Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás
|
|
- Viktor Hajdu
- 6 évvel ezelőtt
- Látták:
Átírás
1 Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr. Benedek Tamás BME GPK Áramlástan Tanszék, 09
2 FOGÓ EDÉNY Egy henger alakú edényben, nyugalmi helyzetben H magasságig állt a víz. Amikor az edényt középtengelye körül forgatni kezdjük, a vízfelszín alakja megváltozik: a közepén lecsökken, míg a szélén megnő a vízfelszín magassága. z r Mekkora szögsebességgel kell forgatni, hogy a közepén h-ig csökkenjen a magasság? H h Adatok: h = 0, m; H = 0,3 m; = 0, m; ρvíz=000 kg/m 3 Kezdeti megfontolások: a feladat az edénnyel együtt-forgó koordináta-rendszerből tekinthető hidrosztatikai problémának ekkor a fellépő centrifugális erőtér (g c ) hatásával számolnunk kell Ezért a folyadék felszíne a nehézségi és a centrifugális erőtér együttes hatására másodfokú paraboloid lesz Egy másodfokú paraboloid felület a szimmetriatengelyével egybeeső befoglaló henger térfogatát pontosan felezi, ezért a nyugalmi állapothoz képest a felszín lesüllyedése és felemelkedése azonos lesz (ld. Magyarázat)! feltételezhető, hogy a folyadék felszínén a nyomás légköri az összes folyadék az edényben marad, nem csordul túl a peremen A hidrosztatika alapegyenlete az - pontok között, nehézségi és centrifugális erőterek figyelembevételével: p + ρu = p + ρu U = U n + U c = gz r ω p + ρ (gz r ω ) = p + ρ (gz r ω ) r = 0, r = Mivel az -es és -es pont is szabad felszínen van: p = p = p 0 Egyszerűsítve és ω-ra rendezve: ω = g(z z ) () A legnagyobb megengedhető felemelkedés H-h, tehát az () egyenlet jobb oldalán a magasság-különbség (z z ) maximális értéke enned a duplája. z z = (H h) () Az () és () egyenletekből a szögsebesség számolható:
3 ω = g(z z ) g(h h) 0 (0,3 0,) = 4 = 4 0, = 0 s (3) MAGYAÁZAT: Az () egyenletből látszik, hogy ha a () pontot a folyadékfelszín tetszőleges sugárhoz tartozó pontjában vesszük fel, annak magassága a sugárral négyzetesen nő, azaz a folyadékfelszín alakja egy másodfokú forgási paraboloid lesz. z z = ω g (4) Egy z(r) = k r másodfokú forgási paraboloid térfogata a következőképpen számolható: π V = zda = kr 0 0 r dr dφ = π k 4 4 = π z() (5) Tehát a (3) egyenlet alapján másodfokú forgási paraboloid térfogata az azonos szimmetriatengelyű, őt magába foglaló henger térfogatának fele. Jelen esetben a másodfokú forgási paraboloidunkat magába foglaló hengert V térfogatú levegő és V térfogatú víz tölti ki az alábbi ábrán látható módon. A térfogata pedig a következőképpen számolható ((6)- egyenlet): V = (z z ) π = V + V (6) z H z 0 h Álló edény Forgó edény A forgási paraboloidot felülről levegő tölti ki, melynek térfogata a fentiek alapján: V = V (7) A (4) és (5) egyenletekből következően: V = V = (z z ) π (8) Azaz a felemelkedés és a lesüllyedés mértéke azonos!
4 GYOSULÓ U-CSŐ Az ábrán látható üvegcsőben víz és benzin található a bemutatott nyugalmi elrendezésben. Határozza meg a bal oldali benzinoszlopnak a vízszintes csőszakasz feletti felső szintjét, a) nyugalmi helyzetben b) ha az üvegcső a=3m/s gyorsulással mozog a megadott irányban. Adatok: h = 8 mm; H = 55 mm; L = 00 mm; ρvíz = 000 kg/m 3 ; ρbenzin = 700 kg/m 3 ; g = 0 N/kg; a = 3 m/s h benzin L a h víz H a) a folyadékszint meghatározása nyugalmi helyzetben, kezdeti megfontolások: a feladat hidrosztatikai probléma, kizárólag a nehézségi erőtér hat a pontok felvételekor ügyelnünk kell rá, hogy a hidrosztatika alapegyenletének egyszerűsített formája csak állandó sűrűségű közegek esetén írható fel külön a benzinben és külön a vízben Felírva a hidrosztatika alapegyenletét az - pontok közé a benzinben: p + ρ b U = p + ρ b U - p = p 0 - U = gz ; U = gz U U = g(z z ) = gh h h L 3 H p = p + ρ b (U U ) = p 0 + ρ b gh () Felírva a hidrosztatika alapegyenletét a -3 pontok közé a vízben: p + ρ v U = p 3 + ρ v U 3 - a folyadék felszínén a nyomás légköri: p 3 = p 0 - U = gz ; U 3 = gz 3 U 3 U = g(z 3 z ) = g(h h ) p = p 3 + ρ v (U 3 U ) = p 0 + ρ v g(h h ) () Az () és () egyenletekből: p 0 + ρ b gh = p 0 + ρ v g(h h ) h = ρ vh ρ b h = = 4,4mm ρ v 000
5 A benzinoszlop vízszintes csőszakasz feletti felső szintje tehát: h + h = 4,4 + 8 = 60, 4mm b) a vízszint meghatározása gyorsulás esetén, kezdeti megfontolások: a feladat az U-csővel együtt gyorsuló koordináta-rendszerből tekinthető hidrosztatikai problémának tehetetlenségi erőtér (g t ) a koordináta-rendszert az U-cső bal alsó sarkához rögzítjük, az x-tengely a gyorsulás-vektor irányába mutat a tehetetlenségi erőtér hatására a jobb oldali szárban h-val megemelkedik, míg a bal oldali szárban h-val lecsökken a folyadékszint. A felemelkedés és lecsökkenés egyenlősége a kontinuitás és a csőátmérő állandóságának folyománya. a benzinoszlop teljes egészében a függőleges szárban marad 3 Δh Δh a x z Felírva a hidrosztatika alapegyenletét a -3 pontok közé a vízben: p + ρ v U = p 3 + ρ v U 3 - a folyadék felszínén a nyomás légköri: p 3 = p 0 - p az a) feladatrészben leírt módon számítható, mivel a tehetetlenségi erőtér a z-tengely irányában nem végez munkát: p = p 0 + ρ b gh - U = gz + ax = g(h h); U 3 = gz 3 + ax 3 = g(h + h) + a( L) A -3 pontok közé felírt hidrosztatikai alapegyenlet a behelyettesítés után tehát a következőképpen alakul: p 0 + ρ b gh + ρ v g(h h) = p 0 + ρ v [g(h + h) + a( L)] h = [ρ b h + h ρ H + a v g L] = [ , ] = 30mm 0 A benzinoszlop vízszintes csőszakasz feletti felső szintje gyorsuló U-cső esetén tehát: h + h h = 4, = 30, 4mm Az eredményt visszaellenőrizve a benzinoszlop valóban teljes egészében az U-cső függőleges szárában marad.
6 MUNKAHENGE Egy hidraulikus emelőben két munkahenger és egy tartály található. A kisebb átmérőjű munkahenger () a tartályból (0) szívja és a nagyobb munkahengerbe () szállítja az olajat. A visszaáramlást visszacsapó szelepek akadályozzák meg. 0 a) Mekkora lesz a nagyobb munkahenger sebessége abban az esetben, ha a kisebb munkahenger v sebességgel mozog lefele? b) A lökethosszok (l) ismeretében határozza meg, hányszor kell a kisebb hengert működtetni a nagyobb teljes kimozdításához! c) Mekkora erőt ad le a nagyobb munkahenger, ha a kisebbiket F erővel nyomjuk? Adatok: d = 0 mm; d = 60 mm; l = 90mm; l = 90mm; v = 6 mm/s; F = 00 N a) Kontinuitás összenyomhatatlan közeg esetén (ρ = áll.): v A = v A d π v 4 = v d π 4 v = v ( d ) = 6 ( 0 d 60 ) = 0, 7 mm s b) Egy működtetéssel benyomott mennyiség: V = l A = l d π 4 = 90 0 π 4 = 7069mm3 A szükséges működtetések száma: n = V = l ( d ) = 90 V l d 90 (60 0 ) = 36 c) A hengerekben a hidrosztatikából származó nyomáskülönbségeket elhanyagolva a nyomás állandó: p = F A = p = F A A F = F = F A ( d ) = 00 ( 60 d 0 ) = 3600N
7 KOMPESSZO Levegő nyomásának növelésére kompresszort használunk, melynek szívócsövében 7-edfokú paraboloid írja le a sebesség eloszlását. v =? Az ismert adatok alapján határozzuk meg a nyomócsőben az átlagos sebességet! Adatok: p = bar; p = 3,5 bar; D = 80 mm; D = 90 mm; T = 300K; T = 380K; = 87J/(kgK); vmax, = 30 m/s; n = 7 v p, D, T p, D, T A kontinuitás alapján a tömegáram állandó, a szívó- és nyomócsonkon megegyezik: q m = v ρ A = v ρ A - v és v rendre a szívó- és nyomócsonkon kialakuló átlagsebességek - A és A rendre a szívó- és nyomócsonk-keresztmetszetek: A = D π 4 - a sűrűség az ideális gáztörvényből: ρ = p T p π p q m = v D T 4 = v D T 4 v = v p T ( D ) p T D π A v átlagsebesség kiszámításához írjuk fel a sebességprofilra jellemző 7-edfokú parabola általános képletét és a hozzá tartozó peremfeltételeket: v = a + b r n r - r = 0 v = v max a = v max - r = v = 0 0 = v max + b n b = v max n v = v max v max ( r n ) = v max [ ( r n] ) vmax v
8 A csőben kialakuló térfogatáram: q V = vda = v πr dr = v max [ ( r n] ) πr dr = v max π [r rn+ ] dr n 0 0 = v max π [ r n + rn+ n ] 0 = n π v max [ n + ] = A v n max [ n + ] = v max π [ 0 n + n+ n ] Ebből az átlagsebesség a szívócsőben: v = q v n = v A max [ n + ] = 30 [ ] = 3,3 m s Átlagsebesség a nyomócsőben a kontinuitás alapján: v = v p T ( D ) p T D = 3,3 3, (80 90 ) = 33, 8 m s
9 K..50. A K..50. előadóterem téglalap alakú nyitott ablakán 45 -os szögben fúj be a hűvös, őszi szél. A teremben ülő 00 hallgató és a fűtés miatt a levegő 5 C-os hőmérséklet-növekedés után a folyosóra áramlik ki. A folyosó a terem falára merőleges tengelyű, téglalap keresztmetszetű csatornának tekinthető. A terem mindenhol máshol zárt. v szél t külső A ablak α Δt=5 C v folyosó A folyosó Határozza meg: a) a beáramló levegő térfogatáramát! b) a termen átáramló levegő tömegáramát! c) a folyosón áramló levegő térfogatáramát! d) a folyosón áramló levegő átlagsebességét! Adatok: Aablak = 6m3m; Afolyosó = mm; α = 45 ; tkülső = 0 C; Δt = 5 C; vszél = 3km/h; = 87J/(kgK); p0 = bar a) az ablakon beáramló szél térfogatárama, figyelembe véve a ferde megfúvást: q v,szél = v szél A ablak cos α = 3 3,6 6 3 cos 45 = 0, 6 m3 s b) a tömegáram számításához szükséges a beáramló levegő sűrűségének számítása, mely az ideális gáztörvényből: ρ szél = p 0 = 05 kg =,3 T szél m 3 A termen átáramló tömegáram: q m = q v,szél ρ szél = 0,6,3 = 3, kg s c) a folyosón áramló levegő térfogatáramához szükséges a kiáramló levegő sűrűsége (a ρ ki = tömegáramok megegyeznek): p 0 (T szél + T) = 0 5 kg =,3 87 (83 + 5) m 3 q v,folyosó = q m = 3, m3 =, ρ ki,3 s d) a folyosón áramló levegő átlagsebessége: v folyosó = q v,folyosó =,6 A folyosó =, 9 m s
Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.
VIZSGA ÍRÁSBELI FELADATSOR
ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI
Áramlástan feladatgyűjtemény. 4. gyakorlat Bernoulli-egyenlet
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához. gyakorlat Bernoulli-egyenlet Összeállította: Lukács Eszter Dr. Istók Balázs Dr. Benedek
VIZSGA ÍRÁSBELI FELADATSOR
NINCS TESZT, PÉLDASOR (150 perc) BMEGEÁTAM01, -AM11 (Zalagegerszegi BSc képzések) ÁRAMLÁSTAN I. Mechatronikai mérnök BSc képzés (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI:
PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám
Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.
2.GYAKORLAT (4. oktatási hét) PÉLDA
2.GYAKORLAT (4. oktatási hét) z Egy folyadékban felvett, a mellékelt ábrán látható, térben rögzített, dx=dy=dz=100mm élhosszúságú, kocka alakú V térrészre az alábbiak V ismeretesek: I.) Inkompresszibilis
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H
BMEGEÁTAT0-AKM ÁRAMLÁSTAN (DR.SUDA-J.M.).FAKZH 08..04. AELAB (90MIN) 8:45H AB Név: NEPTUN kód:. Aláírás: ÜLŐHELY sorszám PONTSZÁM: 50p / p Toll, fényképes igazolvány, számológépen kívül más segédeszköz
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:
Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi
MUNKAANYAG. Szabó László. Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás
Szabó László Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás A követelménymodul száma: 699-06 A tartalomelem azonosító száma és célcsoportja: SzT-001-0
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
4.GYAKORLAT (8. oktatási hét)
4.GYAKORLAT (8. oktatási hét) Lehetséges témakörök a 8. heti 4. gyakorlatra: - izoterm atmoszféra - Bernoulli-egyenlet instacioner áramlásokra (=0, =áll., instac., pot.erőtér, ❶->❷ áramvonal) PÉLDA (izoterm
TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok
Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) I.FAKZH AELAB (90MIN) 18:15H. homogén. folytonos (azaz kontinuum)
AB csoport Név: NEPTUN kód:. Aláírás: ÜLŐHELY sorszám PONTSZÁM: 50p / p Toll, fényképes igazolvány, számológépen kívül más segédeszköz nem használható! 1. FELADAT (elméleti kérdések) (10pont = 10 1pont,
Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
N=20db. b) ÜZEMMELEG ÁLLAPOT MOTORINDÍTÁS UTÁN (TÉLEN)
ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI
Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006
14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,
ÁRAMLÁSTAN MFKGT600443
ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK
BMEGEÁT-BT11, -AT01-, -AKM1, -AM21 ÁRAMLÁSTAN (DR.SUDA-J.M.) I.FAKZH K155 (90MIN) 18:15H
1.FAK. ZH-M Név: MEGOLDÁS.. NEPTUN kód:. Aláírás: SJM ÜLŐHELY sorszám PONTSZÁM:50p / Toll, fényképes igazolvány, számológépen kívül más segédeszköz nem használható! 1. FELADAT (elméleti kérdések) (10pont
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
3. Mérőeszközök és segédberendezések
3. Mérőeszközök és segédberendezések A leggyakrabban használt mérőeszközöket és használatukat is ismertetjük. Az ipari műszerek helyi, vagy távmérésre szolgálnak; lehetnek jelző és/vagy regisztráló műszerek;
ÁRAMLÁSTAN FELADATGYŰJTEMÉNY
ÁRAMLÁSTAN FELADATGYŰJTEMÉNY II.RÉSZ összeállította: Dr. Suda Jenő Miklós Az alábbi tantárgyakhoz javasolt: BMEGEÁTAT01 Áramlástan Ipari termék és formatervező mérnök alapszak BSc (GPK) BMEGEÁTAKM1 Az
Kollár Veronika A biofizika fizikai alapjai
Kollár Veronika A biofizika fizikai alajai 013. 10. 14. Folyadékok alatulajdonságai folyadék: anyag, amely folyni kées térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
MEGOLDÁS a) Bernoulli-egyenlet instacioner alakja: p 1 +rgz 1 =p 0 +rgz 2 +ra ki L ahol: L=12m! z 1 =5m; z 2 =2m Megoldva: a ki =27,5 m/s 2
2. FELADAT (6p) / A mellékelt ábrán látható módon egy zárt, p t nyomású tartályra csatlakozó ÆD=50mm átmérőjű csővezeték 10m hosszú vízszintes szakasz után az utolsó 2 méteren függőlegesbe fordult. A cső
A hidrosztatika alapegyenlete vektoriális alakban: p = ρg (1.0.1) ρgds (1.0.2)
. Hidrosztatika A idrosztatika alapegyenlete vektoriális alakban: p = ρg (..) Az egyenletet vonal mentén integrálva a és b pont között, kiasználva a gradiens integrálási tulajdonságait: 2. Feladat b a
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku 3. feladat megoldásához 5-ös formátumú milliméterpapír alkalmas. Megjegyzés a feladatok
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
7.GYAKORLAT (14. oktatási hét)
7.GYAKORLAT (14. oktatási hét) Lehetséges témakörök a 14. heti 7. gyakorlatra: - Gyakorlati anyag: az áramlások hasonlósága, a hidraulika és az áramlásba helyezett testekre ható erő témakörökre gyakorló
Szakmai fizika Gázos feladatok
Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a
a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A
A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C
7.GYAKORLAT (14. oktatási hét)
7.GYAKORLAT (14. oktatási hét) Lehetséges témakörök a 14. heti 7. gyakorlatra: - Gyakorlati anyag: az áramlások hasonlósága, a hidraulika és az áramlásba helyezett testekre ható erő témakörökre gyakorló
Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével
GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba
FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
(Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége: Pascal (Pa) 1 Pascal
Hatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Fizika 1i, 2018 őszi félév, 4. gyakorlat
Fizika 1i, 018 őszi félév, 4. gyakorlat Szükséges előismeretek: erőtörvények: rugóerő, gravitációs erő, közegellenállási erő, csúszási és tapadási súrlódás; kényszerfeltételek: kötél, állócsiga, mozgócsiga,
Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny
Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek
Áramlástechnikai mérések
Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség
Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai
016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr)
Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr) 1. Folyadékáram mérése torlócsővel (Prandtl-csővel) Torlócsővel csak egyfázisú folyadék vagy gáz áramlása mérhető. A folyadék vagy gáz
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
MMK Auditori vizsga felkészítő előadás Hő és Áramlástan 1.
MMK Auditori vizsga felkészítő előadás 017. Hő és Áramlástan 1. Az energia átalakítási, az energia szállítási folyamatokban, épületgépész rendszerekben lévő, áramló közegek (kontínuumok) Hidegvíz, Melegvíz,
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés 1. A mérés célja A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele. Az örvényszivattyú jellemzői a Q térfogatáram, a H szállítómagasság, a Pö bevezetett
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Hatvani István fizikaverseny Döntő. 1. kategória
1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,
Áramlástan feladatgyűjtemény. 2. gyakorlat Viszkozitás, hidrosztatika
Áramlátan feladatgyűjtemény Az energetikai mérnöki BSc é gépézmérnöki BSc képzéek Áramlátan című tárgyához. gyakorlat Vizkozitá, hidroztatika Özeállította: Lukác Ezter Dr. Itók Baláz Dr. Benedek Tamá BME
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
ÉPÜLETGÉPÉSZET ISMERETEK
ÉRETTSÉGI VIZSGA 2018. május 16. ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Épületgépészet
Hidrosztatika, Hidrodinamika
0/4/0 Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as
Ajánlott szakmai jellegű feladatok
Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál
A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató
Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű
Szent István Egyetem FIZI IKA Folyadékok fizikája (Hidrodinamika) Dr. Seres István
Szent István Egyetem FIZI IKA Folyadékok fizikája (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Seres.Istvan@gek.szie.hu
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
Tájékoztató. Használható segédeszköz: számológép. Értékelési skála:
A 29/2016. (VIII. 26.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 582 01 Épületgépész technikus Tájékoztató A vizsgázó az első lapra írja fel a
GROX huzatszabályzók szélcsatorna vizsgálata
GROX huzatszabályzók szélcsatorna vizsgálata 1. Előzmények Megbízást kaptunk a Gróf kereskedelmi és Szolgáltató kft-től (H-9653 Répcelak, Petőfi Sándor u. 84.) hogy a huzatszabályzó (két különböző méretű)
Vegyipari géptan 2. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.
Vegyiari gétan 2. Hidrodinamikai Rendszerek Tanszék 1111, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.hu Csoortosítás 2. Működési elv alaján Centrifugálgéek (örvénygéek)
Á R A M L Á S T A N. Áramlás iránya. Jelmagyarázat: p = statikus nyomás a folyadékrészecske felületére ható nyomás, egyenlő a csőfalra ható nyomással
Á R A M L Á S T A N Az áramlástan az áramló folyadékok (fluidok) törvényszerűségeivel foglalkozik. A mozgásfolyamatok egyszerűsítése végett, bevezetjük az ideális folyadék fogalmát. Ideális folyadék: súrlódásmentes
U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...
Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával
RA típusú IPARI BEFÚVÓ ELEM
R típusú IPRI EFÚVÓ ELEM radel & hahn zrt 1/9 IPRI EFÚVÓ ELEM R típus z ipari befúvó elem alkalmas hideg vagy meleg levegő radiális és/vagy axiális befúvására. radiálisból axiális irányváltoztatás fokozatmentesen
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője
É 063-06/1/13 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Propeller és axiális keverő működési elve
Propeller és axiális keverő működési elve A propeller egy axiális átömlésű járókerék, amit tolóerő létesítésére használnak repülőgépek, hajók hajtására. A propeller nyugvó folyadékban halad előre, a propellerhez
Örvényszivattyú A feladat
Örvényszivattyú A feladat 1. Adott n fordulatszám mellett határozza meg a gép jellemző fordulatszámát az optimális üzemi pont mérésből becsült értéke alapján: a) n = 1700/min b) n = 1800/min c) n = 1900/min
Készítette: Nagy Gábor (korábbi zh feladatok alapján) Kiadja: Nagy Gábor portál
Készítette: (korábbi zh felaatok alaján) Kiaja: ortál htt://vasutas.uw.hu. Ára: Ft Elıszó nnak okán készítettem ezt az összeállítást, hogy a jövıben kevesebben bukjanak. Olyan felaatokat tartalmaz, amely