A speciális relativitáselmélet alapjai
|
|
- Viktor Balázs
- 10 évvel ezelőtt
- Látták:
Átírás
1 A speciális relativitáselmélet alapjai A XIX-XX. századforduló táján, amikor a mechanika és az elektromágnességtan alapvető törvényeit már jól ismerték, a fizikát sokan befejezett tudománynak gondolták. Késöbb, lassan olyan új tapasztalatok halmozódtak fel, amelyek fokozatosan megingatták ezt a szemléletet. Ezek a problematikus tények a fizika 2 fő területén alapvető változásokhoz vezettek. Az egyik ilyen változás volt a speciális relativitáselmélet létrejötte. Ennek kifejlödését alapvetően a fény tulajdonságának alaposabb megismerése, a fény sebességének nem végtelen volta segítette elő. A speciális relativitáselmélet elválaszthatatlan attól az alapvető kérdéstől, hogy hogyan írhatók le a fizikai jelenségek különböző vonatkoztatási rendszerekből. A másik felmerült megoldatlan probléma a feketetestek mért sugárzási spektrumának szignifikáns eltérése az elméletileg számított értékektől. Ennek a diszkrepanciának a megfejtése vezetett el a kvantummechanika alaptörvényinek megfogamazásához. A klasszikus mechanika relativitási elve Egy test mozgásának leírása úgy történik, hogy annak mindenkori helyzetét egy önkényesen választott rendszerhez, egy ún. vonatkoztatási rendszerhez viszonyítva adjuk meg. Belátható, hogy ha ugyanazt a testet két különböző, egymáshoz képest mozgó vonatkoztatási rendszerből figyeljük meg, akkor a mozgását jellemző adatok egy részét eltérőnek találjuk. Felmerül a kérdés, hogy az adatok közötti összefüggéseket megadó fizikai törvények is különbözőek-e a különböző vonatkoztatási rendszerekben. Tekintsük a vonatkoztatási rendszerek egy speciális fajtájával, amelyekben érvényes a Newton I. axiómája, vagyis teljesül az az állítás, hogy a magukra hagyott, más testekkel kölcsönhatásban nem álló testek mozgásállapota nem változik meg. Az ilyen rendszereket inerciarendszereknek nevezzük. A tapasztalat szerint egy inerciarendszerhez képest állandó sebességgel mozgó bármely másik rendszer is inerciarendszer, vagyis az inerciarendszerek egymáshoz képest állandó sebességgel mozoghatnak. A különböző inerciarendszerekből nézve a mechanikai jelenségek ugyanúgy zajlanak le, és a különböző rendszerekben a mechanika törvényei azonos matematikai alakban érvényesek. Ez a tapasztalatok alapján elfogadott alaptétel a klasszikus mechanika relativitási elve. A relativitás elvének fontos következménye, hogy az inerciarendszerek a mechanikai folyamatok leírása szempontjából egyenértékűek, vagyis mechanikai kísérletek segítségével nem lehet köztük különbséget tenni. Ezért egy abszolút, mechanikai szempontból kitüntetett inerciarendszert sem lehet találni.
