadás 017. Hő és Áramlástan 1. Az energia átalakítási, az energia szállítási folyamatokban, épületgépész rendszerekben lévő, áramló közegek (kontínuumok) Hidegvíz, Melegvíz,
2.GYAKORLAT (4. oktatási hét) PÉLDA
2.GYAKORLAT (4. oktatási hét) z Egy folyadékban felvett, a mellékelt ábrán látható, térben rögzített, dx=dy=dz=100mm élhosszúságú, kocka alakú V térrészre az alábbiak V ismeretesek: I.) Inkompresszibilis
3. RADIÁLIS ÁTÖMLÉSŰ VENTILÁTOROK
Dr. Vad János: Ipari légtechnika BMEGEÁTMOD3 1 3. RADIÁLIS ÁTÖMLÉSŰ VENTILÁTOROK 3.1. Szerkezeti elemek B b b 1 D 1 D Szívókúp 3.1. ábra. Jellegzetes elemek és méretek [] nyomán Beszívó kúp: A járókerékbe
ÁRAMVONALAS TEST, TOMPA TEST
ÁRAMVONALAS TEST, TOMPA TEST Súrlódásmentes áramlás Henger F 0 Súrlódásos áramlás F 0 Gömb ÁRAMVONALAS ÉS TOMPA TESTEK ÖSSZEHASONLÍTÁSA Áramvonalas testek: az áramvonalak követik a test felületét, a nyomáseloszlásból
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
VENTILÁTOROK KIVÁLASZTÁSA. Szempontok
VENTILÁTOROK KIVÁLASZTÁSA Szempontok Légtechnikai üzemi követelmények: pl. p ö, (p st ), q V katalógus Ergonómiai követelmények: pl. közvetlen vagy ékszíjhajtás katalógus Egyéb üzemeltetési követelmények:
Vegyipari géptan 3. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.
egyiari gétan 3. Hidrodinamikai Rendszerek Tanszék, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 6 80 Fax: 463 30 9 www.hds.bme.hu Légszállító géek. entilátorok. Centrifugál ventilátor. Axiális ventilátor.
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés 1. A mérés célja A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele. Az örvényszivattyú jellemzői a Q térfogatáram, a H szállítómagasság, a Pö bevezetett
Ipari és kutatási területek Dr. Veress Árpád,
Ipari és kutatási területek Dr. Veress Árpád, 2014-05-17 Szakmai gyakorlatok, gyakornoki programok, projekt feladatok továbbá TDK, BSc szakdolgozat, MSc diplomaterv és PhD kutatási témák esetenként ösztöndíj
MINIMUMTESZT. Az A ramla stechnikai ge pek (A GT) c. tanta rgy vizsgaminimum ke rde sei
MINIMUMTESZT. Az A ramla stechnikai ge pek (A GT) c. tanta rgy vizsgaminimum ke rde sei A minimumteszt célja a vizsgára való alkalmasság felmérése. Minden vizsgához kapcsolódik egy minimumteszt, melyen
Hő- és füstelvezetés, elmélet-gyakorlat
Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu
CFX számítások a BME NTI-ben
CFX számítások a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. április 18. Dr. Aszódi Attila, BME NTI CFD Workshop, 2005. április 18. 1 Hűtőközeg-keveredés
7.GYAKORLAT (14. oktatási hét)
7.GYAKORLAT (14. oktatási hét) Lehetséges témakörök a 14. heti 7. gyakorlatra: - Gyakorlati anyag: az áramlások hasonlósága, a hidraulika és az áramlásba helyezett testekre ható erő témakörökre gyakorló
XVII. econ Konferencia és ANSYS Felhasználói Találkozó
XVII. econ Konferencia és ANSYS Felhasználói Találkozó Hazay Máté, Bakos Bernadett, Bojtár Imre hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája
A diplomaterv keretében megvalósítandó feladatok összefoglalása
A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert
Örvényszivattyú A feladat
Örvényszivattyú A feladat 1. Adott n fordulatszám mellett határozza meg a gép jellemző fordulatszámát az optimális üzemi pont mérésből becsült értéke alapján: a) n = 1700/min b) n = 1800/min c) n = 1900/min
CFD vizsgálatok az ALLEGRO kerámia kazetta belső szubcsatornájára
CFD vizsgálatok az ALLEGRO kerámia kazetta belső szubcsatornájára Orosz Gergely Imre, Tóth Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technikai Intézet 1111 Budapest, Műegyetem rkp.
