Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12"

Átírás

1 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok / 12

2 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs hullámok / 12

3 Mik is azok a gravitációs hullámok? Albert Einstein - Általános relativitás elmélete - a gravitáció új elmélete - háttérfüggetlen elmélet Dr. Berta Miklós: Gravitációs hullámok / 12

4 Mik is azok a gravitációs hullámok? Albert Einstein - Általános relativitás elmélete - a gravitáció új elmélete - háttérfüggetlen elmélet Einstein-egyenletek: Térgörbület Energiasűrűség R µν 1 2 g µν R µν g µν + g µν Λ = 8πG c 4 T µν Dr. Berta Miklós: Gravitációs hullámok / 12

5 Mik is azok a gravitációs hullámok? Albert Einstein - Általános relativitás elmélete - a gravitáció új elmélete - háttérfüggetlen elmélet Einstein-egyenletek: Térgörbület Energiasűrűség R µν 1 2 g µν R µν g µν + g µν Λ = 8πG c 4 T µν Forrás: CalTech - LIGO Dr. Berta Miklós: Gravitációs hullámok / 12

6 Albert Einstein kimutatja, hogy a gravitáció új elméletéből következik a gravitációs hullámok létezése - számításai szerint ezek speciális gravitációs zavarok által okozott, a téridő görbületében bekövetkező nagyon kismértékű fodrozódások, amelyek fénysebességgel terjednek Dr. Berta Miklós: Gravitációs hullámok / 12

7 Albert Einstein kimutatja, hogy a gravitáció új elméletéből következik a gravitációs hullámok létezése - számításai szerint ezek speciális gravitációs zavarok által okozott, a téridő görbületében bekövetkező nagyon kismértékű fodrozódások, amelyek fénysebességgel terjednek Minden aszimmetrikus tömegeloszlású, gyorsuló mozgást végző fizikai rendszer gravitációs hullámok forrása! Dr. Berta Miklós: Gravitációs hullámok / 12

8 Albert Einstein kimutatja, hogy a gravitáció új elméletéből következik a gravitációs hullámok létezése - számításai szerint ezek speciális gravitációs zavarok által okozott, a téridő görbületében bekövetkező nagyon kismértékű fodrozódások, amelyek fénysebességgel terjednek Minden aszimmetrikus tömegeloszlású, gyorsuló mozgást végző fizikai rendszer gravitációs hullámok forrása! A Földön is eséllyel mérhető gravitációs hullámok forrásai csak nagyon nagy gyorsulással mozgó, nagyon nagy sűrűségű tömegek lehetnek! (fekete lyukak, neutroncsillagok, Ősrobbanás) Dr. Berta Miklós: Gravitációs hullámok / 12

9 Albert Einstein kimutatja, hogy a gravitáció új elméletéből következik a gravitációs hullámok létezése - számításai szerint ezek speciális gravitációs zavarok által okozott, a téridő görbületében bekövetkező nagyon kismértékű fodrozódások, amelyek fénysebességgel terjednek Minden aszimmetrikus tömegeloszlású, gyorsuló mozgást végző fizikai rendszer gravitációs hullámok forrása! A Földön is eséllyel mérhető gravitációs hullámok forrásai csak nagyon nagy gyorsulással mozgó, nagyon nagy sűrűségű tömegek lehetnek! (fekete lyukak, neutroncsillagok, Ősrobbanás) Az egyes források spektrálisan jól elkülönülnek! Dr. Berta Miklós: Gravitációs hullámok / 12

10 Első észlelési próbálkozás - Weber két henger egymástól 1000 km távolságban (koincidencia) Forrás: MIT Dr. Berta Miklós: Gravitációs hullámok / 12

11 Első észlelési próbálkozás - Weber két henger egymástól 1000 km távolságban (koincidencia) a hengerek méretei: d = 66 cm, l = 153 cm, m = 1400 kg, rezonancia frekvencia f 0 = 1660 Hz Forrás: MIT Dr. Berta Miklós: Gravitációs hullámok / 12

12 Első észlelési próbálkozás - Weber két henger egymástól 1000 km távolságban (koincidencia) a hengerek méretei: d = 66 cm, l = 153 cm, m = 1400 kg, rezonancia frekvencia f 0 = 1660 Hz a galaxisunk kettős neutroncsillagai az f 0 frekvencia környékén bocsátanak ki gravitációs hullámokat Einstein elmélete szerint Forrás: MIT Dr. Berta Miklós: Gravitációs hullámok / 12

13 Első észlelési próbálkozás - Weber két henger egymástól 1000 km távolságban (koincidencia) a hengerek méretei: d = 66 cm, l = 153 cm, m = 1400 kg, rezonancia frekvencia f 0 = 1660 Hz a galaxisunk kettős neutroncsillagai az f 0 frekvencia környékén bocsátanak ki gravitációs hullámokat Einstein elmélete szerint a henger kerületén érzékeny piezoérzékelők voltak elhelyezve Forrás: MIT Dr. Berta Miklós: Gravitációs hullámok / 12

14 Első észlelési próbálkozás - Weber két henger egymástól 1000 km távolságban (koincidencia) a hengerek méretei: d = 66 cm, l = 153 cm, m = 1400 kg, rezonancia frekvencia f 0 = 1660 Hz a galaxisunk kettős neutroncsillagai az f 0 frekvencia környékén bocsátanak ki gravitációs hullámokat Einstein elmélete szerint a henger kerületén érzékeny piezoérzékelők voltak elhelyezve a kísérletsorozat nem mutatott ki gravitációs hullámokat, nem volt elég érzékeny Forrás: MIT Dr. Berta Miklós: Gravitációs hullámok / 12

15 Közvetett bizonyíték - Hulse, Taylor ben fizikai Nobel-díj PSR pulzár egy neutroncsillag kettős, amely egyik tagja periodikus rádiojelet sugároz egy keskeny csóvában Forrás: Wikipedia és Dr. Berta Miklós: Gravitációs hullámok / 12

16 Közvetett bizonyíték - Hulse, Taylor ben fizikai Nobel-díj PSR pulzár egy neutroncsillag kettős, amely egyik tagja periodikus rádiojelet sugároz egy keskeny csóvában a rendszer gravitációs hullámok kisugárzása miatt energiát veszít, ezért egyre közelebb kerülnek egymáshoz a tagok Forrás: Wikipedia és Dr. Berta Miklós: Gravitációs hullámok / 12

17 Közvetett bizonyíték - Hulse, Taylor ben fizikai Nobel-díj PSR pulzár egy neutroncsillag kettős, amely egyik tagja periodikus rádiojelet sugároz egy keskeny csóvában a rendszer gravitációs hullámok kisugárzása miatt energiát veszít, ezért egyre közelebb kerülnek egymáshoz a tagok a detektált csóvajelek között eltelt időnek nőnie kell Einstein elmélete szerint Forrás: Wikipedia és Dr. Berta Miklós: Gravitációs hullámok / 12

18 Közvetett bizonyíték - Hulse, Taylor ben fizikai Nobel-díj PSR pulzár egy neutroncsillag kettős, amely egyik tagja periodikus rádiojelet sugároz egy keskeny csóvában a rendszer gravitációs hullámok kisugárzása miatt energiát veszít, ezért egyre közelebb kerülnek egymáshoz a tagok a detektált csóvajelek között eltelt időnek nőnie kell Einstein elmélete szerint a mérést 20 éven keresztül végezték, összhang az elmélettel Forrás: Wikipedia és Dr. Berta Miklós: Gravitációs hullámok / 12

19 Közvetett bizonyíték - Hulse, Taylor ben fizikai Nobel-díj PSR pulzár egy neutroncsillag kettős, amely egyik tagja periodikus rádiojelet sugároz egy keskeny csóvában a rendszer gravitációs hullámok kisugárzása miatt energiát veszít, ezért egyre közelebb kerülnek egymáshoz a tagok a detektált csóvajelek között eltelt időnek nőnie kell Einstein elmélete szerint a mérést 20 éven keresztül végezték, összhang az elmélettel 1994-ben fizikai Nobel-díj a gravitációs hullámok közvetett kimutatásáért Forrás: Wikipedia és Dr. Berta Miklós: Gravitációs hullámok / 12

20 Hogyan deformálódik a téridő, ha gravitációs hullám halad rajta keresztül? egymásra merőleges irányokban a gravitációs hullám okozta deformációk előjele ellentétes a h = l L mennyiség az Einstein-egyenletek alapján kiszámolható, és nak adódik Dr. Berta Miklós: Gravitációs hullámok / 12

21 Nagyon kis távolságok mérése Michelson-Morley interferométer Michelson Morley, Forrás: CalTech - LIGO Dr. Berta Miklós: Gravitációs hullámok / 12

22 Nagyon kis távolságok mérése Michelson-Morley interferométer Michelson Morley, Forrás: CalTech - LIGO Lehet-e abszolút sötét a fotodetektoron, ha a két hullám ellenfázisban van, avagy mennyire nulla a nulla? Detektálási zaj!! Dr. Berta Miklós: Gravitációs hullámok / 12

23 Nagyon kis távolságok mérése Michelson-Morley interferométer Michelson Morley, Forrás: CalTech - LIGO Lehet-e abszolút sötét a fotodetektoron, ha a két hullám ellenfázisban van, avagy mennyire nulla a nulla? Detektálási zaj!! az N 0 időegység alatt detektált fotonok száma - Poisson-eloszlású véletlen mennyiség - N = N 0, N - ki nem küszöbölhető statisztikus zaj a mért jelen!! N N 0 = 1 N0 Dr. Berta Miklós: Gravitációs hullámok / 12

24 Nagyon kis távolságok mérése Michelson-Morley interferométer Michelson Morley, Forrás: CalTech - LIGO Lehet-e abszolút sötét a fotodetektoron, ha a két hullám ellenfázisban van, avagy mennyire nulla a nulla? Detektálási zaj!! az N 0 időegység alatt detektált fotonok száma - Poisson-eloszlású véletlen mennyiség - N = N 0, N - ki nem küszöbölhető statisztikus zaj a mért jelen!! N N 0 = 1 N0 a detektálási zaj limitálja legerősebben az interferométer érzékenységét (legkisebb, még a zaj felett kimutatható l L ) Dr. Berta Miklós: Gravitációs hullámok / 12

25 Nagyon kis távolságok mérése Michelson-Morley interferométer Michelson Morley, Forrás: CalTech - LIGO Lehet-e abszolút sötét a fotodetektoron, ha a két hullám ellenfázisban van, avagy mennyire nulla a nulla? Detektálási zaj!! az N 0 időegység alatt detektált fotonok száma - Poisson-eloszlású véletlen mennyiség - N = N 0, N - ki nem küszöbölhető statisztikus zaj a mért jelen!! N N 0 = 1 N0 a detektálási zaj limitálja legerősebben az interferométer érzékenységét (legkisebb, még a zaj felett kimutatható l L ) mw-os, µm-es lézer esetében egy m-es karú Michelson interferométer érzékenysége 10 6, ez messze elmarad a gravitációs hullámok detektálásához szükséges érzékenységtől Dr. Berta Miklós: Gravitációs hullámok / 12

26 aligo - Advanced Laser Interferometer Gravitational-Wave Observatory Forrás: CalTech - LIGO Dr. Berta Miklós: Gravitációs hullámok / 12

27 aligo - Advanced Laser Interferometer Gravitational-Wave Observatory Forrás: CalTech - LIGO lézerteljesítmény növelése, L eff növelése, kiszivárgó fényintenzitás visszanyerése stb. l L Dr. Berta Miklós: Gravitációs hullámok / 12

28 aligo - Advanced Laser Interferometer Gravitational-Wave Observatory Forrás: CalTech - LIGO lézerteljesítmény növelése, L eff növelése, kiszivárgó fényintenzitás visszanyerése stb. l L aktív szabályzás, vákuum - rendszer, szeizmikus leválasztás Dr. Berta Miklós: Gravitációs hullámok / 12

29 Az első észlelt esemény Két fekete lyuk összeolvadása 250 ezer modellezett eseménnyel való, számítógépes összevetés után: Dr. Berta Miklós: Gravitációs hullámok / 12

30 Az első észlelt esemény Két fekete lyuk összeolvadása 250 ezer modellezett eseménnyel való, számítógépes összevetés után: Fekete lyukak összeolvadása, Forrás: SXS-project Forrás: PRL 116, (2016) Dr. Berta Miklós: Gravitációs hullámok / 12

31 Az első észlelt esemény Két fekete lyuk összeolvadása 250 ezer modellezett eseménnyel való, számítógépes összevetés után: Fekete lyukak összeolvadása, Forrás: SXS-project M 1 = 36M N, M 2 = 29M N, M 1,2 = 62M N, M = 3M N τ 200 ms, D 1, fényév f = Hz t HL = 7 ms h max = ( l L ) max = Forrás: PRL 116, (2016) Dr. Berta Miklós: Gravitációs hullámok / 12