2 Galilei-transzformáció Egy adott P pont mindenkori helyzetét a vesszötlen K koordinátarendszerből a mindenkori időtől függő r(t), a K' rendszerből pedig a mindenkori r (t) helyvektorral adhatjuk meg feltéve, hogy létezik egy abszolut idő, amely minkét rendszerben ugyanaz. Galilei feltételezte, ill. kisérletileg probálta bizonyítani, hogy a fény sebessége végtelen nagy. Ez azt jelenti, hogy bármely rendszerben az idő ugyanugy jár, azaz az órákat össze lehet szinkronizálni a végtelen sebességgel terjedő fény segítségével. A transzformációs képleteket az egyszerűség kedvéért a két koordinátarendszer speciális választása esetén adjuk meg. Legyen a két rendszer x tengelye közös, és a K' rendszer a K hoz képest v sebességgel mozog az x tengely mentén annak pozitív irányában, továbbá az időt mindkét rendszerben attól a pillanattól mérik, amikor a két origó azonos helyen volt. Ekkor: x' = x - v t y' = y z' = z Ezek az összefüggések adják a klasszikus mechanika Galilei-féle transzformációját. Az időt természetesen nem kell transzformálni. Egyszerüen felírható az inverz transzformáció is: x = x + v t y = y z = z A fény Több kisérlet azt bizonyította Galilei utáni időben, hogy a fénysebesség nem végtelen. Az egyik legkorábbi értékelhető mérést Ole Römer dán fizikus végezte 1676-ban. A Jupiter egyik holdját figyelte meg, és eltéréseket vett észre a keringési periódusban. Römer az eltérésekből km/s sebességünek becsülte. Ma a fénysebesség elfogadott értéke m/s. A fény terjedése kapcsán úgy gondolták, hogy létezik egy sajátos közeg, az ún. éter, amely mindent kitölt, és az elektromágneses jelenségek ennek a közegnek a mechanikai jellegű állapotváltozásaival függnek össze hasonlóan a hanghullámokhoz. Természetesnek tűnt, hogy a Maxwell-egyenletek ehhez az éterhez rögzített koordinátarendszerben érvényesek, és hogy a fény, mint elektromágneses hullám nem más, mint egy ebben a közegben keltett zavar tovaterjedése, ami teljesen analóg a mechanikai hullámokkal vagy a
3 hanghullámmal. Ennek megfelelően a fény terjedési sebességét is az éterhez viszonyított sebességnek tekintették. Adodott a feladat, hogy meg kell határozni a Föld mozgását az éterhez viszonyítva. Ezen kisérletek között a legismertebb a Michelson-Morley féle fény interferencia kisérlet. Az 1880-as években Michelson és Morley végzett el egy több kisérletből álló kísérletsorozatot abból a célból, hogy meghatározzák a Földnek az éterhez viszonyított sebességét. Egy monokromatikus fénysugarat félig áteresztő tükörrel kettéválasztottak (lásd az ábrán A és B tükör), majd tükrök segítségével ismét egyesítettek. Az ernyőn keletkezett interferenciaképet vizsgálták miközben elforgatták 90 fokkal az interferométert. Feltéve, hogy a Föld egy adott sebességgel mozog az éterhez képest, az interferencia képnek változnia kellett. A kisérlet azt mutatta, hogy nem változott az interferenciakép. A kisérletet számos alkalommal megismételték különböző idöszakokban, különböző méretü berendezéssel, de az eredmény mindig negative volt, azaz az interferenciakép nem változott. Ezt a negative eredményt csak úgy lehet megmagyarázni, hogy elvetjük az éter létezését, azaz azt, hogy van egy kitüntetett inerciarendszer. Igy a mechanikában megismert relativitás elvét kiterjesztették minden fizikai folyamatra. Ez azt is jelenti, hogy minden inerciarendszer egyenrangu és a fény sebessége minden inercia rendszerben ugyanaz az állandó sebesség. Ez egy új helyzetet idézett elő, melynek törvényeit matematikai formulákba kellett megfogalmazni. A speciális relativitáselmélet alappillérei A XIX-XX. századforduló éveiben többen is foglalkoztak (Lorentz, Poincaré, Einstein) a törvények meghatározásával, de Einstein volt az aki általános fizikai elmélet formájába öntötte a megfogalmazott követelményeket. Ő vette észre, hogy a tapasztalati tényekkel egyező elmélet két alapvető fizikai elvből levezethető: 1. A fizikai folyamatokat leíró törvények minden inerciarendszerben azonos matematikai alakban érvényesek. 2. A vákuumban terjedő fény sebessége minden inerciarendszerben azonos, a korábban emlitett univerzális fizikai állandó. Ebből a két alapelvből levezethető a Lorentz-transzformáció. Az így létrejött, a fenti két elvvel összhangban álló fizikai elmélet a speciális relativitáselmélet. Lorentz-transzformáció A fenti fizikai elvekkel összhangban álló Lorentz-transzformáció egy egyszerü levezetése a következő.tegyük fel, hogy abban a pillanatban, két
4 rendszer origója egybeesik, egy fényjelet indítunk el ebből a pontból az egybeesó x tengelyek irányába. A két rendszer egymáshoz viszonyított sebessége v nagyságü és x irányú. A 2. alapelv szerint a fény minden irányban azonos c sebességgel terjed mindkét koordinátarendszerben, és az a pont az x tengelyeken, amelyeket a fényjel t illetve t' idő alatt elért, a két koordinátarendszerben x ill x koordinátákkal irható le. Mi itt most nem térünk ki rá de bizonyítható, hogy az y és z koordináták nem transzformálodnak. A levezetéshez induljunk ki abból, hogy a transzfomációs képleteken hasonlóak a Galilei transzformációhoz és csak kisebb változtatást kell csinálni. Irjuk fel a x irányú transzformációs képletet és az inverz képletet, majd módósitsuk a a matematikai képleteket egy γ faktorral a következő módon szem elött tartva az 1. alappillért és feltételezve, hogy az időt is kell transzformálni: x' = γ (x v t) x = γ (x + v t ) Mivel fénysugár mozgásáról van szó, igy a képleteink a következőképpen módosulnak: ct' = γ (ct v t) ct = γ (ct + v t ) 2 egyenletünk van 3 ismeretlennel (t, t és γ), de ha felcseréljük az egyik egyenlet jobb és bal oldalát majd elosszuk egymással a 2 egyenletet, akkor t és t kiesik, γ-ra a következő kifejezést kapjuk: Igy megkaptuk a térkoordináták transzformációk képleteit. Hátravan még az idótranszformáció meghatározása. Ez kis számolás után megkapható, ha az x' = γ (x v t) egyemlet jobb oldalát beírjuk a második egyenlet x helyére és egy kicsit átalakítjuk az egyenletet: ill. az invert képlet: t' = γ (t (v/c 2 ) x) t = γ (t + (v/c 2 ) x ).
5 Összefoglalva: ahol x' = γ (x v t) y = y z = z t' = γ (t (v/c 2 ) x). Az inverz transzformáció: x = γ (x + v t ) y = y z = z t = γ (t + (v/c 2 ) x ). A Lorentz-transzformáció egy fontos tulajdonsága, hogy nincs ellentmondásban az évszázadokon át használt és helyesnek talált Galileitranszformációval. Az összefüggésekből látható ugyanis, hogy a fénysebességnél nagyságrendekkel kisebb sebességeknél visszakapjuk a Galileitranszformációt. A mechanika klasszikus törvényeitől tehát csak akkor várható eltérés, ha a két vonatkoztatási rendszer relatív sebessége összemérhető a c vákuumbeli fénysebességgel. Ugyancsak fontos tény, hogy a Lorentz-transzformáció a négyzetgyök alatti mennyiség negativ, igy fizikailag értelmetlenné válik, vagyis a vákuumbeli c fénysebesség határsebesség szerepét játssza. A tapasztalat ezt a következtetést eddig nem cáfolta meg. Ez igaz nem vákuumbeli folyamatok esetében is. A közegbeli fénysebesség itt is egy határsebesség. Egy ilyen ismert effektus a Cserenkov sugárzás. Ha két közeg határán egy töltött részecske átlép a másikba olyan sebességgel, ami nagyobb az új közegbeli fénysebességnél, akkor a természet úgy oldja meg ezt a problémát, hogy azonnal lelassítja ezt a töltött részecskét. Az viszont ismert, ha egy töltés gyorsul (lassul), akkor sugároz. Ebben az esetben is ez történik, ami kék szinü sugárzás. A sugárzás neve: Cserenkov sugárzás. A BME Tanreaktorában ez a Cserenkov sugárzás megtekinthető. Az alábbi kép ezt mutatja.
6 Távolság kontrakció és időtartam dilatáció Egy tárgy hosszának mérése során a tárgyhoz képest nyugvó, és ahhoz képest mozgó megfigyelő esetében más és más lesz. Tegyük fel, hogy a megfigyelő a K rendszerből méri egy az x tengellyel párhuzamos rúd hosszát, amely hozzá képest v sebességgel mozog az tengely mentén. Mivel a rúd a K' rendszerben nyugalomban van, a rúd x' hosszát itt különösebb nehézség nélkül megkaphatjuk két végpontjának x 1 és x 2 koordinátáiból Ha a rúd hosszát a K rendszerből akarjuk megmérni, amelyhez képest a rúd mozog, akkor ugyancsak a végpontjainak x 1 és x 2 koordinátáit kell meghatároznunk a K rendszerben egyidejüleg. A lényeg, hogy egyidejüleg. Az egyidejűleg mért koordinátákból a K rendszerben mért x hossz aalakban kapható. A két rendszerben mért koordináták kapcsolatát a Lorentztranszformáció adja meg, ami a t 1 = t 2 = t egyidejüség felhasználásával az alábbi alakot ölti. x 1 ' = γ (x 1 v t) x 2 ' = γ (x 2 v t)
7 Kivonva egymásból a két egyenletet kapjuk: x 1 ' x 2 = γ (x 1 x 2 ) Mivel γ egynél nagyobb szám, ezért a K rendszerben (ahol a megfigyelő van) úgy látja, monha megrövüdlne a hozzá képest mozgó tárgy. Ez azt jelenti, hogy pl egy méterrúd hozzám képest v sebességgel párhuzamosan a méterrúddal mozog, akkor én ezt rövidebbnek látom. A fenti eredményhez először Lorentz jutott el, ezért azt a tényt, hogy a mozgó megfigyelő kisebb hosszt mér Lorentzkontrakciónak vagy hosszúság kontrakciónak nevezik. Vizsgáljuk meg az időintervallum transzformációját. Tegyük fel, hogy a hozzánk képest v sebességgel mozgó K rendszerben azonos helyen, a rendszerhez képest nyugalomban lévő pontban, azaz ugyanabban a pontban lejátszódik két esemény. A két esemény között eltelt idő (t 2 t 1 ). Az események helyére ugyanitt érvényes, hogy x 1 = x 2 = x. Ugyanezt a két eseményt a K rendszerből megfigyelve azok időpontját t 1 -nek illetve t 2 -nek találjuk, így a köztük eltelt idő (t 2 t 1 ). A két időtartam kapcsolatának kiderítése érdekében fejezzük ki a vesszőtlen időtartamokat a vesszősőkkel a Lorentztranszformáció segítségével és kapjuk: t 1 = γ (t 1 t 2 = γ (t 2 (v/c 2 ) x ) (v/c 2 ) x ). Kivonva egymásból a 2 egyenletet kapjuk: t 1 t 2 = γ (t 1 t 2 ) Ebből az látszik, hogy az eseményekhez képest mozgó rendszerben kapott időtartam a hosszabb. Ez az idődilatáció amely szintén csak a fénysebességhez képest nem elhanyagolható sebességeknél számottevő, természetesen kis sebességek esetén is létezik. Az időtartamokra vonatkozó összefüggések egyik kísérleti bizonyítékát szolgáltatják a Föld felszínére érkező részecskék, a müonok vagy mü mezonok. Ezek kb. 10 km magasságban keletkeznek atomi ütközések során, és a fénysebességhez közeli sebességgel haladnak a Föld felszine felé. A laboratóriumban végzett mérések szerint a müonok átlagosan 0 2 x 10-6 s idő eltelte után elbomlanak. A klasszikus elgondolás szerint fénysebességgel mozogva a müonok keletkezésük után átlagosan maximálisan kb. 600 métert tudnak megtenni, majd elbomlanak. A Földfelszín eléréséhez szükséges távolságnak, 10 km-t nem képesek megtenni. A tapasztalat ezzel szemben az, hogy a müonok ennek ellenére mégis leérnek a Föld felszínére lehet detektálni öket. A fenti számításnál használt 0 időtartam a müonhoz képest nyugvó rendszerben mért nyugalmi élettartam, a számítást pedig a müonhoz képest nagy
8 sebességgel mozgó rendszerben végeztük és a speciális relativitás elmélet ismeretében ez hibás gondolkodás. A Földhöz képest mozgó müont vizsgálva a számításnál természetesen a transzformált élettartamot kell használnunk. Ha a müon sebessége w = 0.999c, akkor a transzformált időtartaltalom kb s, és így a befutott út kb. 10 km lesz, a tapasztalattal egyezésben. Ezeket a részecskéket tudjuk detektálni a Föld felszinén. Természetesen, ha a problémát a müonnal együttmozgó rendszerből vizsgáljuk, akkor is arra a végeredményre kell jutnunk, hogy a müon elérheti a Föld felszínét. Ekkor az élettartam a nyugalmi érték, a befutott út pedig a klasszikusan is kapott 600 m lesz. Ellentmondás azonban nincs, mert most a befutandó út nem az s 0 = 10 km nyugalmi hossz, mivel a müonhoz képest mozgó távolságról van szó. Vagyis a müon eszerint a számolás szerint is leérhet a Föld felszínére: a fizikai folyamat leírása szempontjából a két inerciarendszer a várakozásnak megfelelően egyenértékű. Első hallásra azt hiheti az ember, hogy ennek az effektusnak semmi jelentősége a mindennapi életünkben. Korunk egyik új tájékozódást segítő eszköze a GPS (Global Positioning System) az egész világon használható műholdas helymeghatározó rendszer. Egy ilyen pontos eszköz elkészítéséhez figyelembe kell venni az idődilatációt. Az egész rendszer órák használatából áll és ezek az órák egymáshoz képest mozognak. A műholdon lévő óra mozog a vevő órájához képest, az idő tehát megnyúlik. Ezért az idődilatációt kompenzáló korrigáló rendszert kell beépíteni GPS-be. A sebesség-transzformáció Tegyük fel azt a kérdést, hogyha egy vonatban egy utas u sebességgel mozog a vonathoz képest, és a vonat a Föld felszinéhez képest w sebességgel mozog, akkor milyen sebességünek látjuk az utast a földfelszinen állva? A klasszikus fizika szerint v = w + u az utas sebessége, de a speciális relativitás elmélet mást mond. Irjuk fel a Lorentz traszformáció ide vonatkozó képleteit. Tekintsük a vonat mozgásának irányát az x tengelynek. Akkor felírható: dx = γ (dx + w dt ) és dt = γ (dt + (w/c 2 ) dx ) differenciális alak, ahol a d betü a kis mennyiségeket szimbolizálja. A 2 egyenletet elosztva egymással, majd a jobboldali tört számlálóját és nevezőjét elosztva dt -mal és végezetül figyelembevéve, v = (dx/dt) ill. u = (dx /dt ) ami az utas sebessége a vonathoz képest, kapjuk a sebességösszeadás képletét:
9 Látható, hogy a fénysebességhez képest nagyon kis sebességek esetében a nevező közelít az egyhez és ebben az esetben visszakapjuk a klasszikus sebesség összeadás képletet. Egy másik érdekes helyzet, amikor nem egy utas, hanem a fénysugár mozgását vizsgáljuk. Ekkor az u = c. Ezt visszahelyettesítve kapjuk, hogy v = c. Ez azt is jelenti, hogy képletünk tudja a relativitáselméletet, azaz a fény sebessége minden inercia rendszerben ugyanaz az állandó. A tömeg és az impulzus A Newton féle klasszikus mechanikai törvények feltételezik, hogy a tömeg nagysága független a tömeg sebességétöl. Newton zsenialitása, hogy a közismert erő egyenlö tömeg szorozva gyorsulás (F = ma) törvényt eredetileg nem így írta fel, hanem erö egyenlő az impulzus (p = mv) idő szerinti deriváltjával (F = dp/dt). Ha feltételezzük, hogy a tömeg állandó, akkor kiemelhető a deriválás elé és a sebesség időderiváltja a gyorsulás és azért használhatjuk a F=ma képletet. Walter Kaumann ( ) eletronokat gyorsított fel nagy sebességre és a mozgásukat megfigyelve azt tapasztalta, hogy a mechanika régi törvényei hamis leírást adnak. Ebből az eredményböl kiindulva megállapították, hogy a w sebességgel mozgó mért m(w) tömeg és a testhez képest nyugvó rendszerben mért m 0 nyugalmi tömeg között az összefüggés érvényes. Vagyis a tömeg nem invariáns, a koordinátarendszertől függő mennyiség. Egy test tömegét mindig nagyobbnak találjuk, ha hozzánk képest mozog, mint ha hozzánk képest nyugalomban van. Erre a relativisztikus tömegnövekedésre is érvényes azonban, hogy csak a fénysebességet megközelítő sebességeknél számottevő. Ezen tömeg transzformáció után már igaz a relativisztikus impulzusnak a klasszikus impulzussal formailag azonos p=m(w)w definíciója. Az energia Ha felgyorsítunk egy tömeget egy adott sebességre akkor a tömege megnövekedik. Számítsuk ki, hogy mennyi munkát kell végezni ehhez. A munkavégzést az erő szorozva uttal összefüggés segítségével kaphatjuk meg. Az erőt a impulzus időderiváltjából határozhatjuk meg (dp/dt), amelyet integráljuk
10 az ut szerint a kezdő és végpont között. A tömegpontra ható F erő az 1 pontból a 2 pontba való átmenet során amikoris nulla kezdősebességről felgyorsítjuk v végsebességre egy m 0 nyugalmi tömegü testet módon számítható ki. Felhasználva a matematikai azonosságot a határozott integrál meghatározható. Értéke:. Baloldalon az található, hogy egy m 0 nyugalmi tömegü testet mennyi energia befektetésével tudjuk nulla sebességről v sebességre felgyorsítani. Ha eltekintünk a c 2 faktortól, akkor jobboldalon az a tömegkülönbség van, ami létrejött azáltal, hogy felgyorsítottuk a testet. Vagyis ez az egyenlet azt fejezi ki, hogy az adott E energia mekkora tömeget tud létrehozni. Konkrétan a jól ismert alakban: E = mc 2 Eszerint az energia a test tömegével van egyértelmű kapcsolatban. Ebből következik, hogy m tömeg egyben mc 2 energiatartalmat jelent, és fordítva, minden E energiatartalom E/c 2 tömeggel jár együtt. Másrészt egy rendszerben az energia és a tömeg változása mindig együtt, egymással arányosan történik. A v << c esetben az mc 2 kifejezést v 2 /c 2 szerint sorbafejtve, elhanyagolva a magasabb rendü tagokat megkapjuk a klasszikus mozgási energia kifejezést. Abból, hogy a tömeg és az energia egymással arányos, következik, hogy a
11 relativitás- elméletben a tömegmegmaradás- és az energia-megmaradás törvénye nem két különálló törvény: egyik a másikból következik, és lényegében mindkettő ugyanazt állítja. A mindennapi életünkben fontos szerepet játszik ez az összefüggés, gondoljunk csak a nukleáris erőmüvekre, ahol tömeget alakítanak át villamos energiává. Hazánkban jelenleg közel fele felhaszmált energiát ilyen kontrolált maghasadásos reakción alapuló erőműblokkokban állítjak elő Pakson.
A speciális relativitáselmélet alapjai
A speciális relativitáselmélet alapjai A XIX-XX. századforduló táján, amikor a mechanika és az elektromágnességtan alapvető törvényeit már jól ismerték, a fizikát sokan befejezett tudománynak gondolták.
Speciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
A modern fizika születése
A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,
Speciális relativitás
Bevezetés a modern fizika fejezeteibe 3. (a) Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2015. január 11.. 1 Egy egyszerű probléma (1) A K nyugvó vonatkoztatási rendszerben tekintsünk
Speciális relativitás
Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja
A modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
Mozgásleírás különböző vonatkoztatási rendszerekből. Mozgásleírás egymáshoz képest mozgó inerciarendszerekből
TÓTH A:Mechanika/3 (kibővített óravázlat) 1 Mozgásleírás különböző vonatkoztatási rendszerekből Egy test mozgásának leírása általában úgy történik, hogy annak mindenkori helyzetét egy többé-kevésbé önkényesen
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Typotex Kiadó. Záró megjegyzések
Záró megjegyzések Az olvasó esetleg hiányolhatja az éter szót, amely eddig a pillanatig egyáltalán nem fordult elő. Ez a mulasztás tudatos megfontoláson alapul: Ugyanazért nem kerítettünk szót az éterre,
(Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban?
Próba vizsgakérdések (A téridő fizikájától a tér és idő metafizikájáig) (Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban? Mit
SZE, Fizika és Kémia Tsz. v 1.0
Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Newton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Relativisztikus elektrodinamika röviden
Relativisztikus elektrodinamika röviden További olvasnivaló a kiadó kínálatából: Patkós András: Bevezetés a kvantumfizikába: 6 előadás Feynman modorában Bódizs Dénes: Atommagsugárzások méréstechnikái Frei
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 11. Bevezetés a speciális relativitáselméletbe I. Tér, Idő, Téridő Cserti József, jegyzet, ELTE, 2007 (Dávid Gyula jegyzete alapján). Maxwell-egyenletek
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
SZE, Fizika és Kémia Tsz. v 1.0
Fizikatörténet A speciális relativitáselmélet története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Mítoszok a relativitáselméletről: Bevezető Elterjedt mítosz: 1905-ben A. Einstein fedezi fel egymaga.
Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.
Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test
A TételWiki wikiből 1 / 5
1 / 5 A TételWiki wikiből 1 Vonatkoztatási rendszer 2 Galilei-transzformáció 3 A Lorentz-transzformáció 4 A Michelson-Morley kísérlet 5 A Lorentz transzformációk következményei 5.1 Az inerciarendszerek
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
2.3 Newton törvények, mozgás lejtőn, pontrendszerek
Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat
Fizika példák a döntőben
Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Ütközések elemzése energia-impulzus diagramokkal II. A relativisztikus rakéta
Ütközések elemzése energia-impulzus diagramokkal II. A relativisztikus rakéta Bokor Nándor Budapesti Műszaki és Gazdaságtudományi Egyetem, Fizika Tanszék 1111 Budapest, Budafoki u. 8. Ebben a cikkben olyan
A gravitáció összetett erőtér
A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható
A relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
A relativitáselmélet alapjai
A relativitáselmélet alapjai További olvasnivaló a kiadó kínálatából: Bódizs Dénes: Atommagsugárzások méréstechnikái Frei Zsolt Patkós András: Inflációs kozmológia Geszti Tamás: Kvantummechanika John D.
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Theory hungarian (Hungary)
Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető
Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Speciális relativitáselmélet. Ami fontos, az abszolút.
Speciális relativitáselmélet Ami fontos, az abszolút. Vonatkoztatási rendszer A fizikai mennyiségek értéke, iránya majdnem mindig attól függ, hogy honnan nézzük, vagyis függenek a vonatkoztatási rendszertől.
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Modellek és változásaik a fizikában V. A XX. Század fizikája Albert Einstein
Modellek és változásaik a fizikában V. A XX. Század fizikája Albert Einstein Albert Einstein (1879-1955) "A kérdés, ami néha elbizonytalanít: én vagyok őrült, vagy mindenki más?" "Csak két dolog végtelen.
Az éter (Aetherorether) A Michelson-Morley-kísérlet
Az éter (Aetherorether) A Michelson-Morley-kísérlet Futó Bálint Modern Fizikai Kísérletek Szeminárium Fizika a XIX. században Mechanika Optika Elektrodin. Abszolút tér és idő Young és mások Az éter a medium
A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /
Newton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
A fény korpuszkuláris jellegét tükröző fizikai jelenségek
A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
Az időmérés pontossága fontos, mert a távolságmérést erre alapozzuk.
A GPS-nél fellépő relativisztikus effektusok. 24 műhold (6 pályasíkban 4-4) T m = 12 óra Az Egyenlítőn álló vevőkészülék: r a = 6370km 1 Az időmérés pontossága fontos, mert a távolságmérést erre alapozzuk.
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális
[ ]dx 2 # [ 1 # h( z,t)
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
Relativisztikus paradoxonok
Relativisztikus paradoxonok Az atomoktól a csillagokig Dávid Gyula 2009. 01. 15. Maxwell, A FLOGISZTON AZ ÁRAM NEM FOLYIK Huba Tamás Ohm fellegvára Kovács AMPERE TÉVEDETT! ELEKTRODINAMIKA Gay-Lussac was
Numerikus integrálás
Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.
Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.
1 A felcsapódó kavicsról Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1. ábra forrása: [ 1 ] Ez azért is érdekes, mert autóvezetés közben már többször is eszünkbe
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
A klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
TÉNYLEG EINSTEIN FEDEZTE FEL, HOGY E = mc 2?
TÉNYLEG EINSTEIN FEDEZTE FEL, HOGY E = mc 2? Ki a szerzôje a híres egyenletnek? Nem is olyan egyszerû a kérdés, mint gondolnánk. Maxwell tôl von Laueig egész sor 20. századbeli fizikusról tételezték fel,
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?
1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
Értékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
Fizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
Tömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel