Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja
|
|
- Artúr Illés
- 8 évvel ezelőtt
- Látták:
Átírás
1 Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával Szondy György ELFT tagja? GPS ELFT Fizikus Vándorgyűlés Szombathely, Augusztus Ált. Rel.
2 GRAVITÁCIÓ leírások Klasszikus gravitáció TÉR: Fénysebesség c =? IDŐ: Szinkronizáció ν Atomic =? Általános Relativitáselmélet Nincs ν Atomic =állandó c = állandó Riemann Lineáris Relativitás GPS Van ν Atomic = ν 0 f(φ) Javított Janossy (Ether-alapú) c = c 0 g(φ) Minkowski METRIKA KOZMOLÓGIA Szingularitás Dicke Konform tranzformáció ~Rosen metrika Tranzformáció Feketelyuk Multiverzum elmélet HASZNÁLAT ideális területe Lokális jelenségek (Ekvivalencia elv) Kvantumgravitáció Kozmológia Részecskefizika Égi Mechanika (Szuperpozíció) Szondy: Ált.Rel. alternatív modellek 2
3 Téridő mérések A fizikai valóság mérése kulcsfontosságú a megismerés során A mérés elmélete Összehasonlítjuk a MÉRENDŐ-t egy ETALON-nal valamilyen MÉRŐMŰSZER segítségével A TÉRIDŐ-t (atom-)óra és FÉNYSUGÁR segítségével mérjük (Kiegészítésképpen a fénysebesség definícióját használjuk.) A lehetséges hibák korrekciója Etalon IGEN: kalibrálás Mérőműszer ESETLEGES (pl. A mérés irányának megfordítása) Hibák korrekciója az Általános Relativitáselmélet esetén Etalon Atomóra: Ideális, nem szükséges kalibrálni Mérőműszer Fénysugár: Gravitációs vöröseltolódást szenved (integrálni kellene a fénysugár útja mentén) csak KÖZELÍTÉS Az Általános Relativitáselmélet NEM IDEÁLIS a Téridő mérésekhez! Szondy: Ált.Rel. alternatív modellek 3
4 GPS mérések A műholdas navigáció (GPS) a relativisztikus mérések legelterjdtebb alkalmazása Korrekciók a GPS esetén Etalon Atomóra, de: KALIBRÁLÁS szükséges (Korrekciót alkalmaznak a gravitációs potenciál függvényében) Mérőműszer Fénysugár: IDEÁLIS NINCS gravitációs vöröseltolódás Elméleti korlátozás A téridőt Euklideszinek (sík) tekinti Sapphiro hatást (fény lassulás) elhanyagolja Gyakorlat A mérések gyakorlatilag egyazon gravitációs potenciálon történnek = A téridő gyakorlatilag Euklideszinek tekinthető A matematikai KOMPLEXITÁS nagyságrenileg kisebb, mint az Ált. Rel. esetén A GPS IDEÁLIS a mérésekhez! Szondy: Ált.Rel. alternatív modellek 4
5 Ált. Rel. alternatívák - 1 Lineáris (Brans-Dicke) Relativitás Mérés az eredeti Brans-Dicke elméletben Etalon Atomóra: Not ideal, a frekvencia függ a helytől f(x) - KALIBRÁLÁS szükséges Mérőműszer Fénysugár: NEM IDEÁLIS, DE a gravitációs vöröseltolódás egy helyfüggő skalárral f(x) korrigálandó Speciális definíció f(x) a vöröseltolódás KIKÜSZÖBÖLÉSÉRE Instrument Light Beam: IDEAL No gravitational red-shift Eredmény A Lineáris Relativitás GPS Riemann kiterjesztése! Konform tranzformáció használható a Lineáris Relativitás és az Általános Relativitáselmélet (amint azt Dicke is leírta) A gravitációs mezőnek nincs energiája A tömegek és energiák lineárisan adódnak össze Kvantumgravitációs célra alkalmazható! Szondy: Ált.Rel. alternatív modellek 5
6 Ált. Rel. alternatívák 2a A javítot Jánossy leírás Jánossy: A relativisztikus gravitációt megpróbálta sík (Minkowski) téridőn leírni gyakorlatilag Éter alapon Az eredmény JELLEGÉBEN (kvalitatív) jó Az eredmény ÉRTÉKÉBEN (kvantitatív) rossz: Éppen a helyes értékek fele adódott Fényelhajlásra A Merkúr pályaelhajlás relativisztikus részére (Egyébként Dicke szintén említi az éter alapú leírás lehetőségét) A probléma oka Önkényes feltevés, hogy a részecske mérete állandó Javítot Jánossy leírás A RÉSZECSKE MÉRETE FÜGG a gravitációs POTENCIÁL-tól Helyes értékek a Fényelhajlásra A Merkúr pályaelhajlás relativisztikus részére Valós alternatíva az Ált. Rel.-re sík téridőn! Szondy: Ált.Rel. alternatív modellek 6
7 Ált. Rel. Alternatívák 2b Szuperpozíció és többtest-probléma Kiegészítő módosításokra van szükség. Megfontolások: Meg kell szüntetni a szingularitást Lehetővé kell tenni a testek által létreozott terek szuperpozícióját A metrikát ki lehet számítani a tömegeloszlásból A Ricci scalar értéke nem kell zérus legyen Eredmény A metrika a jól ismert ROSEN metrika transzformált alakja Az így kapott metrikát át lehet transzformálni a Lineáris Relativitás formájára Ideális Égi Mechanikai és Kozmológiai problémák megoldásához! Szondy: Ált.Rel. alternatív modellek 7
8 KOZMOLÓGIAI meggondolások az alternatívák esetén A (Schwarzschild) FEKETE LYUK belseje Általános Relativitáselmélet: Instabil pályák az eseményhorizont közelében Alternatívák: A tér felfúvódása A kint és bent fogalmának megváltozása Multiverzum modell (Lee Smolin) A fekete lyuk belső tartománya = gyermek Univerzum Az univerzumokban különböző lehet a kozmológiai állandó Csak FÉREG-LYUKak léteznek (szülő és gyermek Univerzumok között) NAGY BUMM = Új Univerzum születésének pillanata egy fekete lyuk belsejében Alternatív kozmologikai válaszok! Szondy: Ált.Rel. alternatív modellek 8
9 Geometrikus Kvantumgravitáció Klasszikus relativisztikus gravitációelméletek Feltételezett gyenge mező (nincsenek kvantumjelenségek) Gravitációs potenciál részecske Geometrikus Kvantumgravitáció Egzakt megoldás Gravitációs potenciál = (geometria részecske) Szükséges egy Bohr jellegű részecskemodell A részecske nyugalmi tömege a tér helyi geometriájától (skalárgörbület) függ Jelöltek Húrelmélet Loop Kvantumgravitáció Szondy: Ált.Rel. alternatív modellek 9
10 Irodalom [1] Landau, Lifsic, Elméleti Fizika II, 405, 293-, Tankönyvkiadó (1976) [2] C. Brans and R. H. Dicke, Mach's Principle and a Relativistiv Theory of Gravitation, Phys. Rev. D (1961) [3] R. H. Dicke, Mach's Principle and Invariance under Transformation of Units, Phys. Rev. D (1962) [4] Lajos Jánossy, Relativitás Elmélet a fizikai valóság alapján, , (Akadémia 1973). [5] S. Kaniel and Y. Itin, Gravity on parallelizable manifold, gr-qc/ , (1997) [6] Dr. Kai Woehler, Multiverse, [7] Gy. Szondy, Korrekt mérések a téridoben, (2001) [8] Gy. Szondy, Linear Relativity as a Result of Unit Transformation physics/ , (2001) [9] Gy. Szondy, Mathematical Equivalency of the ether based gravitation theory of Janossy and General Relativity, gr-qc/ , (2003) [10] Gy. Szondy, Allowing superposition in classical Relativistic gravitation, (2003). [11] Gy. Szondy, Léggömb Relativitás (ismeretterjesztő), (2001) Kapcsolat: gyorgy.szondy@fre .hu Szondy: Ált.Rel. alternatív modellek 10
A relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
METRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva:
METRIKA D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: dl = dx + dy Általános alak ha nem feltétlenül Descartes-koordinátákat használunk: dl =... dx 1 +... dx +...dx 1 dx +...dx
Az Einstein egyenletek alapvet megoldásai
Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann
a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)
a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika
ERŐ-E A GRAVITÁCIÓ? 1
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási rendszer, ahol érvényes Newton első törvénye (! # = 0 ' = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben tett felfedezések:
Friedmann egyenlet. A Friedmann egyenlet. September 27, 2011
A September 27, 2011 A 1 2 3 4 A 1 2 3 4 A Robertson-Walker metrika Konvenció: idő komponenseket 4. helyre írom. R-W metrika: R(t) 2 0 0 0 1 kr 2 g = 0 R(t) 2 0 0 0 0 R(t) 2 r 2 sin 2 (Θ) 0 0 0 0 1 Ugyanez
Készítsünk fekete lyukat otthon!
Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! BH@HOME Barnaföldi Gergely Gábor, Bencédi Gyula MTA Wigner FK Részecske és Magfizikai Kutatóintézete AtomCsill 2012, ELTE TTK Budapest
Kozmológia egzakt tudomány vagy modern vallás?
Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős
Előzmények: matematika Előzmények: fizika Az általános relativitáselmélet Furcsa következmények Tanulságok. SZE, Fizika és Kémia Tsz. v 1.
Fizikatörténet Az általános relativitáselmélet története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 AFKT 5.2.6 AFKT 5.2.7 A párhuzamossági axióma Euklidesz geometriája 2000 évig megingathatatlannak
A NEHÉZSÉGI ERŐTÉRREL KAPCSOLATOS FIZIKAI ALAPFOGALMAK ÁTTEKINTÉSE
A NEHÉZSÉGI ERŐTÉRREL KAPCSOLATOS FIZIKAI ALAPFOGALMAK ÁTTEKINTÉSE A fizikai erőterekkel kapcsolatos kérdések a természettudományok legizgalmasabb problémái. Ilyen kérdések például: mi a gravitációs erőtér,
Fizikai geodézia és gravimetria / 1. A NEHÉZSÉGI ERŐTÉR SZERKEZETE. TÉRERŐSSÉG VAGY GYORSULÁS? JELENTŐSÉGE A GEODÉZIÁBAN.
MSc Fizikai geodézia és gravimetria / 1. BMEEOAFML01 A NEHÉZSÉGI ERŐTÉR SZERKEZETE. TÉRERŐSSÉG VAGY GYORSULÁS? JELENTŐSÉGE A GEODÉZIÁBAN. A fizikai erőterekkel kapcsolatos kérdések a természettudományok
ERŐ-E A GRAVITÁCIÓ? 1. példa:
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási r rendszer, ahol érvényes Newton első törvénye ( F e = 0 " a r = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben
Egy keveset a bolygók perihélium - elfordulásáról
1 Egy keveset a bolygók perihélium - elfordulásáról Szép ábrákat / animációkat találtunk az interneten, melyek felkeltették érdeklődésünket. Ilyen az 1. ábra is. 1. ábra forrása: https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/drehung_der_apsidenlinie.
A NEHÉZSÉGI ERŐTÉRREL KAPCSOLATOS FIZIKAI ALAPFOGALMAK ÁTTEKINTÉSE. Völgyesi Lajos *1,2
A NEHÉZSÉGI ERŐTÉRREL KAPCSOLATOS FIZIKAI ALAPFOGALMAK ÁTTEKINTÉSE Völgyesi Lajos *1,2 Review of technical terms used in gravity field interpretation - Correct usage of certain terms and units is the question
A modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
Quo vadis, theoria chordarum? A húrelmélet státusza és perspektívái
Quo vadis, theoria chordarum? A húrelmélet státusza és perspektívái Takács Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Szkeptikus klubest 2012. február 21. 1 Quo vadis, Domine? Venio Romam iterum crucifigi.
Van-e a vákuumnak energiája? A Casimir effektus és azon túl
Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?
Typotex Kiadó. Záró megjegyzések
Záró megjegyzések Az olvasó esetleg hiányolhatja az éter szót, amely eddig a pillanatig egyáltalán nem fordult elő. Ez a mulasztás tudatos megfontoláson alapul: Ugyanazért nem kerítettünk szót az éterre,
(Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban?
Próba vizsgakérdések (A téridő fizikájától a tér és idő metafizikájáig) (Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban? Mit
Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
ÁLTALÁNOS RELATIVITÁSELMÉLET
ÁLTALÁNOS RELATIVITÁSELMÉLET 1943 2004 Perjés Zoltán ÁLTALÁNOS RELATIVITÁSELMÉLET I AKADÉMIAI KIADÓ, BUDAPEST Megjelent a Magyar Tudományos Akadémia támogatásával ISBN 963 05 8423 9 Kiadja az Akadémiai
Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ
Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Válaszok Szenthe János opponens. FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire
Válaszok Szenthe János opponens Rácz István MTA KFKI RMKI FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire 1. Az első kérdés: Lát-e lehetőséget
Téridő. Lovasi Balázs
Lovasi Balázs Téridő A tér fogalmát minden körülmények között a testi tárgy fogalmának kell megelőznie. Bizonyos látási és tapintási benyomásoknak megfelelnek, az idő változásával nyomon követhetők, a
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged,
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport Fizikus Vándorgyűlés Szeged, 2016.08.25 Vázlat Mértékelméletek Tulajdonságaik Milyen fizikát írnak le? Perturbációszámítás
Kozmológiai n-test-szimulációk
Kozmológiai n-test-szimulációk Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 21. Inhomogenitások az Univerzumban A háttérsugárzás lecsatolódásakor (z 1100)
A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.
1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
Set to collective motion
Viszontválasz Szabó Lászlónak Válaszoltál a szemináriumi előadásodhoz írt megjegyzéseimre. Idézeteim kapcsán ennek a válasznak az oldalszámaira hivatkozom. Csúsztatás (5. oldal):... ez volt a beszédem
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
Gravitációs lencsézés alternatív gravitációelméletekben
SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR ELMÉLETI FIZIKAI TANSZÉK FIZIKA DOKTORI ISKOLA Gravitációs lencsézés alternatív gravitációelméletekben Ph.D. értekezés tézisei Szerz : Horváth
SZÁZ ÉVES AZ ÁLTALÁNOS RELATIVITÁSELMÉLET*
Magyar Tudomány 2015/6 SZÁZ ÉVES AZ ÁLTALÁNOS RELATIVITÁSELMÉLET* Szabados B. László az MTA doktora, tudományos tanácsadó, MTA Wigner Fizikai Kutatóközpont RMI Elméleti Osztály lbszab@rmki.kfki.hu Bevezetés
A Mössbauer-effektus vizsgálata
A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának
Válaszok a feltett kérdésekre
Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
A RELATIVITÁSELMÉLET KITERJESZTÉSE
A RELATIVITÁSELMÉLET KITERJESZTÉSE 1. Röviden a relativitáselméletről A relativitáselmélet mind a mai napig sok ember számára a fizika legérthetetlenebb, legmisztikusabb fejezetének számít. Sokan szeretnék
Gravitáció az FLRW univerzumban Egy szimpla modell
Gravitáció az FLRW univerzumban Egy szimpla modell Összefoglaló Az FLRW metrikát alkalmazva, a Friedmann-egyenletekből kiindulva, az elektromágneses és gravitációs sugárzás hasonlósága alapján meghatározható
Az éter (Aetherorether) A Michelson-Morley-kísérlet
Az éter (Aetherorether) A Michelson-Morley-kísérlet Futó Bálint Modern Fizikai Kísérletek Szeminárium Fizika a XIX. században Mechanika Optika Elektrodin. Abszolút tér és idő Young és mások Az éter a medium
Megemlékezés. Patkós András ÖSSZEFOGLALÁS
, 738 742 DOI: 10.1556/2065.179.2018.5.16 Megemlékezés STEPHEN HAWKING TUDOMÁNYOS HAGYATÉKA A GRAVITÁCIÓS SZINGULARITÁSOKTÓL A KOZMOLÓGIAI INFORMÁCIÓVESZTÉS PARADOXONÁNAK MEGOLDÁSI JAVASLATÁIG STEPHEN
Speciális relativitás
Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja
FIZIKAI NOBEL-DÍJ, Az atomoktól a csillagokig dgy Fizikai Nobel-díj 2013 a Higgs-mezôért 10
FIZIKAI NOBEL-DÍJ, 2013 Az atomoktól a csillagokig dgy 2013. 10. 10. Fizikai Nobel-díj 2013 a Higgs-mezôért 10 A tömeg eredete és a Higgsmező avagy a 2013. évi fizikai Nobel-díj Az atomoktól a csillagokig
MTA Wigner Fizikai Kutatóközpont, RMI Elméleti Osztály 1525 Budapest 114, P.f Január 25. Kivonat
Száz éves az általános relativitáselmélet Szabados B. László MTA Wigner Fizikai Kutatóközpont, RMI Elméleti Osztály 1525 Budapest 114, P.f. 49 2015 Január 25 Kivonat Áttekintjük az általános relativitáselmélet
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions
Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions D. Paraficz & J. Hjorth Gravitációs lencsék mint kozmikus vonalzók: Ω, Ω az idő késésből és a sebesség m Λ diszperzióból
További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott
Az isteni a-tom További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott jövő problémája TIMOTHY FERRIS: A világmindenség.
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
A relativitáselmélet alapjai
A relativitáselmélet alapjai További olvasnivaló a kiadó kínálatából: Bódizs Dénes: Atommagsugárzások méréstechnikái Frei Zsolt Patkós András: Inflációs kozmológia Geszti Tamás: Kvantummechanika John D.
Relativisztikus elektrodinamika röviden
Relativisztikus elektrodinamika röviden További olvasnivaló a kiadó kínálatából: Patkós András: Bevezetés a kvantumfizikába: 6 előadás Feynman modorában Bódizs Dénes: Atommagsugárzások méréstechnikái Frei
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
Precesszáló kompakt kettősök szekuláris dinamikája
Precesszáló kompakt kettősök szekuláris dinamikája Keresztes Zoltán, Tápai Márton, Gergely Á. László Szegedi Tudományegyetem Elméleti Fizikai Tanszék, Kísérleti Fizikai Tanszék Tartalom Változók a kettősök
Fontos tudnivalók. Fizikai állandók táblázata. Hasznos matematikai összefüggések
Fontos tudnivalók Az elméleti forduló időtartama 5 óra. A feladatok hibátlan megoldásával összesen 450 pontot lehet szerezni, a részpontszámok az egyes kérdéseknél zárójelben fel vannak tüntetve. Figyelem!
Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20.
A görbületek világa 1 Kristály Sándor Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest 2015. június 20. 1 Az MTA Bolyai János Kutatói Ösztöndíj által támogatott kutatás. Eukleidészi világnézet
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell
A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési
Speciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Az idő problémája a kanonikus gravitációban
Az idő problémája a kanonikus gravitációban Gergely Árpád László Szegedi Tudományegyetem 2012 A probléma A Schrödinger egyenletben az idő és a tér markánsan szétválik nem árt, ha tudjuk, mi az idő Miként
A legkisebb részecskék a világ legnagyobb gyorsítójában
A legkisebb részecskék a világ legnagyobb gyorsítójában Varga Dezső, ELTE Fiz. Int. Komplex Rendszerek Fizikája Tanszék AtomCsill 2010 november 18. Az ismert világ építőkövei: az elemi részecskék Elemi
Hipotézis: (2) A relativisztikus energia-impulzus egyenlet szerint az energia és mozgásmennyiség az alábbi szerint függ össze:
Hipotézis: Ha E = m x c, akkor v = c x sin Absztrakt: A cikk bevezeti a Lorentz szorzó szögfüggvényes alakját, melyből több következtetést képez. Az Univerzum oszcillációjának lehetőségét írja le, majd
Ψ - 1/v 2 2 Ψ/ t 2 = 0
ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
Holográfia a részecskefizikában
Atomoktól a csillagokig: 2017. október 12. Holográfia a részecskefizikában Bajnok Zoltán MTA, Wigner Fizikai Kutatóközpont 4D Minkowski tér 5D gömb 5D anti de Sitter tér idö tér extra dimenzió Hány dimenziós
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
A speciális relativitáselmélet alapjai
A speciális relativitáselmélet alapjai A XIX-XX. századforduló táján, amikor a mechanika és az elektromágnességtan alapvető törvényeit már jól ismerték, a fizikát sokan befejezett tudománynak gondolták.
MŰSZAKI FIZIKA II. Földtudományi mérnöki MSc mesterszak. 2017/18 II. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
MŰSZAKI FIZIKA II. Földtudományi mérnöki MSc mesterszak 2017/18 II. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
Nukleáris asztrofizika
Nukleáris asztrofizika 2011.05.10. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhetı objektum: ~ 13 milliárd fényév sugarú gömb (4D), benne megfigyelhetı
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
Nukleáris asztrofizika
Nukleáris asztrofizika 2015.05.14. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhető objektum: ~ 13,7 milliárd fényév sugarú gömb (4D), benne megfigyelhető
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő
1 / 32 Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő Fodor Gyula MTA KFKI Részecske- és Magfizikai Kutatóintézet Integrálhatóság Nyári Iskola Budapest, 2008 augusztus 25 Bevezetés 2 / 32
A sötét anyag nyomában
A sötét anyag nyomában Az atomoktól a csillagokig Dávid Gyula 2016. 09. 08. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig dgy 2016. 01. 21. A csillagok fénye
Intelligens Közlekedési Rendszerek 2
Intelligens Közlekedési Rendszerek 2 Máté Miklós 2016 Október 11 1 / 14 Szenzor (érzékelő): mérés, detektálás Mérés elmélet emlékeztető Jó mérőműszer tulajdonságai Érzékeny a mérendő tulajdonságra Érzéketlen
Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók
Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás
FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN
Rácz István FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN Doktori értekezés tézisei MTA KFKI RMKI Budapest, 2010 2 1. Témaválasztás Az Einstein-elméletben a feketelyukakkal kapcsolatos tudásunk igen
A Wigner FK részvétele a VIRGO projektben
Kettős rendszerek jellemzőinek meghatározása gravitációs hullámok segítségével A Wigner FK részvétele a VIRGO projektben Vasúth Mátyás PhD, MTA Wigner FK A Magyar VIRGO csoport vezetője MTA, 2016.05.05
Klasszikus és kvantum fizika
Klasszikus és kvantum fizika valamint a Wigner függvény T.S. Biró MTA Fizikai Kutatóközpont, Budapest 2017. november 13. T.S.Biró Wigner 115, Budapest, 2017. Nov. 15. Biró Klassz kvantum 1 / 22 Abstract
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Gravitációs fényelhajlás gömbszimmetrikus téridőkben
SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar ELMÉLETI FIZIKA TANSZÉK Fizika BSc Szakdolgozat Gravitációs fényelhajlás gömbszimmetrikus téridőkben Deák Bence Témavezető: Dr. Keresztes
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
59. Fizikatanári Ankét
59. Fizikatanári Ankét 1957. Budapest, 1. Középiskolai Fizikatanári Ankét Ha 1960-ban nem maradt volna el, akkor az idei lenne a 60. középiskolai ankét. 1977. Nyíregyháza, I. Általános Iskolai Fizikatanári
Gravitációs hullámok,
Mechwart nap, 2016 Gravitációs hullámok, avagy a 2017. évi Nobel-díj Dr. Kardos Ádám Tudományos főmunkatárs Debreceni Egyetem, Fizikai Intézet Bevezetés helyett Bevezetés helyett 2015 Szeptember 14. 11:50:45
I. Adatlap. Berzsenyi Dániel Főiskola fizika alapképzési (Bachelor) szak indítási kérelme
I. Adatlap 3. Indítandó alapszak megnevezése: fizika alapképzési szak 4. Az oklevélben szereplő szakképzettség megnevezése: alapokleveles fizikus (szakiránnyal) 5. Az indítani tervezett szakirány megnevezése:
GPS és atomóra. Kunsági-Máté Sándor. Fizikus MSc 1. évfolyam
GPS és atomóra Kunsági-Máté Sándor Fizikus MSc 1. évfolyam Informatikai eszközök fizikai alapjai, 2017. március 1. Eötvös Loránd Tudományegyetem, Természettudományi Kar, Budapest Történeti bevezető 1957
A modern fizika születése
A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik