Ősrobbanás: a Világ teremtése?
|
|
- Sándor Szőke
- 8 évvel ezelőtt
- Látták:
Átírás
1 Horváth Dezső: A kozmológia alapjai Telki, p. 1/37 Ősrobbanás: a Világ teremtése? (A kozmológia alapjai) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és MTA Atommagkutató Intézet, Debrecen
2 Horváth Dezső: A kozmológia alapjai Telki, p. 2/37 Vázlat Táguló világegyetem, kozmológiai elv. Kozmikus háttérsugárzás. Ősrobbanás, infláció. Ősrobbanás és vallás. Sötét anyag és sötét energia. COBE, WMAP Hubble-teleszkóp Forrás: Stephen Hawking: Az idő rövid története Talentum Kiadó, Budapest, 1998
3 Horváth Dezső: A kozmológia alapjai Telki, p. 3/37 Előszó A fizika egzakt tudomány (képletgyűjtemény!) Pontos matematikai formalizmuson alapszik. Elmélet érvényes, ha kiszámítható, és eredmény egyezik kísérlettel. Az igazi fogalmak mérhető mennyiségek, a szavak csak mankók. Szavak mögött pontos matematika és kísérleti tapasztalat
4 Horváth Dezső: A kozmológia alapjai Telki, p. 4/37 Mi a kozmológia? Világegyetem egészével foglalkozik. Hogyan jött létre? Nem miért? Statikus vagy táguló? Lapos, nyitott vagy zárt? Anyaga, összetétele? Múltja, jövője?
5 A Hubble-állandó Doppler-hatás: z = (λ v λ 0 )/λ 0 λ v : hullámhossz v sebességnél Közeledő motor hangja magasabb, távolodóé mélyebb William Huggins, 1868: csillagokban z > 0: vöröseltolódás Tőlünk távolodó objektum fényhullámhossza nő vörösebb Henrietta S. Leavitt, 1920: Változócsillagok (cefeidák) periódusa abszolút fényessége távolságuk levezethető Edwin Hubble, 1929: Cefeidák galaxisokban távolodnak tőlünk H = 70 km/s/mpc v = Hr sebességgel Hubble-konstans: (1 Mpc m fényév) (1 parsec = távolság, ahonnan 2 d(nap-föld) 1 szögmp alatt látszik) A Világegyetem kora: H év Horváth Dezső: A kozmológia alapjai Telki, p. 5/37
6 Horváth Dezső: A kozmológia alapjai Telki, p. 6/37 Táguló világegyetem Kozmológiai elv: Ha a tágulás lineáris v(b/a) = v(c/b) v(c/a) = v(b/a) + v(c/b) = 2v(B/A) homogén világegyetem, nincs kitüntetett pont A világegyetem tágulása a téré, táguló koordináták tömegek között vonzás, lokális inhomogenitás Valamikor minden közelebb volt: ősrobbanás (Big Bang)
7 Horváth Dezső: A kozmológia alapjai Telki, p. 7/37 Kozmikus háttérsugárzás Arno Penzias és Robert Wilson, 1964 (Nobel-díj, 1978) Kiszűrhetetlen mikrohullámú háttérsugárzás Modell: T=3 K kozmikus sugárzás (CMB) COBE: COsmic Background Experiment T = 2, 728 K, pontos hőmérsékleti görbén eredetileg 3000 K-es fotonok lehülése (1000-szeres!) táguláskor Helyi irány-anizotrópia: magok galaxisok kialakulásához Megerősítés, sokkal pontosabban: WMAP: Wilkinson Microwave Anisotropy Probe John C. Mather és George F. Smoot (COBE): Nobel-díj, 2006 A COBE űrszonda
8 Horváth Dezső: A kozmológia alapjai Telki, p. 8/37 A COBE anizotrópiája Vörös = 2,721 K kék = 2,729 K Dipól: Nap mozgása Tejútrendszer Maradék anizotrópia
9 A WMAP anizotrópiája, Horváth Dezső: A kozmológia alapjai Telki, p. 9/37
10 Horváth Dezső: A kozmológia alapjai Telki, p. 10/37 Ősrobbanás (Big Bang) Látható anyag: 75% hidrogén, 25% hélium, < 1% más Hidrogénből hélium csak csillagokban, nem lenne ennyi forró korai Univerzum kiadja Kozmikus háttérsugárzás eredete: Big Bang után 30 perc: plazma, T = K. Sugárzás dominál, fotonok halmaza átlátszatlan közegben év: lehülés 3000 K-re, semleges atomok, fotonoknak átlátszó Mostanra: tágulás, fotonok lehűltek Galaxisok eredete: Térbeli anizotrópia sötét anyag gravitációs gödrei barionos anyag sűrűsödése csillagok begyulladnak
11 Ősrobbanás, felfúvódás, sugárzás Horváth Dezső: A kozmológia alapjai Telki, p. 11/37
12 Horváth Dezső: A kozmológia alapjai Telki, p. 12/37 Ősrobbanás, evolúció és vallás Ősrobbanás értelmezéséhez az evolúció a fő kérdés Protestantizmus általában elveti. Vatikán flexibilis. XII. Pius beletörődött az evolúcióba és 1951-ben üdvözölte az Őrobbanást, mint a Világ teremtését II. János Pál, Pontifical Academy of Sciences, 1996: Mára... új tudásunk elfogadja, hogy az evolúció elmélete több, mint hipotézis. Valóban figyelemre méltó, ahogy a kutatók a tudomány különböző területein tett felfedezések hatására, fokozatosan elfogadták ezt az elméletet. A függetlenül végzett munka eredményeinek sem nem keresett, sem nem fabrikált konvergenciája önmagában is jelentős bizonyítéka az elméletnek.
13 Horváth Dezső: A kozmológia alapjai Telki, p. 13/37 Evolúció és vallás február: G. Ravasi bíboros, a Pontifical Academy of Sciences elnöke, abból az alkalomból, hogy a Vatikán konferenciát szervezett Charles Darwin: A fajok eredete megjelenésének 150. évfordulójára: Habár a Vatikán korábban ellenséges volt a darwinizmussal szemben, soha nem vetette hivatalosan el.... Az evolúció ötlete már Szent Ágoston és Aquinói Szent Tamás müveiben is fellelhető. Szent Ágoston ( ): Isten a semmiből ősanyagot teremtett, észcsirákat helyezett el benne, abból fejlődött ki a Világ (ezt kettős és folytonos teremtésnek hívta)
14 Horváth Dezső: A kozmológia alapjai Telki, p. 14/37 Ősrobbanás és vallás II. János Pál, Pontifical Academy of Sciences, 1996:... úgy tűnik, hogy a modern tudománynak sikerült megtalálnia az elsődleges fiat lux (legyen világosság) pillanatát, amikor a semmiből az anyag mellett fény és sugárzás tengere tört elő, az elemek meghasadtak és kavarogtak és galaxisok millióivá váltak.... Tehát megtörtént a teremtés. Kijelentjük: tehát létezik Teremtő. Tehát Isten létezik! Állítólag a kollégái viccelődésére Edwin Hubble kifakadt, hogy nem érti, miért volt az elméletére szükség Isten létének bizonyításához. Stephen W. Hawking, miután beszélt II. János Pállal, aki azt tanácsolta, ne feszegessék az Ősrobbanás pillanatát, mert az Isteni beavatkozás volt: Örültem, hogy nem ismerte a konferencián éppen elhangzott előadásom témáját a lehetőségét annak, hogy a tér-idő ugyan véges, de nincs határa, kezdete sem, tehát a Teremtésnek sincs időpontja.
15 Horváth Dezső: A kozmológia alapjai Telki, p. 15/37 Szent Ágoston vallomásai, XI. könyv Idézetek az időről (Dr. Vass József fordítása) V. fejezet: Isten a világot semmiből teremtette VI. fejezet: A teremtő ige nem lehetett valami időben elhangzó parancs. Akárminek képzelem ugyanis azt a teremtést megelőző valamit, ami hordozója lett volna parancsodnak, biztosan nem volt, hacsak azt is meg nem teremted vala. X. fejezet: Működött-e Isten a világ teremtése előtt? XI. fejezet: Isten örökkévalóságához nincs köze időnek. XII. fejezet: A teremtés előtt Isten kifelé, vagyis teremtő módon semmit nem cselekedett. XIII. fejezet: A teremtés előtt nem volt idő, mert ez maga a teremtmény.
16 Horváth Dezső: A kozmológia alapjai Telki, p. 16/37 Szent Ágoston vallomásai, XII. könyv VII. fejezet: Semmiből lett az ősanyag, az ősanyagból az egész világ. IX. fejezet: Sem a mennyország, sem az ősanyag megteremtése nem időben történt. XIII. fejezet: Kezdetben teremté Isten a mennyországot és az ősanyagot... a mennyet én szellemi égnek tartom, amelyben a megismerés nem "rész szerint", nem "tükör által és homályban" (1Kor 13,12) történik, hanem egyenlő a teljesen megvilágosított: a színről színre való látással. Nem hullámzik egyszer erre, egyszer arra; hanem, amint említettem, egyszerre és együtt való látás, időbeli változás nélkül. XXIV. fejezet: Úgy vélekedik, hogy e szó "kezdetben" az Igét jelenti, de vallja, hogy más magyarázat is lehetséges.
17 Horváth Dezső: A kozmológia alapjai Telki, p. 17/37 A Hubble-teleszkóp Fellőve: Tömeg: kg Közel körpálya, magassága: 559 km Keringés: perc Átmérő: 2,4 m Fókusztáv: 57,6 m Érzékeny hullámhosszak: Közeli infravörös optikai (látható) ultraibolya
18 A Hubble-teleszkóp működése Horváth Dezső: A kozmológia alapjai Telki, p. 18/37
19 Horváth Dezső: A kozmológia alapjai Telki, p. 19/37 A Hubble-teleszkóp javítása az űrben 1993 óta több javítási akció: tükörkorrekció, giroszkópcsere (6!), műszerek cseréje
20 Horváth Dezső: A kozmológia alapjai Telki, p. 20/37 Hubble-teleszkóp: a Világegyetem mélye 250 nap megfigyelés egy sötét ponton > tízmilliárd évnél régebbi galaxis
21 Horváth Dezső: A kozmológia alapjai Telki, p. 21/37 Hubble-teleszkóp: eredmények A galaxisok kialakulása már az Ősrobbanás után millió évvel megkezdődött Korai galaxisok kisebbek és kevésbé szimmetrikusak gyorsabb formálódás A galaxisok centrumában általában fekete lyuk van A legtávolabbi felvételeken nyomon követhető csillagok képződése Az ultramély felvétel kis része kinagyítva évvel fiatalabb galaxisok
22 Horváth Dezső: A kozmológia alapjai Telki, p. 22/37 Általános relatívitáselmélet Newtoni gravitáció + állandó fénysebesség (Einstein, 1916) Görbült téridő (t,x,y,z) Görbület tömegtől Szabadesés geodéziai vonalak mentén Gravitációs potenciál görbületi tenzor Friedmann-Lemaitre megoldás: általános relatívitáselmélet homogén univerzumra
23 Gravitációs lencse: tér görbülete Horváth Dezső: A kozmológia alapjai Telki, p. 23/37
24 Horváth Dezső: A kozmológia alapjai Telki, p. 24/37 A Világegyetem jövője Ha nincs kozmológiai állandó, Λ = 0: k 0: nyílt univerzum, állandó, lassuló tágulás k > 0: zárt univerzum, big crunch Ha Λ > 0: örökös, gyorsuló tágulás ( k) Jelenlegi kép: Λ > 0; k = 0: Lapos, gyorsulva táguló Univerzum
25 Horváth Dezső: A kozmológia alapjai Telki, p. 25/37 Ősrobbanás (Big Bang) időrendje Esemény idő hőmérséklet ρ 1/4 Planck-idő (infláció?) s GeV Nagy egyesítés s GeV Elektrogyenge? (bariogenezis) 10 6 s K 100 GeV Kvark hadron 10 4 s K 100 MeV Nukleonok s K 0,1 1 MeV Lecsatolódás 10 5 év 2500 K 0,1 ev Szerkezet kialakulása > 10 5 év Mai helyzet 14 G év 2,7 K ev
26 Horváth Dezső: A kozmológia alapjai Telki, p. 26/37 Sötét energia?? Kozmológiai állandó: Λ > 0 Einstein legnagyobb tévedése, mégis létezik Vákuum gravitáló energiája, összes tömeg 70%-a! Ősrobbanás után nagy, korai univerzumban sokkal kisebb, térrel nő Ma dominál. Igazából micsoda? Nem vákuum-energia: szor kisebb (Elmélet és kísérlet eltérésére világrekord :-) Rengeteg modell, spekuláció: inflaton, kvintesszencia...
27 Horváth Dezső: A kozmológia alapjai Telki, p. 27/37 Sötét anyag Spirálgalaxisok sebessége kifelé nem csökken, pedig Kepler II: v = GM(r) r Sokkal több gravitáló anyag, mint látható Micsoda? WIMP... SUSY?? Látható tömegsűrűség luminozitás: ρ lum (r) I(r) De ρ M (r) ρ lum (r)!
28 Horváth Dezső: A kozmológia alapjai Telki, p. 28/37 Fekete lyukak, sötét anyag Galaxisok magjában fekete lyukak (black hole, BH): M BH > 3 naptömeg, R BH pár km Einstein-kereszt: 10 milliárd fényévre levő pulzárt több pontba nagyít és fókuszál 1 milliárd fényévre levő galaxis fekete lyukkal a közepén (ESO, Very Large Telescope, Chile, 2008) Többszörös kép: nem egyenletes tömegeloszlás Fekete lyuk + sötét anyag
29 Horváth Dezső: A kozmológia alapjai Telki, p. 29/37 Anyagegyensúly ma Jelenleg: lapos, anyag-dominálta (Ω M >> Ω R ) Kozmológiai paraméterek: Ω R, Ω M = Ω B + Ω CDM, Ω Λ,H 0 Barionos anyag (csillagok, fekete lyukak, por, gáz): Ω B 4% Csomósodó, nem-barionos, hideg sötét anyag: Ω CDM 26% Gyorsuló tágulás: sötét energia Ω Λ 70%
30 Horváth Dezső: A kozmológia alapjai Telki, p. 30/37 Antianyag az Univerzumban? CPT-invariancia: legalapvetőbb elméleti tétel Töltés (C), térkoordináták (P), idő (T) tükrözése nem változtat fizikát anyag = antianyag De: nincsenek antianyag-galaxisok (nincs dicsfény) Sugárzási időszak után nel több anyag (bariogenezis). Magyarázható CPT-sértés nélkül? Andrej Szaharov, 1967: Igen, 3 feltétel mellett: bariontöltés megmaradásának sértése CP-szimmetria sértése gyorsabb tágulás, mint barion-antibarion keltése azonnali annihiláció kisebb valószínűséggel. CP-sértés igen, tágulás talán, barionszám-sértés nem. Kísérleti ellenőrzés: LHCb a CERN-ben
31 Az LHCb kísérlet a CERN-ben Horváth Dezső: A kozmológia alapjai Telki, p. 31/37
32 A történet eddig Horváth Dezső: A kozmológia alapjai Telki, p. 32/37
33 Köszönöm a figyelmet Horváth Dezső: A kozmológia alapjai Telki, p. 33/37
34 Horváth Dezső: A kozmológia alapjai Telki, p. 34/37 A WMAP eredménye, Akusztikus spektrum: rezgési módusok Csúcsok helye: sötét anyag nem barionos Lapos Univerzum, Λ 0
35 Horváth Dezső: A kozmológia alapjai Telki, p. 35/37 Távolságskála görbült téridőben Együttmozgó koordináták: (t, r, Θ, Φ) Euklideszi távolság: dl 2 = [ dr 2 + r 2 (dθ 2 + sin 2 ΘdΦ 2 ) ] Görbült térben: dl 2 = a 2 (t) dr 2 1 kr + r 2 (dθ 2 + sin 2 ΘdΦ 2 ) 2 a(t): 2D téridő-görbület k: 3D térgörbület k = 0 k > 0 k < 0 lapos univerzum zárt univerzum nyílt univerzum Galaxisok távolsága a(t) tágulás
36 Horváth Dezső: A kozmológia alapjai Telki, p. 36/37 A Friedmann-törvény Skálatényező változása: ) 2 (ȧa H 2 = 8πG 3c ρ 2 R + 8πG 3c ρ 2 M kc2 Λ a a 4 a 3 a 2 a 0 Sugárzás anyag görbület vákuum Dominancia időrendje (némelyik elmaradhat)
37 Horváth Dezső: A kozmológia alapjai Telki, p. 37/37 Anyagegyensúly ma Friedmann-egyenletből (X 0 : mai érték, /H 2 0 ) 8πG 3H 2 0 c2 (ρ R 0 + ρ M 0) kc2 a 2 0 H2 0 + Λ 3H 2 0 Ω R + Ω M Ω k + Ω Λ = 1 Univerzum lapos, ha Ω 0 = Ω R + Ω M + Ω Λ = 1 Jelenleg: lapos, anyag-dominálta (Ω M >> Ω R ) Kozmológiai paraméterek: Ω R, Ω M = Ω B + Ω CDM, Ω Λ,H 0 Barionos anyag (csillagok, fekete lyukak, por, gáz): Ω B 4% Csomósodó, nem-barionos, hideg sötét anyag: Ω CDM 26% Gyorsuló tágulás: sötét energia Ω Λ 70%
Bevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
RészletesebbenKozmológia és vallás
Horváth Dezső: Kozmológia és vallás RMKI, 2010.02.08. p. 1/32 Kozmológia és vallás (Ősrobbanás és teremtés) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és
RészletesebbenBevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2016, CERN, 2016.08.16. p. 1 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2016, CERN, 2016 augusztus 16. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
RészletesebbenRészecskefizika 2: kozmológia
Horváth Dezső: Kozmológia Debreceni Egyetem, BSc, 2014.04.22. p. 1/41 Részecskefizika 2: kozmológia Debreceni Egyetem, BSc, 2014.04.22. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,
RészletesebbenA világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: A Világ keletkezése Eger, 2010 szept. 24. p. 1/45 A világ keletkezése: ősrobbanás és teremtés Eszterházy Károly Főiskola, Eger, 2010 szept. 24. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI
RészletesebbenA világ keletkezése. Horváth Dezső.
