Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
|
|
- Réka Barta
- 6 évvel ezelőtt
- Látták:
Átírás
1 Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 11. Bevezetés a speciális relativitáselméletbe I. Tér, Idő, Téridő Cserti József, jegyzet, ELTE, 2007 (Dávid Gyula jegyzete alapján).
2 Maxwell-egyenletek (vákuumban) hullámegyenlet síkhullám-megoldás: c sebességgel terjed -- de mihez képest? Analóg mechanikai hullámjelenség: hangterjedés ugyanaz a hullámegyenlet, de a c a hang sebessége a közeghez képest. Kimutatás: Doppler-effektus(ok) a) mozgó forrás álló detektor b) álló forrás mozgó detektor -rendű tagokban különböznek c) HF.: mindkettő mozog
3 Mi hordozza az elektromágneses hullámot? az éter - mindent betölt - a szilárd testek (pl. bolygók) áthatolnak rajta - szilárd (transzverzális hullámok terjednek benne) A Maxwell-egyenletek csak egyetlen, kitüntetett, az éterhez rögzített inerciarendszerben érvényesek. Ez ellentmond a Galilei-féle (mechanikai) relativitáselvnek!
4 Szimmetriaelvek a klasszikus mechanikában: gyorsuló koordinátarendszerben (KR): Mitől függnek? inerciaerők DE: az időszámítás kezdete időeltolás energia a KR kezdőpontja térbeli eltolás impulzus koordinátatengelyek iránya térbeli elforgatás impulzusmomentum, perdület relatív sebesség Galilei-transzformáció? (tömegközéppont) nem releváns adat szimmetria megmaradási tétel Mindez az egyenlet alakjából olvasható le! Elektrodinamika: a Maxwell-egyenletek NEM Galilei-invariánsak: álló ponttöltés mozgó ponttöltés nem ekvivalens
5 Ellentmondások és feloldásuk Klasszikus mechanika Elektrodinamika Invarianciaelvek a) Triviális feloldás: CM OK IE OK ED hibás (új kiforratlan elmélet) b) Szokásos megoldás: OK CM IE ED OK Nincs Galilei-invariancia. Van kitüntetett KR: ÉTER CM ED OK c) Meglepő, új megoldás: Hibás a klasszikus mechanika! MIE OK Kissé módosított invarianciaelvek: Galilei helyett Lorentz Kompatibilitás az ELDIN-nel A Maxwell-egyenletek már Einstein születése előtt relativisztikusan invariánsak voltak!
6 Kísérlet az éter kimutatására: Michelson-Morley, 1883 éterszél éterszél V ~ 30 km/s módosult interferenciakép A mérés kb. 10 m/s pontosságú volt. Effektus: NULLA Nézzük az éterből! teljes fényút:
7 fényút: útkülönbség: elforgatás előtt elforgatás után
8 Mentőötletek: most épp együtt mozgunk az éterrel. DE fél év múlva Δ V = 60 km/s éter éter a bolygók magukkal sodorják az étert. DE örvények, sodorvonalak: optikailag észlelhető lenne. Lorentz-Fitzgerald kontrakció: az éterszél összenyomja a szilárd testeket arányban fényút: nincs effektus elforgatás előtt elforgatás után HF.: ferde éterszél esete Hendrik Antoon Lorentz ( ) Fizikai alapja az elektromágneses anyagmodell (avagy a ló túlsó oldala) az anyag elektromágneses erők által összetartott ponttöltésekből áll SŐT: a töltések is csak a mező sűrűsödései gyorsulás: átrendeződés Miért nem jó ez? összeesküvés jellegű: nagyon különböző anyagok egyformán húzódnak össze. Emlékeztető: a függvénytáblázat rugalmas, optikai, elektromos, mágneses anyagi állandói a különböző atomi szerkezet következményei.
9 Einstein, 1905 Albert Einstein ( ) Egységes, geometriai jellegű magyarázat (1908-ban Minkowski geometrizálta) Alapelvek: MINDEN inerciarendszer egyenértékű (nemcsak a mechanikában, hanem az elektrodinamikában, SŐT: a fizika majdan felfedezett területein is) A fénysebesség minden inerciarendszerben ugyanaz (a józan észnek kissé ellentmond) Két esemény a téridőben fényjellel összekötve: Van ilyen? transzformáció invariánsan hagyja ezt a kifejezést tetszőleges paraméter rapiditás hiperbolikus elforgatás a téridőben az origó eltolása Lorentz-Poincaré-transzformáció
10 Emlékeztető: hiperbolikus függvények ch(x) sh(x) th(x)
11 Lorentz-transzformáció 1+1 dimenzióban: tetszőleges paraméter rapiditás inverze: invariáns: Egymás utáni Lorentz-transzformációk: A Lorentz-transzformációk csoportot alkotnak: A rapiditás paraméter ADDITIV Emlékeztető: forgásmátrixok
12 Speciális eset: két esemény K szerint ugyanott, de nem ugyanakkor Az inerciarendszerek relatív sebessége kisebb c-nél
13 Sebességek összeadása: Mese a görögök nélküli geometriáról: A szög fogalma helyett jellemezzük az egyeneseket az a/b aránnyal. Einstein-féle sebességösszeadás (mi tudjuk: ) Egyszerűbb a leírás az additív paraméterrel, a szöggel, illetve a rapiditással. Ajánlott könyv (amely bevezeti a rapiditást): Taylor-Wheeler: Téridő-fizika Kis sebességek: Galilei-féle sebességösszeadás Nemrelativisztikus közelítés: Mihez képest kis sebességek? A c univerzális határsebességhez képest! c-nek csak másodlagos funkciója, hogy éppen a fény sebessége!
14 Paradoxonok, furcsaságok: Alapparadoxon: az egyidejűség relativitása: minden más paradoxon ebből következik. Mostantól legyen c = 1 Koordinátarendszerek: tengely: az pontok mértani helye tengely: az pontok mértani helye K rendszerből nézve: Az α szög csak az ábrán létezik! Emlékeztető: forgatás
15 Egyidejű események: Sőt: Vannak olyan A, B események: attól függ, ki nézi DE: Vannak olyan C, D események is, amelyre: MINDEN inerciarendszerben!
16 lehetséges t tengelyek: lehetséges x tengelyek: ez már NEM t tengely ez már NEM x tengely ugyanott vannak, egymás után időszerűen elválasztva: ugyanakkor vannak, egymás mellett térszerűen elválasztva: invariáns állítás: minden megfigyelő így látja Nincs sem olyan KR, ahol egyszerre lennének sem olyan KR, ahol ugyanott lennének fényszerűen vannak elválasztva
17 Kauzális struktúra nem lehet hatást közvetíteni lehetséges hatás: c-nél kisebb sebességgel: kauzális kapcsolat: M O F időszerűen elválasztott pontok térszerűen elválasztott pontok fényszerűen elválasztott pontok halmaza a fénykúp több dimenzióban abszolút jövő abszolút múlt fénykúp abszolút jelen relativitás helyett abszolutitás elmélet
18 Idő és hosszúságegységek: Keressük azon pontokat, amelyek K KR-ben t = 1 időegységgel vannak az origó után, t = 1, x = 0 (c = 1) hiperbola Pontok t = -1 egységgel az origó előtt, t = -1, x = 0 Mely pontok vannak valamely KR-ben x = 1 egységre az origótól jobbra? t = 0, x = 1 És balra.
19 Ezek együtt az origótól egységnyi távolságra lévő pontok halmaza: indikátrix invariáns görbék, mindegyik megfigyelő ilyen struktúrát lát Hogy mérjünk? adott iránnyal párhuzamos szakaszokat ezekhez az egységekhez kell viszonyítani. Mert az illeszkedő KR-ben:
20 Időintervallumok relativitása: A: Emlékeztető: (a t = 1 pont a B-be esik! ) A helyzet szimmetrikus: Nem paradoxon! Nem ugyanazt az eseményt nézzük a két esetben! Hasonlat á la Euklidész:
21 Hosszúság relativitása: méterrúd a K rendszerben méterrúd világcsíkja B: a méterrúd jobb vége a K -ben: M: a mérés pontja OM a méterrúd a K-ben, t = 0 -kor: M és B nem egyidejű (időszerűen vannak elválasztva) asszimmetrikus adatok A helyzet szimmetrikus: a méterrúd a K-ben mérés az M pontban: a méterrúd rövidülése, Lorentz-kontrakció
22 Hogy kell megmérni a mozgó méterrúdat? Végtelen sok szinkronizált órájú megfigyelő áll az x tengely mentén. Én a rúd bal végének elhaladásakor nyomom meg a stoppert, mindenki más a jobb vég elhaladásakor. a, b, c, d megfigyelők Én a megfigyelők megnyomják a stoppert Aztán megkeresem azt a megfigyelőt, aki ugyanakkor nyomta meg a stoppert, mint én: ez a c megfigyelő Ekkor a rúd hossza az én és a c megfigyelő pozíciója közti x távolság. Az időtartamok nyúlnak, a rudak rövidülnek Hová lett a tér és idő közti szimmetria? MÁS a mérési utasítás! idő: rúd: A Lorentz-kontrakció nem valóságos fizikai esemény! Nem történik semmi: másképp olvassuk le az adatokat, a valóság más vetületét mérjük.
23 Ikerparadoxon: Ki lesz a fiatalabb? Válasz: a β iker lesz fiatalabb. Ellenvetés: hová lett a KR szimmetria? Válasz: a két út NEM egyenértékű: a β iker nem volt végig egyetlen inerciarendszerben az S pontban gyorsult, átugrott α iker egy visszafelé menő űrhajóba. Ellenvetés: ezek szerint a gyorsulás fiatalít? Válasz: NEM a gyorsulás, a KR váltás! HÁROM KR szerepel az ábrán. β iker Keressük meg az S eseménnyel egyidejű eseményeket a Földön! A KR-váltás megváltoztatja az egyidejűséget
24 Folytonosan változó sebességűűrhajó: Minden pontban van egy pillanatnyi, lokális inerciarendszer: ez folyamatosan változik. Időtengelye a világvonal érintője. Az utazás adott pillanatával az utazó szerint egyidejű események ideje nem egyenletesen söpri végig a Föld világvonalát! A visszaforduláskor gyorsan változik az egyidejűség. Geometriai interpretáció: Euklidésznél: Anti -háromszög-egyenlőtlenség: A Minkowski-geometria sajátossága Vigyázat! Csak időszerű szakaszokra igaz!
25 Mennyi idő telik el az utazás során az űrhajóban és a Földön? út-idő diagram: Adott pillanatban: lokális KR: K az űrhajón lévő óra által mutatott idő: sajátidő, jele: Az űrhajón eltelt teljes idő: Az űrutazó mindig fiatalabb, mint a Földön maradt testvére! a nyugalom (unalom) tart a legtovább két pont közt a leghosszabb út az egyenes:
26 Miért nem lehet gyorsabban menni c-nél? Tegyük fel, hogy A és B között V > c Rajzoljuk le K -ben! Létezik olyan K koordinátarendszer, amelynek x tengelye többször metszi a világvonalat Az űrhajó visszafordult az időben a C és D között a múltban járt! K-ban: c-nél gyorsabb a mozgás K -ben: időgép kauzalitás-sértés nagymamama Időgép nincs nincs c-nél gyorsabb utazás Kérdés: van-e az elektronnak nagymamája?
27 Kinematikai újdonságok összefoglalása: A relativitás elve univerzális A fény sebessége minden inerciarendszerben ugyanaz a t és x koordináták újfajta transzformációja: Lorentz-transzformáció a Galilei-féle helyett új, Lorentz-féle szimmetriacsoport Furcsa, mert az idő is transzformálódik Newtoni abszolút idő az egyidejűség relativitása időlelassulás Lorentz-kontrakció ikerparadoxon Einstein-fele sebességösszeadás A tér és idő egysége: matematikailag egyetlen mennyiség t önmagában nem határozza meg t -t! Csak x és t együtt! Más mennyiségek is hasonlóan viselkednek: pl.: az elektromos és mágneses mező: (E,B) egyetlen mennyiséget alkot (E,B ) transzformációs szabály ugyanaz a fizikai szituáció a mennyiségek más vetületével leírva!
Relativisztikus paradoxonok
Relativisztikus paradoxonok Az atomoktól a csillagokig Dávid Gyula 2009. 01. 15. Maxwell, A FLOGISZTON AZ ÁRAM NEM FOLYIK Huba Tamás Ohm fellegvára Kovács AMPERE TÉVEDETT! ELEKTRODINAMIKA Gay-Lussac was
Speciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
Speciális relativitás
Bevezetés a modern fizika fejezeteibe 3. (a) Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2015. január 11.. 1 Egy egyszerű probléma (1) A K nyugvó vonatkoztatási rendszerben tekintsünk
(Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban?
Próba vizsgakérdések (A téridő fizikájától a tér és idő metafizikájáig) (Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban? Mit
A relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
A speciális relativitáselmélet alapjai
A speciális relativitáselmélet alapjai A XIX-XX. századforduló táján, amikor a mechanika és az elektromágnességtan alapvető törvényeit már jól ismerték, a fizikát sokan befejezett tudománynak gondolták.
Relativisztikus elektrodinamika röviden
Relativisztikus elektrodinamika röviden További olvasnivaló a kiadó kínálatából: Patkós András: Bevezetés a kvantumfizikába: 6 előadás Feynman modorában Bódizs Dénes: Atommagsugárzások méréstechnikái Frei
A modern fizika születése
A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,
SZE, Fizika és Kémia Tsz. v 1.0
Fizikatörténet A speciális relativitáselmélet története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Mítoszok a relativitáselméletről: Bevezető Elterjedt mítosz: 1905-ben A. Einstein fedezi fel egymaga.
Ütközések elemzése energia-impulzus diagramokkal II. A relativisztikus rakéta
Ütközések elemzése energia-impulzus diagramokkal II. A relativisztikus rakéta Bokor Nándor Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizika Tanszék 1111 Budapest, Budafoki u. 8. Ebben a cikkben olyan
A modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
SZE, Fizika és Kémia Tsz. v 1.0
Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:
A speciális relativitáselmélet alapjai
A speciális relativitáselmélet alapjai A XIX-XX. századforduló táján, amikor a mechanika és az elektromágnességtan alapvető törvényeit már jól ismerték, a fizikát sokan befejezett tudománynak gondolták.
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
Speciális relativitáselmélet. Ami fontos, az abszolút.
Speciális relativitáselmélet Ami fontos, az abszolút. Vonatkoztatási rendszer A fizikai mennyiségek értéke, iránya majdnem mindig attól függ, hogy honnan nézzük, vagyis függenek a vonatkoztatási rendszertől.
a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)
a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Az invariáns, melynek értéke mindkét vonathoztatási rendszerben ugyanaz
AZ I. FEJEZET SUMMÁJA HÁROMDIMENZIÓS EUKLIDESZI GEOMETRIA AZ EUKLIDESZI ÉS A LORENTZ-TRANSZFORMÁCIÓ ÖSSZEHASONLÍTÁSA NÉGYDIMENZIÓS LORENTZ- GEOMETRIA Feladat: megtalálni az összefüggést egy pontnak egy
A TételWiki wikiből 1 / 5
1 / 5 A TételWiki wikiből 1 Vonatkoztatási rendszer 2 Galilei-transzformáció 3 A Lorentz-transzformáció 4 A Michelson-Morley kísérlet 5 A Lorentz transzformációk következményei 5.1 Az inerciarendszerek
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Typotex Kiadó. Záró megjegyzések
Záró megjegyzések Az olvasó esetleg hiányolhatja az éter szót, amely eddig a pillanatig egyáltalán nem fordult elő. Ez a mulasztás tudatos megfontoláson alapul: Ugyanazért nem kerítettünk szót az éterre,
Geometria és gravitáció
Geometria és gravitáció Az atomoktól a csillagokig Dávid Gyula 2014. 09. 18. Geometria és gravitáció Az atomoktól a csillagokig Dávid Gyula 2014. 09. 18. Geometria és gravitáció Az atomoktól a csillagokig
Az éter (Aetherorether) A Michelson-Morley-kísérlet
Az éter (Aetherorether) A Michelson-Morley-kísérlet Futó Bálint Modern Fizikai Kísérletek Szeminárium Fizika a XIX. században Mechanika Optika Elektrodin. Abszolút tér és idő Young és mások Az éter a medium
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós
Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
A mechanikai alaptörvények ismerete
A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
A relativitáselmélet alapjai
A relativitáselmélet alapjai További olvasnivaló a kiadó kínálatából: Bódizs Dénes: Atommagsugárzások méréstechnikái Frei Zsolt Patkós András: Inflációs kozmológia Geszti Tamás: Kvantummechanika John D.
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Robotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
ERŐ-E A GRAVITÁCIÓ? 1
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási rendszer, ahol érvényes Newton első törvénye (! # = 0 ' = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben tett felfedezések:
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete
Relativitáselmélet. Tasnádi Tamás december
Relativitáselmélet Tasnádi Tamás 2010. december Tartalomjegyzék Tartalomjegyzék 1 Bevezetés 3 1. A Galilei-féle téridő 4 1.1. Alapvető tapasztalatok...................... 4 1.2. A Galilei-féle téridő geometriája.................
Értékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
Optika és Relativitáselmélet
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 9. Szivárvány, korona és a glória Cserti József, jegyzet, ELTE, 2007. Fı- és mellékszivárvány Fı- és mellékszivárvány Horváth Ákos felvételei Fı-
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Az általános relativitáselmélet logikai alapjai
Intro SpecRel AccRel GenRel Az általános relativitáselmélet logikai alapjai MTA Rényi Intézet/NKE GR100 konferencia, 2016.11.09. Intro SpecRel AccRel GenRel S.R. G.R. Intro SpecRel AccRel GenRel S.R. G.R.
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk
1. A komplex számok ábrázolása
1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az
NULLADIK MATEMATIKA szeptember 13.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók
TERMÉSZETTAN. Debreceni Egyetem, 2012/2013. tanév II. félév, leadta és lejegyezte Végh László. 2013. április 18.
TERMÉSZETTAN Debreceni Egyetem, 2012/2013. tanév II. félév, leadta és lejegyezte Végh László 2013. április 18. 0.1. Tudnivalók a vizsgázásról Szinte valamennyi munkanapon lesz vizsga, a Neptunon kell jelentkezni.
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
A Föld mint fizikai laboratórium
A Föld mint fizikai laboratórium Az atomoktól a csillagokig Dávid Gyula 2006. 01. 12. A Föld - régóta ismert fizikai objektum triviális jól ismert nem ismert fizikai tulajdonságok alkalmazások más rendszerek,
AJÁNLOTT IRODALOM. A tárgy neve Meghirdető tanszék(csoport) Felelős oktató:
A tárgy neve Meghirdető tanszék(csoport) Felelős oktató: ELEKTROMÁGNESSÉG ÉS RELATIVITÁSELMÉLET SZTE TTK Elméleti Fizikai Tanszék Dr. Varga Zsuzsa Kredit 2 Heti óraszám 2 típus Számonkérés Teljesíthetőség
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
A speciális relativitáselmélet geometriai bemutatása, Sander Bais Very Special Relativity c. könyve alapján
A speciális relativitáselmélet geometriai bemutatása, Sander Bais Very Special Relativity c. könyve alapján Bokor Nándor, BME, 2013. Posztulátumok: 1. A fénysebességet minden inerciarendszerben minden
Speciális relativitás
Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
KOORDINÁTA-GEOMETRIA
XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 10. Elektrooptika, nemlineáris optika, kvantumoptika, lézerek Cserti József, jegyzet, ELTE, 2007. Az elektrooptika, a nemlineáris optikai és az
IKERPARADOXON VIDEÓÜZENETTEL Bokor Nándor, 2016
IKERPARADOXON VIDEÓÜZENETTEL Bokor Nándor, 016 Hosszú űrkirándulásra készül egy négytagú család: Anya, Apa és a 10 éves ikrek, Adorján és Bálint. 016-ban indulnak, és éppen a 044-es nyári olimpiára szeretnének
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
Modellek és változásaik a fizikában V. A XX. Század fizikája Albert Einstein
Modellek és változásaik a fizikában V. A XX. Század fizikája Albert Einstein Albert Einstein (1879-1955) "A kérdés, ami néha elbizonytalanít: én vagyok őrült, vagy mindenki más?" "Csak két dolog végtelen.
A relativitáselmélet világképe
v 0.9 Oktatási célra szabadon terjeszthető A fizika frontvonala a 19. szd-ban 1 Bevezető A fizika frontvonala a 19. szd-ban 2 néhány gondolata 3 Előzmények: a gravitáció okának keresése Előzmények: a nemeuklideszi
ERŐ-E A GRAVITÁCIÓ? 1. példa:
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási r rendszer, ahol érvényes Newton első törvénye ( F e = 0 " a r = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
A két megközelítés ellentéte ugyanakkor éppen a fizikai realitás fogalmában, értelmezésében tér el egymástól. " # $ %
Kedves Laci és Péter! Köszönöm a vitához való hozzászólásotokat. következetesen és logikusan jeleníti meg a tárgynak - az óraparadoxonnak és ezzel egyben a relativitás elméletének mint olyannak - azt a
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Mozgásleírás különböző vonatkoztatási rendszerekből. Mozgásleírás egymáshoz képest mozgó inerciarendszerekből
TÓTH A:Mechanika/3 (kibővített óravázlat) 1 Mozgásleírás különböző vonatkoztatási rendszerekből Egy test mozgásának leírása általában úgy történik, hogy annak mindenkori helyzetét egy többé-kevésbé önkényesen
MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.
EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
RELATIVITÁSELMÉLET. bevezető
RELATIVITÁSELMÉLET bevezető Einstein példája: a pálya relativitása Mozgó vonatból elejtünk egy követ, az állomásról is figyeljük Mozgó megfigyelő (vonat): Szabadesés Egyenes pálya Álló megfigyelő (állomás):
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 3. Fényelhajlás (Diffrakció) Cserti József, jegyzet, ELTE, 2007. Akadályok között elhaladó hullámok továbbterjedése nem azonos a geometriai árnyékkal.
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
1. A gyorsulás Kísérlet: Eszközök Számítsa ki
1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse
[ ]dx 2 # [ 1 # h( z,t)
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
A klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Lin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
Értékelési útmutató az emelt szint írásbeli feladatsorhoz I.
Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. 1. C. B 3. B 4. C 5. B 6. A 7. D 8. D 9. A 10. C 11. C 1. A 13. C 14. B 15. B 16. B 17. D 18. B 19. C 0. B I. RÉSZ Összesen 0 pont 1 1. téma
OSZTÁLYOZÓ VIZSGA TÉMAKÖREI
OSZTÁLYOZÓ VIZSGA TÉMAKÖREI Az anyag néhány tulajdonsága, kölcsönhatások Fizika - 7. évfolyam 1. Az anyag belső szerkezete légnemű, folyékony és szilárd halmazállapotban 2. A testek mérhető tulajdonságai
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Magfizika szeminárium
Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Pere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?