32 Az első észlelt esemény Két fekete lyuk összeolvadása 250 ezer modellezett eseménnyel való, számítógépes összevetés után: Fekete lyukak összeolvadása, Forrás: SXS-project M 1 = 36M N, M 2 = 29M N, M 1,2 = 62M N, M = 3M N τ 200 ms, D 1, fényév f = Hz t HL = 7 ms h max = ( l L ) max = Forrás: PRL 116, (2016) Detektált gravitációs hullámok jeleinek megfelelő,,hamis hangok! - Forrás: CalTech - LIGO Dr. Berta Miklós: Gravitációs hullámok / 12

33 Miért olyan jelentős ez a felfedezés és a mögötte levő mérési módszer? először mértük ki a gravitációs hullámok hatását Föld-i objektumra Dr. Berta Miklós: Gravitációs hullámok / 12

34 Miért olyan jelentős ez a felfedezés és a mögötte levő mérési módszer? először mértük ki a gravitációs hullámok hatását Föld-i objektumra bizonyítást nyert, hogy léteznek fekete lyuk kettősök, és a gravitációs hullámok okozta energiaveszteség miatt ezek összeolvadnak egy szimmetrikus fekete lyukká Dr. Berta Miklós: Gravitációs hullámok / 12

35 Miért olyan jelentős ez a felfedezés és a mögötte levő mérési módszer? először mértük ki a gravitációs hullámok hatását Föld-i objektumra bizonyítást nyert, hogy léteznek fekete lyuk kettősök, és a gravitációs hullámok okozta energiaveszteség miatt ezek összeolvadnak egy szimmetrikus fekete lyukká az elektromágneses alapú megfigyelés mellett, mintegy ötszáz év eltelte után megjelent a gravitációs hullám alapú csillagászat - már nemcsak,,látjuk, de,,halljuk is a Világűrt Dr. Berta Miklós: Gravitációs hullámok / 12

36 Tervek ábra: LISA - Laser Interferometer Space Antenna (L = m, f = 0, mhz), szupernehéz fekete lyuk kettősök gravitációs hullámai,?2032?, Forrás: lisa.nasa.gov Dr. Berta Miklós: Gravitációs hullámok / 12

37 Tervek ábra: LISA - Laser Interferometer Space Antenna (L = m, f = 0, mhz), szupernehéz fekete lyuk kettősök gravitációs hullámai,?2032?, Forrás: lisa.nasa.gov az Ősrobbanáskor keletkezett gravitációs hullámok hatásainak kimutatása a mikrohullámú háttérsugárzásban Dr. Berta Miklós: Gravitációs hullámok / 12

38 Tervek ábra: LISA - Laser Interferometer Space Antenna (L = m, f = 0, mhz), szupernehéz fekete lyuk kettősök gravitációs hullámai,?2032?, Forrás: lisa.nasa.gov az Ősrobbanáskor keletkezett gravitációs hullámok hatásainak kimutatása a mikrohullámú háttérsugárzásban... Dr. Berta Miklós: Gravitációs hullámok / 12

39 Köszönjük megtisztelő figyelmüket! További információk: fizkem Dr. Berta Miklós: Gravitációs hullámok / 12

Gravitációs hullámok,

Gravitációs hullámok, Mechwart nap, 2016 Gravitációs hullámok, avagy a 2017. évi Nobel-díj Dr. Kardos Ádám Tudományos főmunkatárs Debreceni Egyetem, Fizikai Intézet Bevezetés helyett Bevezetés helyett 2015 Szeptember 14. 11:50:45

Részletesebben

AZ UNIVERZUM SUTTOGÁSA

AZ UNIVERZUM SUTTOGÁSA AZ UNIVERZUM SUTTOGÁSA AVAGY MIT HALLANAK A GRAVITÁCIÓSHULLÁM-DETEKTOROK Vasúth Mátyás MTA Wigner FK A Magyar VIRGO csoport vezetője Wigner FK 2016.05.27. Gravitációs hullámok obszervatóriumok Einstein-teleszkóp

Részletesebben

A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?

A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban

Részletesebben

Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp

Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös

Részletesebben

[ ]dx 2 # [ 1 # h( z,t)

[ ]dx 2 # [ 1 # h( z,t) A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban

Részletesebben

Folytonos gravitációs hullámok keresése GPU-k segítségével

Folytonos gravitációs hullámok keresése GPU-k segítségével Folytonos gravitációs hullámok keresése GPU-k segítségével Debreczeni Gergely (Gergely.Debreczeni@rmki.kfki.hu) MTA KFKI RMKI GPU nap 2011 2011. július 8. Á.R.: Megfigyelhető jelenségek Gravitációs hullámok:

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

A Wigner FK részvétele a VIRGO projektben

A Wigner FK részvétele a VIRGO projektben Kettős rendszerek jellemzőinek meghatározása gravitációs hullámok segítségével A Wigner FK részvétele a VIRGO projektben Vasúth Mátyás PhD, MTA Wigner FK A Magyar VIRGO csoport vezetője MTA, 2016.05.05

Részletesebben

Az éter (Aetherorether) A Michelson-Morley-kísérlet

Az éter (Aetherorether) A Michelson-Morley-kísérlet Az éter (Aetherorether) A Michelson-Morley-kísérlet Futó Bálint Modern Fizikai Kísérletek Szeminárium Fizika a XIX. században Mechanika Optika Elektrodin. Abszolút tér és idő Young és mások Az éter a medium

Részletesebben

Speciális relativitás

Speciális relativitás Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban

Részletesebben

A relativitáselmélet története

A relativitáselmélet története A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,

Részletesebben

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására

Részletesebben

A VIRGO detektor missziója

A VIRGO detektor missziója A VIRGO detektor missziója VASÚTH MÁTYÁS M TA WIGNER FK GRAVITÁCIÓFIZIKAI KUTATÓCSOPORT WIGNER VIRGO CSOPORT Simonyi Nap MTA, 2017.10.16. Bevezetés Gravitációs hullámok A VIRGO detektor Közvetlen megfigyelések

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Gravitációs hullámok. Vasúth Mátyás. Wigner FK, RMI MTA, 2015.05.11

Gravitációs hullámok. Vasúth Mátyás. Wigner FK, RMI MTA, 2015.05.11 Gravitációs hullámok Vasúth Mátyás Wigner FK, RMI MTA, 2015.05.11 Bevezetés Gravitációs hullámok A hullámok mérése, kísérletek LIGO-Virgo kollaboráió Az Einstein-teleszkóp Gravitációshullám-csillagászat

Részletesebben

SZE, Fizika és Kémia Tsz. v 1.0

SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:

Részletesebben

Bevezetés a kozmológiába 1: a Világegyetem tágulása

Bevezetés a kozmológiába 1: a Világegyetem tágulása Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

VADÁSZAT A GRAVITÁCIÓS HULLÁMOKRA 2. RÉSZ A detektorok mûködése

VADÁSZAT A GRAVITÁCIÓS HULLÁMOKRA 2. RÉSZ A detektorok mûködése VADÁSZAT A GRAVITÁCIÓS HULLÁMOKRA 2. RÉSZ A detektorok mûködése Frei Zsolt ELTE Atomfizikai Tanszék Frei Zsolt fizikus, az MTA doktora, az ELTE Atomfizikai Tanszék tanszékvezetô egyetemi tanára, az Akadémia

Részletesebben

A Mátrai Gravitációs és Geozikai Laboratórium és kutatási programja

A Mátrai Gravitációs és Geozikai Laboratórium és kutatási programja A Mátrai Gravitációs és Geozikai Laboratórium és kutatási programja Ván Péter Fizikai Kutatóközpont, Részecske és Magzikai Intézet Visznek, TÖK, 2016. július 4. 1 / 36 Tartalom 1 Bevezetés: a kövekr l

Részletesebben

Gravitációs hullámok. Vasúth Mátyás. Wigner FK, RMI. Wigner FK,

Gravitációs hullámok. Vasúth Mátyás. Wigner FK, RMI. Wigner FK, Gravitációs hullámok Vasúth Mátyás Wigner FK, RMI Wigner FK, 2014.09.17-19 Bevezetés Gravitációs hullámok és detektorok Adatgyűjtés Adatfeldolgozás, GPU Einstein-egyenletek, hullámformák Kettős rendszerek

Részletesebben

GPU-k a gravitációs hullám kutatásban

GPU-k a gravitációs hullám kutatásban GPU-k a gravitációs hullám kutatásban Debreczeni Gergely MTA KFKI RMKI (Gergely.Debreczeni@rmki.kfki.hu) e-science Cafè 2011. november 14. Óbudai Egyetem Neumann János Informatikai Kar Á.R.: Megfigyelhető

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (a) Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2015. január 11.. 1 Egy egyszerű probléma (1) A K nyugvó vonatkoztatási rendszerben tekintsünk

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

2016. február 5-ei verzió, L1600013-v2 S A J T Ó K Ö Z L E M É N Y. Azonnali közlésre 2016. február 11.

2016. február 5-ei verzió, L1600013-v2 S A J T Ó K Ö Z L E M É N Y. Azonnali közlésre 2016. február 11. 2016. február 5-ei verzió, L1600013-v2 S A J T Ó K Ö Z L E M É N Y Azonnali közlésre 2016. február 11. Magyar szöveg: Raffai Péter adjunktus, ELTE Atomfizikai Tanszék praffai@bolyai.elte.hu GRAVITÁCIÓS

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

A modern fizika születése

A modern fizika születése A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül. 1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény

Részletesebben

59. Fizikatanári Ankét

59. Fizikatanári Ankét 59. Fizikatanári Ankét 1957. Budapest, 1. Középiskolai Fizikatanári Ankét Ha 1960-ban nem maradt volna el, akkor az idei lenne a 60. középiskolai ankét. 1977. Nyíregyháza, I. Általános Iskolai Fizikatanári

Részletesebben

ERŐ-E A GRAVITÁCIÓ? 1

ERŐ-E A GRAVITÁCIÓ? 1 ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási rendszer, ahol érvényes Newton első törvénye (! # = 0 ' = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben tett felfedezések:

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA Budpesti Műszki és Gzdságtudományi Egyetem Atomfizik Tnszék, dr. Erdei Gáor Ágzti felkészítés hzi ELI projekttel összefüggő képzési és K+F feldtokr Young-féle

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Válaszok a feltett kérdésekre

Válaszok a feltett kérdésekre Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan

Részletesebben

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása 2015. április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Egyetlen tömegpont: 3 adat (3 szabadsági fok ) Példa:

Részletesebben

Szakmai háttéranyag tudományos ismeretterjesztı film elkészítéséhez

Szakmai háttéranyag tudományos ismeretterjesztı film elkészítéséhez Einstein befejezetlen szimfóniája, avagy Az univerzum zenéjének relativisztikus szólamai Szakmai háttéranyag tudományos ismeretterjesztı film elkészítéséhez a Magyar Mozgókép Alapítványhoz benyújtandó

Részletesebben

VADÁSZAT A GRAVITÁCIÓS HULLÁMOKRA 3. RÉSZ A gravitációs hullámok lehetséges asztrofizikai forrásai

VADÁSZAT A GRAVITÁCIÓS HULLÁMOKRA 3. RÉSZ A gravitációs hullámok lehetséges asztrofizikai forrásai VADÁSZAT A GRAVITÁCIÓS HULLÁMOKRA 3. RÉSZ A gravitációs hullámok lehetséges asztrofizikai forrásai Frei Zsolt ELTE Atomfizikai Tanszék Sorozatunk utolsó részében áttekintem azokat a lehetséges asztrofizikai

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

A Mátrai Gravitációs és Geozikai Laboratórium és kutatási programja

A Mátrai Gravitációs és Geozikai Laboratórium és kutatási programja A Mátrai Gravitációs és Geozikai Laboratórium és kutatási programja Ván Péter Fizikai Kutatóközpont, Részecske és Magzikai Intézet Csillagászati és Földtud. Kutatóközp., Geodéziai és Geozikai Int. Miskolci

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

METRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva:

METRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: METRIKA D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: dl = dx + dy Általános alak ha nem feltétlenül Descartes-koordinátákat használunk: dl =... dx 1 +... dx +...dx 1 dx +...dx

Részletesebben

Gravitációshullámok forrásai

Gravitációshullámok forrásai Gravitációshullámok forrásai Kocsis Bence GALNUC ERC Starting Grant kutatócsoport 2015 2020 ELTE, Atomfizikai tanszék GALNUC csoporttagok posztdok: Yohai Meiron, Zacharias Roupas phd: Gondán László msc:

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

ERŐ-E A GRAVITÁCIÓ? 1. példa:

ERŐ-E A GRAVITÁCIÓ? 1. példa: ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási r rendszer, ahol érvényes Newton első törvénye ( F e = 0 " a r = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Precesszáló kompakt kettősök szekuláris dinamikája

Precesszáló kompakt kettősök szekuláris dinamikája Precesszáló kompakt kettősök szekuláris dinamikája Keresztes Zoltán, Tápai Márton, Gergely Á. László Szegedi Tudományegyetem Elméleti Fizikai Tanszék, Kísérleti Fizikai Tanszék Tartalom Változók a kettősök

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

Deutérium pelletekkel keltett zavarok mágnesesen összetartott plazmában

Deutérium pelletekkel keltett zavarok mágnesesen összetartott plazmában Deutérium pelletekkel keltett zavarok mágnesesen összetartott plazmában 1. Motiváció ELM-keltés folyamatának vizsgálata 2. Kísérleti elrendezés Diagnosztika Szepesi Tamás MTA KFKI RMKI Kálvin S., Kocsis

Részletesebben

Interferencia jelenségek a BME permanens állomásán

Interferencia jelenségek a BME permanens állomásán Interferencia jelenségek a BME permanens állomásán Takács Bence, egyetemi docens takacs.bence@epito.bme.hu Rédey szeminárium 2017. március 3. Nagy teljesítményű blokkolók hatótávolság : 200 km adó teljesítmény

Részletesebben

A klasszikus mechanika alapjai

A klasszikus mechanika alapjai A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Bevezetés a kozmológiába 1: a Világegyetem tágulása

Bevezetés a kozmológiába 1: a Világegyetem tágulása Horváth Dezső: Kozmológia-1 HTP-2016, CERN, 2016.08.16. p. 1 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2016, CERN, 2016 augusztus 16. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

Gravitációshullám-asztrofizika egy új korszak kezdete

Gravitációshullám-asztrofizika egy új korszak kezdete 2016. május 5. Magyar Tudományos Akadémia A gravitációs hullámok felfedezése, asztrofizikai perspektívák Gravitációshullám-asztrofizika egy új korszak kezdete Kocsis Bence GALNUC ERC Starting Grant kutatócsoport

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Optoelektronikai Kommunikáció. Az elektromágneses spektrum

Optoelektronikai Kommunikáció. Az elektromágneses spektrum Optoelektronikai Kommunikáció (OK-2) Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki Fõiskolai Kar Számítógéptechnikai Intézete Székesfehérvár 2002. 1 Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki

Részletesebben

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

Infrahang mikrofon digitális komponenseinek fejlesztése az Advanced LIGO számára

Infrahang mikrofon digitális komponenseinek fejlesztése az Advanced LIGO számára Infrahang mikrofon digitális komponenseinek fejlesztése az Advanced LIGO számára Szakdolgozat a fizika alapdiplomához Eötvös Loránd Tudományegyetem Készítette: Szeifert Gábor ELTE TTK Fizika BSc. Témavezető:

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

A Föld mint fizikai laboratórium

A Föld mint fizikai laboratórium A Föld mint fizikai laboratórium Az atomoktól a csillagokig Dávid Gyula 2006. 01. 12. A Föld - régóta ismert fizikai objektum triviális jól ismert nem ismert fizikai tulajdonságok alkalmazások más rendszerek,

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

2011 Fizikai Nobel-díj

2011 Fizikai Nobel-díj 2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Időjárási radarok és produktumaik

Időjárási radarok és produktumaik ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT Időjárási radarok és produktumaik Hadvári Marianna Országos Meteorológiai Szolgálat Távérzékelési Osztály 2018. október 6. Alapítva: 1870 Radio Detection And Ranging 1935

Részletesebben

Zéró Mágneses Tér Laboratórium építése Nagycenken

Zéró Mágneses Tér Laboratórium építése Nagycenken Zéró Mágneses Tér Laboratórium építése Nagycenken Erdős Géza 1, Nagy János 1, Németh Zoltán 1, Veres Miklós 1, Lemperger István 2, Wesztergom Viktor 2 (1) MTA Wigner Fizikai Kutatóközpont (2) MTA CSFK

Részletesebben

1. Az üregsugárzás törvényei

1. Az üregsugárzás törvényei 1. Az üregsugárzás törvényei 1.1. A Wien féle eltolódási törvény és a Stefan-Boltzmann törvény Egy zárt, belül üres fémdoboz kis nyílása az úgynevezett abszolút fekete test. A nyílás elektromágneses sugárzást

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Bevezetés a kozmológiába 2: ősrobbanás és vidéke

Bevezetés a kozmológiába 2: ősrobbanás és vidéke Horváth Dezső: Kozmológia-2 HTP-2018, CERN, 2018.08.23. p. 1/43 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2018, CERN, 2018 augusztus 23. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

A gravitáció összetett erőtér

A gravitáció összetett erőtér A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható

Részletesebben

A gravitációs hullámok az asztrofizikában

A gravitációs hullámok az asztrofizikában 2. fejezet A gravitációs hullámok az asztrofizikában Dolgozatom legfontosabb gondolata, hogy a közeljövőben esetlegesen felfedezett gravitációs hullámok megfigyelésével, illetve EM-tartományban végzett

Részletesebben

Hegyi Ádám István ELTE, április 25.

Hegyi Ádám István ELTE, április 25. Hegyi Ádám István ELTE, 2012. április 25. GPS = Global Positioning System Department of Defense = Amerikai Egyesült Államok Védelmi Minisztériuma 1973 DNSS = Defense Navigation Satellite System vagy Navstar-GPS

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

A világegyetem elképzelt kialakulása.

A világegyetem elképzelt kialakulása. A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,

Részletesebben

Előzmények: matematika Előzmények: fizika Az általános relativitáselmélet Furcsa következmények Tanulságok. SZE, Fizika és Kémia Tsz. v 1.

Előzmények: matematika Előzmények: fizika Az általános relativitáselmélet Furcsa következmények Tanulságok. SZE, Fizika és Kémia Tsz. v 1. Fizikatörténet Az általános relativitáselmélet története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 AFKT 5.2.6 AFKT 5.2.7 A párhuzamossági axióma Euklidesz geometriája 2000 évig megingathatatlannak

Részletesebben

Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Alapinformációk a tantárgyról a tárgy oktatója: Dr. Berta Miklós Fizika és

Részletesebben

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika

Részletesebben

Bevezetés a kozmológiába 2: ősrobbanás és vidéke

Bevezetés a kozmológiába 2: ősrobbanás és vidéke Horváth Dezső: Kozmológia-2 HTP-2016, CERN, 2016.08.17. p. 1/39 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2016, CERN, 2016 augusztus 17. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

Szupermasszív fekete lyukak. Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető

Szupermasszív fekete lyukak. Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető Szupermasszív fekete lyukak Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető 100 évvel ezelőtt Egy elmélet jóslatainak kidolgozásához jobban megéri pacifistának lenni. r = 2GM c 2 Broderick,

Részletesebben

Ősrobbanás: a Világ teremtése?

Ősrobbanás: a Világ teremtése? Horváth Dezső: A kozmológia alapjai Telki, 2010.01.14 p. 1/37 Ősrobbanás: a Világ teremtése? (A kozmológia alapjai) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

MEGFIGYELÉSEK. Filozófiai megközelítés. Értelmes tevékenység Eredménye lehet

MEGFIGYELÉSEK. Filozófiai megközelítés. Értelmes tevékenység Eredménye lehet 65 MEGFIGYELÉSEK Filozófiai megközelítés Értelmes tevékenység Eredménye lehet Ahhoz, hogy megfigyelésekről beszélhessünk, fel kell tenni, hogy a világ objektíve létezik; a világ és én különböznek; a világ

Részletesebben

Értékelési útmutató az emelt szint írásbeli feladatsorhoz I.

Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. 1. C. B 3. B 4. C 5. B 6. A 7. D 8. D 9. A 10. C 11. C 1. A 13. C 14. B 15. B 16. B 17. D 18. B 19. C 0. B I. RÉSZ Összesen 0 pont 1 1. téma

Részletesebben

Hangintenzitás, hangnyomás

Hangintenzitás, hangnyomás Hangintenzitás, hangnyomás Rezgés mozgás energia A hanghullámoknak van energiája (E) [J] A detektor (fül, mikrofon, stb.) kisiny felületű. A felületegységen áthaladó teljesítmény=intenzitás (I) [W/m ]

Részletesebben

A világtörvény keresése

A világtörvény keresése A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)

Részletesebben