Horváth Dezső: Ősrobbanás és teremtés Gimi-osztály Egyed Katiéknál, 2010.04.10. p. 1/45 A világ keletkezése (Ősrobbanás és teremtés) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai
RészletesebbenKozmológia: ősrobbanás és teremtés
Horváth Dezső: Kozmológia Kult. szalon, Budapest, 2014.09.24. p. 1 Kozmológia: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és MTA Atommagkutató
RészletesebbenA világ keletkezése: Ősrobbanás és teremtés
Horváth Dezső: A világ keletkezése Biatorbágy, 2013.04.26. p. 1/49 A világ keletkezése: Ősrobbanás és teremtés Mini Mindentudás Egyeteme, Biatorbágy, 2013.04.26. Horváth Dezső horvath.dezso@wigner.mta.hu
RészletesebbenA világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: A világ keletkezése Szalon, Budapest, 2014.05.16. p. 1 A világ keletkezése: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és
RészletesebbenKozmológia: a világ keletkezése ősrobbanás és teremtés
Horváth Dezső: Kozmológia: a világ keletkezése Mártély, 2014. 07.24. p. 1 Kozmológia: a világ keletkezése ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,
RészletesebbenA világ keletkezése. Horváth Dezső.
Horváth Dezső: A Világ keletkezése Szent István Gimnázium, 2010. jún. 9. p. 1/44 A világ keletkezése (Ősrobbanás = teremtés?) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet,
RészletesebbenA világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: A világ keletkezése Mecha-TÖK, Budapest, 2014.05.23. p. 1 A világ keletkezése: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest
RészletesebbenA Világ keletkezése: mese a kozmológiáról
Horváth Dezső: A Világ keletkezése Budapest, 2011.11.22. p. 1/47 A Világ keletkezése: mese a kozmológiáról Lauder-iskola, Budapest, 2011 november 22. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
RészletesebbenBevezetés a kozmológiába 2: ősrobbanás és vidéke
Horváth Dezső: Kozmológia-2 HTP-2014, CERN, 2014.08.20. p. 1/34 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2014, CERN, 2014 augusztus 20. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
RészletesebbenBevezetés a kozmológiába 2: ősrobbanás és vidéke
Horváth Dezső: Kozmológia-2 HTP-2016, CERN, 2016.08.17. p. 1/39 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2016, CERN, 2016 augusztus 17. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
RészletesebbenKozmológia és vallás - a világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: Kozmológia és vallás Semmelweiss Egyetem, Budapest, 2018.02.14. p. 1 Kozmológia és vallás - a világ keletkezése: ősrobbanás és teremtés Tudomány és Művészet Kórélettana, Semmelweiss Egyetem,
RészletesebbenBevezetés a kozmológiába 2: ősrobbanás és vidéke
Horváth Dezső: Kozmológia-2 HTP-2018, CERN, 2018.08.23. p. 1/43 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2018, CERN, 2018 augusztus 23. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
RészletesebbenKozmológia egzakt tudomány vagy modern vallás?
Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős
RészletesebbenTrócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2013. augusztus 12-17. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
Részletesebben2011 Fizikai Nobel-díj
2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784
Részletesebbenegyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
RészletesebbenA világegyetem elképzelt kialakulása.
A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,
RészletesebbenCsillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big
RészletesebbenAz ősrobbanás elmélete
Az ősrobbanás elmélete Kozmológia és kozmogónia Kozmológia: a világmindenséggel mint összefüggő, egységes egésszel, tér- és időbeli szerkezetével, keletkezésével, fejlődésével foglalkozó tudomány. Kozmogónia:
RészletesebbenA nagy hadron-ütköztető (LHC) és kísérletei
Horváth Dezső: A nagy hadron-ütköztető (LHC) és kísérletei MTA, 2008. nov. 19. p. 1 A nagy hadron-ütköztető (LHC) és kísérletei Magyar Tudományos Akadémia, 2008. nov. 19. Horváth Dezső horvath@rmki.kfki.hu
RészletesebbenA sötét anyag és sötét energia rejtélye
A sötét anyag és sötét energia rejtélye Cynolter Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Részecskefizika Határok Nélkül 2018. november 17. ELTE TTK Cynolter Gábor Sötét anyag és energia... A Standard
RészletesebbenDr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
RészletesebbenGalaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12.
Galaxisfelmérések: az Univerzum térképei Bevezetés a csillagászatba 4. 2015. május 12. Miről lesz szó? Hubble vagy nem Hubble? Galaxisok, galaxishalmazok és az Univerzum szerkezete A műszerfejlődés útjai
Részletesebben1. A modern kozmológia kialakulása
A világ keletkezése: ősrobbanás = teremtés? (A kozmológia és a vallások viszonya) Horváth Dezső MTA KFKI Részecske- és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen 1. A modern kozmológia kialakulása
RészletesebbenA TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.
1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény
RészletesebbenAz univerzum szerkezete
Az univerzum szerkezete Dobos László dobos@complex.elte.hu É 5.60 2017. május 16. Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek
RészletesebbenTrócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2015. augusztus 16-22. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
RészletesebbenFizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT
Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai és Természettudományi Értesítõt az Akadémia 1882-ben indította A Mathematikai és Physikai Lapokat Eötvös Loránd 1891-ben alapította LX. évfolyam 7
RészletesebbenÚjabb eredmények a kozmológiában
Kovách Ádám Újabb eredmények a kozmológiában A 2006. évben immár századik alkalommal kiadott fizikai Nobel-díjat a díj odaítélésében illetékes Svéd Királyi Tudományos Akadémia egyenlő arányban megosztva
RészletesebbenKÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. Az Univerzum keletkezése Amit tudunk a kezdetekről,
RészletesebbenTrócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2007. augusztus 12-19. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal l úl d á d Az elmúlt negyedszázad a mikro- és makrokozmosz fizikájának összefonódását
RészletesebbenA relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
RészletesebbenFekete lyukak, gravitációs hullámok és az Einstein-teleszkóp
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös
RészletesebbenKozmikus mikrohullámú háttérsugárzás anizotrópiája
Kozmikus mikrohullámú háttérsugárzás anizotrópiája Bántó Balázs Eötvös Loránd University Bántó Balázs (ELTE) CMB 1 / 23 Történelmi áttekintés Robert Henry Dicke 1941-ben, az M.I.T. sugárlaboratóriumában
Részletesebben2. Rész A kozmikus háttérsugárzás
2. Rész A kozmikus háttérsugárzás A kozmikus sugárzás felfedezése 1965: A. Penzias és R. Wilson (Bell Lab) érzékeny mikrohullámú antennája A kozmikus sugárzás 1965: A. Penzias és R. Wilson érzékeny mikrohullámú
RészletesebbenA KOZMIKUS HÁTTÉRSUGÁRZÁS KUTATÁSÁNAK TÖRTÉNETE ÉS KILÁTÁSAI
A kölcsönhatásokat egyesítô elméletek közül ma a szuperszimmetria (SUSY) a legnépszerûbb, bár igazát egyelôre semmiféle kísérleti megfigyelés nem bizonyítja. Szimmetriát feltételez a fermionok és bozonok
RészletesebbenA VILÁG KELETKEZÉSE: ÔSROBBANÁS = TEREMTÉS? A kozmológia és a vallások viszonya Horváth Dezső MTA KFKI RMKI, Budapest és ATOMKI, Debrecen
Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai és Természettudományi Értesítõt az Akadémia 1882-ben indította A Mathematikai és Physikai Lapokat Eötvös Loránd 1891-ben alapította LX. évfolyam 7
RészletesebbenAz Einstein egyenletek alapvet megoldásai
Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann
RészletesebbenBevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely.
A FÖLD GÖMB ALAKJA, MÉRETE, FORGÁSA A Föld alakja Égbolt elfordul világtengely. Vízszintessel bezárt szöge helyfüggő földfelszín görbült. Dupla távolság - dupla szögváltozás A Föld gömb alakú További bizonyítékok:
RészletesebbenModern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék
Modern kozmológia Horváth István NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék 2015 a fény nemzetközi éve 1015 Ibn Al-Haytham optika 1815 Fresnel fény hullámelmélete 1865 Maxwell egyenletek
RészletesebbenAz optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
RészletesebbenNemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az
RészletesebbenCERN: a szubatomi részecskék kutatásának európai központja
CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az
RészletesebbenBevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
RészletesebbenKÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. 1 Az Univerzum keletkezése Amit tudunk a kezdetekről,
RészletesebbenAz Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.
A világ keletkezése Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.Gamov elméleti fizikus dolgozott ki az, ún. "Big-bang",
RészletesebbenAZ UNIVERZUM GYORSULÓ TÁGULÁSA
bességet adunk irányukat pedig a helyvektorokkal ugyanakkora szöget bezárónak vesszük A rendszert ily módon elindítva a testek Kepler-mozgást végeznek miközben konfigurációjuk önmagához hasonló (konvex
RészletesebbenFöldünk a világegyetemben
Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője
RészletesebbenKozmológiai n-test-szimulációk
Kozmológiai n-test-szimulációk Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 21. Inhomogenitások az Univerzumban A háttérsugárzás lecsatolódásakor (z 1100)
RészletesebbenVálaszok a feltett kérdésekre
Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan
RészletesebbenAz Univerzum szerkezete
Az Univerzum szerkezete Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március Kifelé a Naprendszerből: A Kuiper(-Edgeworth)-öv
RészletesebbenA világegyetem szerkezete és fejlődése. Összeállította: Kiss László
A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.
RészletesebbenIndul az LHC: a kísérletek
Horváth Dezső: Indul az LHC: a kísérletek Debreceni Egyetem, 2008. szept. 10. p. 1 Indul az LHC: a kísérletek Debreceni Egyetem Kísérleti Fizikai Intézete, 2008. szept. 10. Horváth Dezső horvath@rmki.kfki.hu
RészletesebbenPósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
RészletesebbenAxion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
RészletesebbenFriedmann egyenlet. A Friedmann egyenlet. September 27, 2011
A September 27, 2011 A 1 2 3 4 A 1 2 3 4 A Robertson-Walker metrika Konvenció: idő komponenseket 4. helyre írom. R-W metrika: R(t) 2 0 0 0 1 kr 2 g = 0 R(t) 2 0 0 0 0 R(t) 2 r 2 sin 2 (Θ) 0 0 0 0 1 Ugyanez
RészletesebbenSzuperszimmetria keresése az LHC-nál CMS-megbeszélés, Budapest-Debrecen,
Szuperszimmetria keresése az LHC-nál CMS-megbeszélés, Budapest-Debrecen, 2008.01.22. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: SUSY-keresés
RészletesebbenA modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
RészletesebbenKomplex Rendszerek Fizikája Tanszék április 28.
A kozmikus mikrohullámú háttérsugárzás Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. A kozmikus háttérsugárzás eredete Az ősi plazmában a fotonok folyamatosan
RészletesebbenA csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
RészletesebbenAz LHC-kísérlet és várható eredményei
Horváth Dezső: Az LHC-kísérlet és várható eredményei Cegléd, 2009 ápr. 22. p. 1/45 Az LHC-kísérlet és várható eredményei Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet,
RészletesebbenHadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
RészletesebbenA Föld helye a Világegyetemben. A Naprendszer
A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000
RészletesebbenA FÖLD KÖRNYEZETE ÉS A NAPRENDSZER
A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,
RészletesebbenA csillagc. Szenkovits Ferenc 2010.03.26. 1
A csillagc sillagászatszat sötét kihívásai Szenkovits Ferenc 2010.03.26. 1 Kitekintés A távcsövek fejlıdése Fontosabb csillagászati felfedezések az ezredfordulón Napjaink csillagászati kihívásai Elképzelések
RészletesebbenKészítsünk fekete lyukat otthon!
Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! BH@HOME Barnaföldi Gergely Gábor, Bencédi Gyula MTA Wigner FK Részecske és Magfizikai Kutatóintézete AtomCsill 2012, ELTE TTK Budapest
RészletesebbenMagyar Tanárprogram, CERN, 2010
Horváth Dezső: Válaszok a kérdésekre CERN, 2010. augusztus 20. 1. fólia p. 1 Magyar Tanárprogram, CERN, 2010 Válaszok a kérdésekre (2010. aug. 20.) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
RészletesebbenNukleáris asztrofizika
Nukleáris asztrofizika 2015.05.14. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhető objektum: ~ 13,7 milliárd fényév sugarú gömb (4D), benne megfigyelhető
RészletesebbenA világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
RészletesebbenA CERN óriási részecskegyorsítója és kísérletei
Horváth Dezső: A CERN óriási részecskegyorsítója és kísérletei Kaposvár, 2009 ápr. 17. p. 1/47 A CERN óriási részecskegyorsítója és kísérletei Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai
RészletesebbenA Világegyetem leghidegebb pontja: az LHC
Horváth Dezső: A Világegyetem leghidegebb pontja: az LHC Székesfehérvár, 2010 jan. 19. p. 1/57 A Világegyetem leghidegebb pontja: az LHC Székesfehérvár, 2010 jan. 19. Horváth Dezső horvath@rmki.kfki.hu
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenRandall-Sundrum 2-es típusú bránelméletek és tachion sötét energia modell
Randall-Sundrum -es típusú bránelméletek és tachion sötét energia modell Doktori PhD értekezés Keresztes Zoltán Témavezető: Dr. Gergely Árpád László Fizika doktori iskola Szegedi Tudományegyetem Kísérleti
RészletesebbenTRIGONOMETRIKUS PARALLAXIS. Közeli objektum, hosszú bázisvonal nagyobb elmozdulás.
TRIGONOMETRIKUS PARALLAXIS Közeli objektum, hosszú bázisvonal nagyobb elmozdulás. Napi parallaxis: a bázisvonal a földfelszín két pontja Évi parallaxis: a bázisvonal a földpálya két átellenes pontja. A
RészletesebbenCsillagászati földrajz december 13. Kitekintés a Naprendszerből
Csillagászati földrajz 2018. december 13. Kitekintés a Naprendszerből Csillag: saját fénnyel világító égitest A csillagok tehát nem más fényét veri vissza (mint a bolygók, holdak, stb.) a gravitációs összehúzó
RészletesebbenTudomány és áltudomány. Dr. Héjjas István hejjas224@gmail.com
Tudomány és áltudomány Dr. Héjjas István hejjas224@gmail.com Manapság az áltudományok között szokás említeni elsősorban a természetgyógyászati módszereket, a parapszichológiai kísérleteket, valamint egyes
RészletesebbenA teljes elektromágneses spektrum
A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek
RészletesebbenHogyan lehet meghatározni az égitestek távolságát?
Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai
RészletesebbenRészecskefizika: elmélet és kísérlet
Horváth Dezső: Részecskefizika: elmélet és kísérlet Cegléd, 2010.02.06. p. 1/54 Részecskefizika: elmélet és kísérlet Ceglédi Téli Tábor, 2010.02.06 Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
RészletesebbenMikrokozmosz - makrokozmosz: hova lett az antianyag?
Horváth Dezső: Antianyag Trefort gimn, 2013.02.28 1. fólia p. 1/39 Mikrokozmosz - makrokozmosz: hova lett az antianyag? Horváth Dezső horvath wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és
RészletesebbenA sötét anyag nyomában
A sötét anyag nyomában Az atomoktól a csillagokig Dávid Gyula 2016. 09. 08. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig dgy 2016. 01. 21. A csillagok fénye
RészletesebbenAz elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
RészletesebbenBevezető kozmológia az asztrofizikus szemével. Gyöngyöstarján, 2004 május
Bevezető kozmológia az asztrofizikus szemével Gyöngyöstarján, 2004 május Tartalmi áttekintés A tágulás klasszikus megközelítése Ált. rel. analógiák Az Ősrobbanás pillérei A problémák és a megoldás, az
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenRészecskefizika és az LHC: Válasz a kérdésekre
Horváth Dezső: Részecskefizika és az LHC Leövey Gimnázium, 2012.06.11. p. 1/28 Részecskefizika és az LHC: Válasz a kérdésekre TÁMOP-szeminárium, Leövey Klára Gimnázium, Budapest, 2012.06.11 Horváth Dezső
RészletesebbenBevezetés a részecskefizikába
Horváth Dezső: Válaszok a kérdésekre CERN, 2008. augusztus 22. 1. fólia p. 1 Bevezetés a részecskefizikába Válaszok a kérdésekre (CERN, 2008. aug. 22.) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
RészletesebbenVan-e a vákuumnak energiája? A Casimir effektus és azon túl
Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?
RészletesebbenAz LHC első éve és eredményei
Horváth Dezső: Az LHC első éve és eredményei Eötvös József Gimnázium, 2010 nov. 6. p. 1/40 Az LHC első éve és eredményei HTP-2010 utóest, Eötvös József Gimnázium, 2010 nov. 6. Horváth Dezső horvath@rmki.kfki.hu
RészletesebbenTartalom. x 7.
Tartalom LEGYEN VILÁGOSSÁG! 23 A. MINDENT EGYESÍTŐ ELMÉLET? 29 1. A valóság rejtélye 29 Egy kettős rejtély 30 Az új világmodell: Kopernikusz, Kepler, Galilei 31 Az egyház a természettudomány ellen 34 A
RészletesebbenMagyarok a CMS-kísérletben
Magyarok a CMS-kísérletben LHC-klubdélután, ELFT, 2007. ápr. 16. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Magyarok a CMS-kísérletben LHC-klubdélután,
RészletesebbenA Standard modellen túli Higgs-bozonok keresése
A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth
RészletesebbenIndul a legnagyobb részecskegyorsító: elnyeli-e a Világot?
Horváth Dezső: Indul az LHC: elnyeli-e a Világot? Telki, 2009 jan. 8. p. 1/55 Indul a legnagyobb részecskegyorsító: elnyeli-e a Világot? Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai
RészletesebbenKvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
RészletesebbenFIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged
FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged A fizikai Nobel-díjat mintegy 115 éves történelme során több alkalommal
RészletesebbenRészecskefizikai gyorsítók
Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző
Részletesebben