CFD alkalmazási lehetıségei a Mátrai Erımőnél Elıadás. Budapest, BME CFD workshop május 11. Egyed Antal
CFD alkalmazási lehetıségei a Mátrai Erımőnél Elıadás Budapest, BME CFD workshop 2006. május 11 Készítették: Leviczky Géza Egyed Antal 1 Saját vizsgálatok bemutatása Geometriai modellek: Az ábra mutatja
Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony:
Ventilátorok Jellemzők: Gáz munkaközeg Munkagép: Teljesítmény-bevitel árán kisebb nyomású térből (szívótér) nagyobb nyomású térbe (nyomótér) szállítanak közeget. Működési elv: Euler-elv (áramlástechnikai
4. RADIÁLIS ÁTÖMLÉSŰ VENTILÁTOROK ÜZEMVITELE
Dr. Vad János: Ipari légtechnika BMEGEÁTMOD3 1 4. RADIÁLIS ÁTÖMLÉSŰ VENTILÁTOROK ÜZEMVITELE 4.1. Ideális és valóságos jelleggörbék HH: w 2 β 2 u 2 v u2 v m2 v 2 v u2 R: w 2 u 2 v 2 v m2 β 2 =90 EH: w 2
ÁRAMLÁSTAN MFKGT600443
ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
Az SCWR-FQT tesztszakaszának CFD analízise: a be- és kilépő rész vizsgálata
Az SCWR-FQT tesztszakaszának CFD analízise: a be- és kilépő rész vizsgálata Kiss Attila, Vágó Tamás és Prf. Dr. Aszódi Attila BME, Nukleáris Technikai Intézet kissa@reak.bme.hu XII. Nukleáris Technikai
KÖSZÖNTJÜK HALLGATÓINKAT!
2010. november 10. KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth Zoltán Módszerek, amelyek megváltoztatják a világot A számítógépes szimuláció és optimalizáció jelentősége c. előadását hallhatják! 1 Módszerek,
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
Hő- és füstelvezetés, elmélet-gyakorlat
Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu
Dr.Tóth László
Szélenergia Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Amerikai vízhúzó 1900 Dr.Tóth László Darrieus 1975 Dr.Tóth László Smith Putnam szélgenerátor 1941 Gedser Dán 200 kw
A CFD elemzés minőségéről és megbízhatóságáról. Modell fejlesztési folyamata. A közelítési rendszer. Dr. Kristóf Gergely Október 11.
A CFD elemzés minőségéről és megbízhatóságáról Dr. Kristóf Gergely 2016. Október 11. Modell fejlesztési folyamata I. Ellenőrzés: Jól oldjuk-e meg a leíró egyenleteket? Teljesülnek-e az elvárt konvergencia
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
VIZSGA ÍRÁSBELI FELADATSOR
NINCS TESZT, PÉLDASOR (150 perc) BMEGEÁTAM01, -AM11 (Zalagegerszegi BSc képzések) ÁRAMLÁSTAN I. Mechatronikai mérnök BSc képzés (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI:
BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H
BMEGEÁTAT0-AKM ÁRAMLÁSTAN (DR.SUDA-J.M.).FAKZH 08..04. AELAB (90MIN) 8:45H AB Név: NEPTUN kód:. Aláírás: ÜLŐHELY sorszám PONTSZÁM: 50p / p Toll, fényképes igazolvány, számológépen kívül más segédeszköz
Az ALLEGRO gyors reaktor kerámia kazettájának vizsgálata CFD módszerrel. TDK dolgozat
Az ALLEGRO gyors reaktor kerámia kazettájának vizsgálata CFD módszerrel TDK dolgozat 2015 Orosz Gergely Imre Energetikus BSc III. évfolyam Témavezető: Dr. Tóth Sándor Egyetemi adjunktus BME Nukleáris Technikai
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13
KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13 1. BEVEZETÉS 1.1. Az áramlástani mérések célja 1.1.1. Globális (integrál) jellemzők Áramlástechnikai gépek és a csatlakozó rendszer üzemének általános megítélése, hibafeltárás
MUNKAANYAG. Szabó László. Áramlástani szivattyúk. A követelménymodul megnevezése:
Szabó László Áramlástani szivattyúk A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító
Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató
Technikai áttekintés SimDay 2013 H. Tóth Zsolt FEA üzletág igazgató Next Limit Technologies Alapítva 1998, Madrid Számítógépes grafika Tudományos- és mérnöki szimulációk Mottó: Innováció 2 Kihívás Technikai
1. feladat Összesen 17 pont
1. feladat Összesen 17 pont Két tartály közötti folyadékszállítást végzünk. Az ábrán egy centrifugál szivattyú- és egy csővezetéki (terhelési) jelleggörbe látható. A jelleggörbe alapján válaszoljon az
ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE
1. A mérés célja ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE KÜLÖNBÖZŐ FORDULATSZÁMOKON (AFFINITÁSI TÖRVÉNYEK) A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele különböző fordulatszámokon,
Műtárgyvizsgálatok Fővárosi Vízművek Zrt-nél
Műtárgyvizsgálatok Fővárosi Vízművek Zrt-nél XVII. econ Konferencia ANSYS Felhasználói Találkozó Gönczi Gábor 2 F Ő V Á R O S I V Í Z M Ű V E K Tartalom Medencék üzemének vizsgálata Csőelemek nyomásveszteség-csökkentése
VIZSGA ÍRÁSBELI FELADATSOR
ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI
Vegyipari géptan 2. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.
Vegyiari gétan 2. Hidrodinamikai Rendszerek Tanszék 1111, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.hu Csoortosítás 2. Működési elv alaján Centrifugálgéek (örvénygéek)
Különböző öntészeti technológiák szimulációja
Különböző öntészeti technológiák szimulációja Doktoranduszok Fóruma 2012. 11.08. Készítette: Budavári Imre, I. éves doktorandusz hallgató Konzulensek: Dr. Dúl Jenő, Dr. Molnár Dániel Predoktoranduszi időszak
Áramlásszimulációk a víz- és szennyvíztechnológia témakörében
Áramlásszimulációk a víz- és szennyvíztechnológia témakörében Előadó: Dr. Csizmadia Péter BME Gépészmérnöki Kar, Hidrodinamikai Rendszerek Tanszék pcsizmadia@hds.bme.hu Innováció a szennyvíztisztításban
Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.
Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:
A LÉGCSATORNÁVAL KAPCSOLATOS MÍTOSZOK ÉS A FIZIKA
4WINGS.COM Fordította: Németh Richárd 2005. február 25. Fordítás Megjelent: http://heathungary.hu/?q=node/11 A LÉGCSATORNÁVAL KAPCSOLATOS MÍTOSZOK ÉS A FIZIKA A légcsatornával kapcsolatos mítoszok A légcsatornába
LEVEGŐZTETETT HOMOKFOGÓK KERESZTMETSZETI VIZSGÁLATA NUMERIKUS ÁRAMLÁSTANI SZIMULÁCIÓVAL
LEVEGŐZTETETT HOMOKFOGÓK KERESZTMETSZETI VIZSGÁLATA NUMERIKUS ÁRAMLÁSTANI SZIMULÁCIÓVAL KÉSZÍTETTE: MADARÁSZ EMESE (DOKTORANDUSZ, BME VKKT) KONZULENS: DR. PATZIGER MIKLÓS (EGYETEMI DOCENS, BME VKKT) 2016.02.19.
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Artériás véráramlások modellezése
Artériás véráramlások modellezése Csippa Benjamin 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em www.hds.bme.hu Előadás tartalma Bevezetés Aneurizmák Modellezési lehetőségek Orvosi képfeldolgozás Numerikus
Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja
bmemotion Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja Csortán-Szilágyi György Dorogi János Nagy Ádám Célunk Fő célunk: Villamos hajtású versenyautó tervezése és építése - részvétel
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Ülékes szelepek (PN 6) VL 2 2-utú szelep, karima VL 3 3-utú szelep, karima
Ülékes szelepek (PN 6) VL 2 2-utú szelep, karima VL 3 3-utú szelep, karima Leírás VL 2 VL 3 A VL 2 és a VL 3 szelepek minőségi és költséghatékony megoldást adnak a legtöbb víz és hűtött víz alkalmazás
Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát!
Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenletet differenciál alakban! Milyen mennyiségeket képviselhet
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
Mérnöki alapok 8. előadás
Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA
H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA 1. A mérés célja A mérési feladat moduláris felépítésű járműmodellen a c D ellenállástényező meghatározása különböző kialakítások esetén, szélcsatornában.
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
KORSZERŐ ÁRAMLÁSMÉRÉS 1. - Dr. Vad János docens Általános áramlásmérési blokk: páratlan okt. h. kedd
KORSZERŐ ÁRAMLÁSMÉRÉS 1. - Dr. Vad János docens Általános áramlásmérési blokk: páratlan okt. h. kedd 14.15-16.00 Interaktív prezentációk - JUTALOMPONTOK Ipari esettanulmányok Laboratóriumi bemutatók Laboratóriumi
Artériás véráramlások modellezése
Artériás véráramlások modellezése Csippa Benjamin 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em www.hds.bme.hu Előadás tartalma Bevezetés Aneurizmák Modellezési lehetőségek Orvosi képfeldolgozás Numerikus
LAPDIFFÚZOR JELLEMZŐINEK MEGHATÁROZÁSA
M3 LAPDIFFÚZOR JELLEMZŐINEK MEGHATÁROZÁSA. A mérés célja Az áramlásban (ha az erőtér potenciáljának változástól eltekintünk, súrlódásmentes és stacioner esetben, összenyomhatatlan közeg esetén) a Bernoulli-egyenlet
Oktatási segédlet kúpos csatornában való anyagáramlás vizsgálatára
Oktatási segédlet kúpos csatornában való anyagáramlás vizsgálatára 1.fejezet Elméleti alapok 2. fejezet Maple programok SIK FELADAT Feladatok TENGELYSZIMMETRIKUS FELADAT Surlódás Módszer Program Súrlódás
Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai
016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.
TURBÓFÚVÓ AGGREGÁT ÁRAMLÁS- ÉS HŐTECHNIKAI NUMERIKUS ANALÍZISE
Multidiszciplináris tudományok, Z. kötet. (2013) 1. sz. pp. 133-140. TURBÓFÚVÓ AGGREGÁT ÁRAMLÁS- ÉS HŐTECHNIKAI NUMERIKUS ANALÍZISE Fodor Béla 1, Kalmár László 2 1 tanársegéd, 2 ny. egyetemi docens Miskolci
I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt
2005. december 15. I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt Kristóf Gergely egyetemi docens BME Áramlástan Tanszék Áramlás katalizátor blokkban /Mercedes-Benz/ Égés hengertérben
Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006
14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,
Áramlástechnikai mérések
Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek
Tender Text. Cég név: Bolesza Szivattyúk Kft Készítette: Bolesza Ferenc Telefon: Dátum:
Tender Text Cikkszám: 46611002 JP 6 B-A-CVBP Vízszintes tengelyű önfelszívó szivattyú. Önfelszívó, egyfokozatú centrifugálszivattyú, axiális szívó- és radiális nyomócsonkkal, 1-fázisú villanmotorral, hővédelemmel.
10. Valóságos folyadékok áramlása
10. Valóságos folyadékok áramlása 10.1. Bernoulli egyenlet valóságos folyadékoknál Valóságos folyadéknál a súrlódás miatt veszteség keletkezik, melyet p v veszünk figyelembe. Ábrázolva az energiákat az
M12 RADIÁLIS VENTILÁTOR VIZSGÁLATA
M1. MÉRÉSI SEGÉDLET ÁRAMLÁSTAN TANSZÉK M1 RADIÁLIS VENTILÁTOR VIZSGÁLATA 1. A mérés aktualitása, mérés célja A mérés célja egy radiális entilátor jellemzőinek, agyis a q szállított térfogatáram függényében
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11
Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11 Dr. Hős Csaba, csaba.hos@hds.bme.hu 2013. november 4. Áttekintés 1 Főbb típusok 2 Dugattyús gépek 3 Forgó géptípusok Főbb típusok Dugattyús gépek
Hidraulikus hálózatok robusztusságának növelése
Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás
MERVAY BENCE TDK DOLGOZAT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TERMÉSZETTUDOMÁNYI KAR NUKLEÁRIS TECHNIKAI INTÉZET MERVAY BENCE TDK DOLGOZAT CFD számítások a GIF 7 pálcás SCWR benchmarkhoz Témavezető: Kiss Attila tudományos
Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11
Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11 Dr. Hős Csaba, csaba.hos@hds.bme.hu 2018. október 9. Áttekintés 1 Főbb típusok 2 Dugattyús gépek 3 Forgó géptípusok Főbb típusok Dugattyús gépek:
1.5. VENTILÁTOR MÉRÉS
1.5. VENTILÁTOR MÉRÉS 1.5.1 A mérés célja A mérés célja egy ventilátorból és a vele összeépített háromfázisú aszinkron motorból álló gépcsoport üzemi jelleggörbéinek felvétele. Ez a következő függvénykapcsolatok
SCWR ÜZEMANYAGBAN LEJÁTSZÓDÓ TERMOHIDRAULIKAI FOLYAMATOK MODELLEZÉSE AZ ANSYS CFX 10.0 KÓDDAL
SCWR ÜZEMANYAGBAN LEJÁTSZÓDÓ TERMOHIDRAULIKAI FOLYAMATOK MODELLEZÉSE AZ ANSYS CFX 10.0 KÓDDAL Kiss Attila PhD hallgató, Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technikai Intézet 1111,
HŐÁTADÁS MODELLEZÉSE
HŐÁTADÁS MODELLEZÉSE KOHÓMÉRNÖKI MESTERKÉPZÉSI SZAK HŐENERGIAGAZDÁLKODÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI TANSZÉK