Kozmológia egzakt tudomány vagy modern vallás?
|
|
- Marcell Gál
- 5 évvel ezelőtt
- Látták:
Átírás
1 Kozmológia egzakt tudomány vagy modern vallás? MOEV április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III.
2 Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős Vallás és kozmológia csak a modern korban vált el egymástól A gondolkodó ember igénye, hogy megértse a körülötte változó világot Vallás: kinyilatkoztatáson alapul Tudomány: elmélet és gyakorlat egybecsengően bizonyítja Tudomány-e a modern kozmológia?
3 XX. sz. első fele Kozmológia a XX. század elején Statikus világkép: nem tágul, nem húzódik össze a Világegyetem Einstein-egyenletek (1916): Friedmann-egyenletek: homogén, izotrop eset k: a téridő geometriájának jellege k = 1: zárt, k = -1: nyílt, k = 0: sík Λ: kozmológiai konstans R: skálafaktor, az Univerzum sugara
4 XX. sz. első fele Az áttörés Hubble (1924): galaxisok távolodnak egymástól Penzias & Wilson (1964): kozmikus mikrohullámú háttérsugárzás Hubble-törvény: 2,73K hőmérsékletű Szinte izotrop, feketetest sugárzás 10-5 nagyságrendig homogén Forró, kicsi tartományból kellett kiindulnia!
5 XX. sz. Az ősrobbanás elmélet Alapfeltevései: Fizikai törvények térben és időben változatlanok Kozmológiai elv: van olyan abszolút vonatkoztatási rendszer, melyben homogén és izotrop az Univerzum = a térben minden pont lényegileg ekvivalens Gravitáció az egyetlen nagy hatótávolságú kölcsönhatás, általános relativitáselmélet írja le (Einstein-egyenletek igazak) Az Univerzum történelme: s: Plack-korszak (kvantumgravitáció) s: wuon -korszak (elektrogyenge kölcsönhatás) s: kvark-korszak 10-6 s: hadron-korszak 10-2 s: lepton-korszak 10 s: sugárzás dominált kor 106s: anyag dominált kor, háttérsugárzás keletkezése 1010 s: galaxisok megjelenése, első fény
6 XX. sz. második fele Problémák a standard modellben a XX. század második fele Síkság problémája: k=0 nagyon pontosan (mérésekből), ehhez speciális kezdőfeltételek kellettek Megfigyelt homogenitás problémája: a háttérsugárzás izotóp ehhez egyszer oksági kapcsolatban kellett lennie mindennek Honnan származnak a kezdeti fluktuációk, amik a galaxisok kialakulásához vezettek? Inflációs kozmológia elmélete (1980): s-kor exponenciális felfúvódás 30 nagyságrenddel kitágul az Univerzum Következményei: Tér görbülete kellőképp kisimulhat a felfúvódás alatt A felfúvódás előtt oksági kapcsolatban volt minden Kezdetben kvantumfluktuációk, amiket a felfúvódás növelt makroszkopikus méretűre Kérdés: milyen az Univerzum anyagi összetétele?
7 XX. sz. második fele A sötét anyag Galaxisok dinamikája a csillagok átlagos körsebességének mért értékét nem magyarázza a látható anyag mennyisége (1980) sötét anyag létének feltételezése Miből állhat? Jelöltek: Axionok: hipotetikus könnyű részecskék (bozonok), alig hatnak kölcsön anyaggal WIMP-részecskék: gyengén kölcsönható, tömeggel rendelkező részecskék, pl. neutralínók (foton szuperszimmetrikus párja)
8 XXI. sz. Gyorsuló tágulás, sötét energia a XXI. század hajnala Szupernóvák Ia típusa (1998): Szoros fehér törpe vörös óriás kettős rendszer 1,4 MN A P átlépésekor (Chandrasekhar-határ) robban abszolút fényesség állandó távolság adódik Távolabb vannak tőlünk, mint azt a galaxisok vöröseltolódása alapján várták Világegyetem tágulásának üteme jelenleg gyorsul Magyarázat: a Λ kozmológiai konstans újrabevezetése Ha Λ dominánsan nagy, a tágulás üteme gyorsul Fizikailag: sötét energia Jelölt: vákuum energiája (kvantummechanikailag: határozatlansági reláció kvantumfluktuációk a vákuumban)
9 XXI. sz. Mit gondolunk ma az Univerzumról? ΛCDM-modell: Homogenitás, izotrópia, kozmológiai elv Az Univerzum anyagi összetétele: Barionos anyag: 0,045 Ebből közvetlenül megfigyelhető: 0,003 Ősrobbanás Infláció Sötét anyag: 0,22 Standard részecskefizika Sötét energia: 0,74 Egyéb: Sík Univerzum: Ω = 1,005 ± 0,006 Λ dominál jelenleg gyorsulva tágul Kora: 13,7±0,2 milliárd év Jövőkép: folytatódik a tágulás, üres Univerzum EM sugárzás Neutrínók
10 XXI. sz. Konstans? Problémák a ΛCDM-modellel: Milyen összetevők alkotják a sötét anyagot és a sötét energiát? Az Ia típusú szupernóvákból kapott eredményeket (gyorsuló tágulás, Λ újra bevezetése, sötét energia) többeknek is sikerült megcáfolniuk (Balázs et al. 2006) Elképzelhető, hogy a sötét anyag és a sötét energia kölcsönhat egymással Λ=konstans jól leírja a megfigyelt Világegyetemet, de vannak más alternatívák is, amiket a megfigyelések megengednek, pl. fejlődhet időben Sok más elmélet van: mást jósolnak az Univerzum korára és egész történelmére!
11 XXI. sz. Kitekintés: jövőbeli kutatások Gravitációs lencsézés: a szupernóvákétól független mérési módszer Λ-ra (2009) Sok megfigyelési adat kell: Általános relativitáselmélet gravitáció meggörbíti a téridőt a fény görbe úton halad a háttér képe felnagyított, torzított és máshol látszik Egy távoli kvazár fényét az előtérobjektum (nagy tömegű galaxis) úgy torzítja, mintha lencse lenne LSST: Nagy Szinoptikus Felmérő Távcső Észak-Chile, 8,4m-es tükör, 3,5 -os látómező, 24,5m határfényesség 3 naponként lefényképezné a teljes eget Terv: 2016 Euclid: ESA-űrtávcső a Nap-Föld L2-pontjába Cél: z<2 galaxisok foto- és spektrometriája optikai és közeli IR tartományban távolságmeghatározás sötét anyag és energia Terv: 2017
12 Hit és tudomány Mit hihetünk el? Összefoglalva: Sok mérési eredmény és még több új, bizonyításra váró elmélet Kozmológiai világképünk folyamatosan és gyors ütemben fejlődik Ezzel lépést kell tartanunk! Kritikus szemlélet kell a fizikusnak: nem szabad igazán hinnie egyikben sem, mert azzal a kreatív felfedezés megszűnik Kozmológia: Tudomány: Csak a méréssel bizonyított elméleteket fogadja el Képes a fejlődésre Vallás: Hisszük, hogy a világ megismerhető és megérthető Még mindig nem tudjuk, hogy miért kezdődött: mi volt az ősrobbanás pillanatában és előtte?
13 Források Források Cserepes Petrovay: Kozmikus fizika Regály Németh: Fejezetek a kozmológiából Martin Rees: Kozmikus otthonunk wikipedia.org hirek.csillagaszat.hu Measurements of Ω and Λ from 42 High-Redshift Supernovae, S. PERLMUTTER et al. APJ 517:565586, 1999 The Influence of Evolving Dark Energy on Cosmology, Luke Barnes et al., Publ.Astron.Soc.Austral.22:315,2005 John D. Barrow: What happened before the Big Bang? (
14 Köszönöm a figyelmet!
Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions
Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions D. Paraficz & J. Hjorth Gravitációs lencsék mint kozmikus vonalzók: Ω, Ω az idő késésből és a sebesség m Λ diszperzióból
A világegyetem elképzelt kialakulása.
A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,
2011 Fizikai Nobel-díj
2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784
Az univerzum szerkezete
Az univerzum szerkezete Dobos László dobos@complex.elte.hu É 5.60 2017. május 16. Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
Trócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2013. augusztus 12-17. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big
Bevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
Modern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék
Modern kozmológia Horváth István NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék 2015 a fény nemzetközi éve 1015 Ibn Al-Haytham optika 1815 Fresnel fény hullámelmélete 1865 Maxwell egyenletek
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.
1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény
Trócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2015. augusztus 16-22. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
A sötét anyag és sötét energia rejtélye
A sötét anyag és sötét energia rejtélye Cynolter Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Részecskefizika Határok Nélkül 2018. november 17. ELTE TTK Cynolter Gábor Sötét anyag és energia... A Standard
Bevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2016, CERN, 2016.08.16. p. 1 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2016, CERN, 2016 augusztus 16. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös
A relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
Részecskefizika 2: kozmológia
Horváth Dezső: Kozmológia Debreceni Egyetem, BSc, 2014.04.22. p. 1/41 Részecskefizika 2: kozmológia Debreceni Egyetem, BSc, 2014.04.22. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,
Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12.
Galaxisfelmérések: az Univerzum térképei Bevezetés a csillagászatba 4. 2015. május 12. Miről lesz szó? Hubble vagy nem Hubble? Galaxisok, galaxishalmazok és az Univerzum szerkezete A műszerfejlődés útjai
Ősrobbanás: a Világ teremtése?
Horváth Dezső: A kozmológia alapjai Telki, 2010.01.14 p. 1/37 Ősrobbanás: a Világ teremtése? (A kozmológia alapjai) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest
AZ UNIVERZUM GYORSULÓ TÁGULÁSA
bességet adunk irányukat pedig a helyvektorokkal ugyanakkora szöget bezárónak vesszük A rendszert ily módon elindítva a testek Kepler-mozgást végeznek miközben konfigurációjuk önmagához hasonló (konvex
Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
Van-e a vákuumnak energiája? A Casimir effektus és azon túl
Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?
A világ keletkezése: Ősrobbanás és teremtés
Horváth Dezső: A világ keletkezése Biatorbágy, 2013.04.26. p. 1/49 A világ keletkezése: Ősrobbanás és teremtés Mini Mindentudás Egyeteme, Biatorbágy, 2013.04.26. Horváth Dezső horvath.dezso@wigner.mta.hu
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az
MODERN CSILLAGÁSZATI VILÁGKÉPÜNK
MODERN CSILLAGÁSZATI VILÁGKÉPÜNK STONEHENGE-TŐL A KOZMOLÓGIAI NOBEL-DÍJIG Dr. Both Előd a Magyar Asztronautikai Társaság alelnöke Szent László Gimnázium, Természettudományos Önképzőkör Budapest, 2015.
Kozmológia és vallás
Horváth Dezső: Kozmológia és vallás RMKI, 2010.02.08. p. 1/32 Kozmológia és vallás (Ősrobbanás és teremtés) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és
Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja
Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával Szondy György ELFT tagja? GPS ELFT Fizikus Vándorgyűlés Szombathely, 2004. Augusztus 24.-27. Ált. Rel. GRAVITÁCIÓ
A világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: A világ keletkezése Mecha-TÖK, Budapest, 2014.05.23. p. 1 A világ keletkezése: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest
Kozmológia: a világ keletkezése ősrobbanás és teremtés
Horváth Dezső: Kozmológia: a világ keletkezése Mártély, 2014. 07.24. p. 1 Kozmológia: a világ keletkezése ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,
Nukleáris asztrofizika
Nukleáris asztrofizika 2015.05.14. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhető objektum: ~ 13,7 milliárd fényév sugarú gömb (4D), benne megfigyelhető
Bevezető kozmológia az asztrofizikus szemével. Gyöngyöstarján, 2004 május
Bevezető kozmológia az asztrofizikus szemével Gyöngyöstarján, 2004 május Tartalmi áttekintés A tágulás klasszikus megközelítése Ált. rel. analógiák Az Ősrobbanás pillérei A problémák és a megoldás, az
FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged
FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged A fizikai Nobel-díjat mintegy 115 éves történelme során több alkalommal
Kozmikus mikrohullámú háttérsugárzás anizotrópiája
Kozmikus mikrohullámú háttérsugárzás anizotrópiája Bántó Balázs Eötvös Loránd University Bántó Balázs (ELTE) CMB 1 / 23 Történelmi áttekintés Robert Henry Dicke 1941-ben, az M.I.T. sugárlaboratóriumában
Bevezetés a kozmológiába 2: ősrobbanás és vidéke
Horváth Dezső: Kozmológia-2 HTP-2016, CERN, 2016.08.17. p. 1/39 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2016, CERN, 2016 augusztus 17. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
CERN: a szubatomi részecskék kutatásának európai központja
CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az
2. Rész A kozmikus háttérsugárzás
2. Rész A kozmikus háttérsugárzás A kozmikus sugárzás felfedezése 1965: A. Penzias és R. Wilson (Bell Lab) érzékeny mikrohullámú antennája A kozmikus sugárzás 1965: A. Penzias és R. Wilson érzékeny mikrohullámú
Trócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2007. augusztus 12-19. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal l úl d á d Az elmúlt negyedszázad a mikro- és makrokozmosz fizikájának összefonódását
KÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. Az Univerzum keletkezése Amit tudunk a kezdetekről,
Bevezetés a kozmológiába 2: ősrobbanás és vidéke
Horváth Dezső: Kozmológia-2 HTP-2014, CERN, 2014.08.20. p. 1/34 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2014, CERN, 2014 augusztus 20. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
Részecskefizika kérdések
Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-
Készítsünk fekete lyukat otthon!
Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! BH@HOME Barnaföldi Gergely Gábor, Bencédi Gyula MTA Wigner FK Részecske és Magfizikai Kutatóintézete AtomCsill 2012, ELTE TTK Budapest
Kozmológia: ősrobbanás és teremtés
Horváth Dezső: Kozmológia Kult. szalon, Budapest, 2014.09.24. p. 1 Kozmológia: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és MTA Atommagkutató
Kozmológia és vallás - a világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: Kozmológia és vallás Semmelweiss Egyetem, Budapest, 2018.02.14. p. 1 Kozmológia és vallás - a világ keletkezése: ősrobbanás és teremtés Tudomány és Művészet Kórélettana, Semmelweiss Egyetem,
A világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: A világ keletkezése Szalon, Budapest, 2014.05.16. p. 1 A világ keletkezése: ősrobbanás és teremtés Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és
Bevezetés a kozmológiába 2: ősrobbanás és vidéke
Horváth Dezső: Kozmológia-2 HTP-2018, CERN, 2018.08.23. p. 1/43 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2018, CERN, 2018 augusztus 23. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged
A gammakitörések gyakorisága és hatása a földi életre Jelenleg a Föld körül keringô mesterséges holdak naponta átlagosan egy gammakitörést észlelnek. Minthogy a gammakitörések akkora távolságról látszanak,
Az Univerzum szerkezete
Az Univerzum szerkezete Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március Kifelé a Naprendszerből: A Kuiper(-Edgeworth)-öv
A LEHETSÉGES VILÁGOK LEGJOBBIKA?
A LEHETSÉGES VILÁGOK LEGJOBBIKA? avagy miért létezünk egyáltalán? Gesztesi Albert Filozófiai Vitakör, 2009. május 15. Magyarázzuk meg, hogy mit látunk! Nem csak látjuk, de értjük is amit látunk. Miért
A világ keletkezése. Horváth Dezső.
Horváth Dezső: A Világ keletkezése Szent István Gimnázium, 2010. jún. 9. p. 1/44 A világ keletkezése (Ősrobbanás = teremtés?) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet,
Az Einstein egyenletek alapvet megoldásai
Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann
Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
A világ keletkezése: ősrobbanás és teremtés
Horváth Dezső: A Világ keletkezése Eger, 2010 szept. 24. p. 1/45 A világ keletkezése: ősrobbanás és teremtés Eszterházy Károly Főiskola, Eger, 2010 szept. 24. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI
Randall-Sundrum 2-es típusú bránelméletek és tachion sötét energia modell
Randall-Sundrum -es típusú bránelméletek és tachion sötét energia modell Doktori PhD értekezés Keresztes Zoltán Témavezető: Dr. Gergely Árpád László Fizika doktori iskola Szegedi Tudományegyetem Kísérleti
Az elemek eredete I.
Az elemek eredete I. A Föld kontinentális kérgében ma 90 elem (H U), de 112 ismert: - az első 82 (H Pb) stabil nuklid is (Tc és Pm nincs a természetben), - a 83-92 (Bi U) csak radioaktív nuklid ( 209 Bi,
A modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged,
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport Fizikus Vándorgyűlés Szeged, 2016.08.25 Vázlat Mértékelméletek Tulajdonságaik Milyen fizikát írnak le? Perturbációszámítás
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
Határtalan neutrínók
Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
A Világ keletkezése: mese a kozmológiáról
Horváth Dezső: A Világ keletkezése Budapest, 2011.11.22. p. 1/47 A Világ keletkezése: mese a kozmológiáról Lauder-iskola, Budapest, 2011 november 22. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
Kozmológiai n-test-szimulációk
Kozmológiai n-test-szimulációk Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 21. Inhomogenitások az Univerzumban A háttérsugárzás lecsatolódásakor (z 1100)
Komplex Rendszerek Fizikája Tanszék április 28.
A nagyléptékű szerkezet kialakulása, fejlődése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. Az Univerzum sűrűségfluktuációinak fejlődése A struktúra kis
A Föld helye a Világegyetemben. A Naprendszer
A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000
Újabb eredmények a kozmológiában
Kovách Ádám Újabb eredmények a kozmológiában A 2006. évben immár századik alkalommal kiadott fizikai Nobel-díjat a díj odaítélésében illetékes Svéd Királyi Tudományos Akadémia egyenlő arányban megosztva
Statisztika a csillagászatban
Statisztika a csillagászatban Kóspál Ágnes MTA Csillagászati és Földtudományi Kutatóközpont Konkoly-Thege Miklós Csillagászati Intézet Földi sokaságok, égi tünemények A statisztika a tudományok világában
NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja
NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel
A sötét anyag nyomában
A sötét anyag nyomában Az atomoktól a csillagokig Dávid Gyula 2016. 09. 08. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig dgy 2016. 01. 21. A csillagok fénye
A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
Válaszok a feltett kérdésekre
Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER
A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,
Fontos tudnivalók. Fizikai állandók táblázata. Hasznos matematikai összefüggések
Fontos tudnivalók Az elméleti forduló időtartama 5 óra. A feladatok hibátlan megoldásával összesen 450 pontot lehet szerezni, a részpontszámok az egyes kérdéseknél zárójelben fel vannak tüntetve. Figyelem!
Megmérjük a láthatatlant
Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy
A gamma-kitörések vizsgálata. a Fermi mesterséges holddal
A gamma-kitörések vizsgálata Szécsi Dorottya Eötvös Loránd Tudományegyetem Természettudományi Kar Fizika BSc III. Témavezető: Horváth István Zrínyi Miklós Nemzetvédelmi Egyetem 1 Bevezetés és áttekintés
A galaxisok csoportjai.
A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,
Gravitáció az FLRW univerzumban Egy szimpla modell
Gravitáció az FLRW univerzumban Egy szimpla modell Összefoglaló Az FLRW metrikát alkalmazva, a Friedmann-egyenletekből kiindulva, az elektromágneses és gravitációs sugárzás hasonlósága alapján meghatározható
További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott
Az isteni a-tom További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott jövő problémája TIMOTHY FERRIS: A világmindenség.
Kozmikus záporok és észlelésük középiskolákban
Magfizika és Részecskefizika előadás Szegedi Egyetem, Kísérleti Fizikai Tanszék 2012. 10. 16 Kozmikus záporok és észlelésük középiskolákban Csörgő Tamás MTA Wigner Fizikai Kutatóközpont Részecske és Magfizikai
Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.
A világ keletkezése Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.Gamov elméleti fizikus dolgozott ki az, ún. "Big-bang",
Friedmann egyenlet. A Friedmann egyenlet. September 27, 2011
A September 27, 2011 A 1 2 3 4 A 1 2 3 4 A Robertson-Walker metrika Konvenció: idő komponenseket 4. helyre írom. R-W metrika: R(t) 2 0 0 0 1 kr 2 g = 0 R(t) 2 0 0 0 0 R(t) 2 r 2 sin 2 (Θ) 0 0 0 0 1 Ugyanez
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
A Föld mint fizikai laboratórium
A Föld mint fizikai laboratórium Az atomoktól a csillagokig Dávid Gyula 2006. 01. 12. A Föld - régóta ismert fizikai objektum triviális jól ismert nem ismert fizikai tulajdonságok alkalmazások más rendszerek,
Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés
Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Hajdu Tamás & Császár Anna & Perger Krisztina & Bőgner Rebeka A csillagászok egyik legnagyobb problémája a csillagászati objektumok távolságának
Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369
arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz
Z bozonok az LHC nehézion programjában
Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések
Az ősrobbanás elmélete
Az ősrobbanás elmélete Kozmológia és kozmogónia Kozmológia: a világmindenséggel mint összefüggő, egységes egésszel, tér- és időbeli szerkezetével, keletkezésével, fejlődésével foglalkozó tudomány. Kozmogónia:
A világ keletkezése. Horváth Dezső.
Horváth Dezső: Ősrobbanás és teremtés Gimi-osztály Egyed Katiéknál, 2010.04.10. p. 1/45 A világ keletkezése (Ősrobbanás és teremtés) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai
A csillagok kialakulása és fejlődése; a csillagok felépítése
A csillagok kialakulása és fejlődése; a csillagok felépítése Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március
Nukleáris asztrofizika
Nukleáris asztrofizika 2011.05.10. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhetı objektum: ~ 13 milliárd fényév sugarú gömb (4D), benne megfigyelhetı
A tau lepton felfedezése
A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)
Tudomány és áltudomány. Dr. Héjjas István hejjas224@gmail.com
Tudomány és áltudomány Dr. Héjjas István hejjas224@gmail.com Manapság az áltudományok között szokás említeni elsősorban a természetgyógyászati módszereket, a parapszichológiai kísérleteket, valamint egyes
Quo vadis, theoria chordarum? A húrelmélet státusza és perspektívái
Quo vadis, theoria chordarum? A húrelmélet státusza és perspektívái Takács Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Szkeptikus klubest 2012. február 21. 1 Quo vadis, Domine? Venio Romam iterum crucifigi.
Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.
Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ
A Mössbauer-effektus vizsgálata
A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának
A világegyetem szerkezete és fejlődése. Összeállította: Kiss László
A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.
A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak