Válaszok Szenthe János opponens. FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire
|
|
- Dávid Vörös
- 8 évvel ezelőtt
- Látták:
Átírás
1 Válaszok Szenthe János opponens Rácz István MTA KFKI RMKI FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire 1. Az első kérdés: Lát-e lehetőséget arra, hogy a 6. fejezet eredményei a tengelyszimmetria fogalmának definíciójában szereplő összes feltétel teljesüléséig fejlődjenek tovább? 1.1. Válasz az első kérdésre: A rövid válasz az, hogy igen. Attól tartok, hogy jogos a kérdésben implicit módon megbújó kritika. Bármely témakörben az ott aktívan kutatók gyakran elkövetik azt a hibát, hogy legvégül mindig csak a sarkalatos probléma valamely matematikai értelemben ekvivalens megfogalmazásával foglalkoznak. Így történhetett meg az, hogy a tengelyszimmetria létezésének bizonyítására hivatott 6. fejezet megírása során nem fordítottam elegendő figyelmet arra, hogy az ismertetett eredmények vonatkozó következményeit megfelelő részletességgel ismertessem. A kérdésre adott válasz azonban egyszerűen megadható a dolgozatban bemutatott eredmények felhasználásával. Ahogyan azt a dolgozat bevezető részében is megfogalmazom, a 6. fejezetben négydimenziós, stacionárius, aszimptotikusan sík elektrovákuum feketelyuk-téridőket tekintünk. Feltéve, hogy a vizsgált feketelyuk eseményhorizontja nem-degenerált, megmutatom, hogy a t a a stacionárius Killing-vektormező mellett mindig létezik egy olyan másik az eseményhorizonttal kompatibilis k a Killing-vektormező, mely sima esetben a feketelyuk-tartományban, analitikus esetben a külső kommunikációs tartományban is értelmezhető, és amely által indukált izometria-transzformációkra nézve az eseményhorizont egy Killing-horizont, és amelynek hatásával szemben maga az elektromágneses tér is invariáns [2, 3]. A kérdés lényegében arra vonatkozik, hogy az eseményhorizonttal kompatibilis Killing-vektormező létezése feltéve, hogy az különbözik az aszimptotikusan stacionárius Killing-vektormezőtől valóban garantálja-e azt, hogy a kérdéses feketelyuk tengelyszimmetrikus. 1
2 Az igenlő válasz bizonyításához az alábbi érvelés révén juthatunk el. Először is bármely két Killing-vektormező állandó együtthatókkal vett lineárkombinációja is Killing-vektormező, így a ϕ a = t a k a (1) vektormező a téridő izometria-transzformációit határozza meg. Ezek után érdemes felidézni, hogy ahogyan azt a dolgozatom 6.3 alfejezetében megmutatom a stacionárius feketelyuk-téridők N eseményhorizontja mindig az N = Σ R szorzattopológiával rendelkezik, továbbá a állítás értelmében, amikor a fényszerű energiafeltétel teljesül és ez mindig teljesül a fejezetben vizsgált vákuum, vagy elektrovákumm téridőkre a t a Killing-vektormezőre nézve stacionárius feketelyuk-téridőben a t a által meghatározott φ t -izometriacsoport egyrészt az N eseményhorizontot önmagára képezi le, másrészt létezik egy olyan t 0 > 0 szám úgy, hogy φ t0 az N eseményhorizont minden egyes fényszerű generátorát önmagára képezi le. Az utóbbi állítás bizonyítása úgy történt, hogy megmutattam, a φ t -izometriacsoportnak az N-en futó Killingpályák S terére vett ϕ t visszahúzottja egy ϕ t : S S izometriacsoportot határoz meg az S -en indukált Riemann-féle metrikára nézve. A bizonyítás hátralévő részében azt kihasználva, hogy az S sokaság topológiailag S 2, megmutattam, hogy ϕ t -hez létezik egy ϕ a térszerű Killing-vektormező S -en, melynek Killing-pályái zártak. Ez a ϕ a vektormező nem más, mint a keresett négydimenziós tengelyszimmetria előképe, melyet az N eseményhorizontot az S Killing-pályák terébe képező π : N S leképezés segítségével visszahúzhatunk N-re, ahol ϕ a az őt meghatározó eljárás, valamint az N-en indukált metrika degeneráltsága folytán éppen a t a k a különbség Killing-vektorral esik egybe. Ezek után, például a C esetben a kezdőérték-problémák és téridő-szimmetriák kapcsolatát vizsgáló [4, 5] munkáimban található eredmények felhasználásával, megmutatható, hogy a t a k a különbség vektor a fentebbi megjegyzésünknek és a dolgozatom tételében megfogalmazott feltételeknek megfelelően éppen a keresett zárt pályákkal rendelkező tengelyszimmetriát meghatározó Killing-vektormező a J + [N] U halmaz felett. A dolgozat 6.4 alfejezetében ismertetett érvelés segítségével az analitikus esetben is mutatható, hogy az N eseményhorizont egy elegendően kicsiny nyílt környezetében t a k a a keresett tengelyszimmetriát adja. Szeretném végül megjegyezni, hogy amint az a k a eseményhorizonttal kompatibilis Killing-vektormező konstrukciójából következik, a t a és k a Killing-vektormezők kommutálnak. Következésképpen a [t a,ϕ a ] kommutátor is zérus. Ezen túlmenően, ahogyan az a dolgozatom 2.3 alfejezetében, a definíciót követő részben felidézett eredményekből következik, a kérdéses elektrovákuum feketelyuk-téridők szükségképpen rendelkeznek a t ϕ tükrözési szimmetriával is. 2
3 2. A második kérdés: Míg Hawking feketelyuk-topológiai tételében az eseményhorizont egy szelése szerepel, addig e tétel általánosítását célzó, Galloway és munkatársaitól származó, tételben egy térszerű hiperfelületen levő marginálisan csapdázott felület. Lát-e lehetőséget arra, hogy e két tétel kapcsolata pontosabban tisztázódjon? 2.1. Válasz a második kérdésre: Valóban van egy látszólagos ellentmondás abban, ahogyan Galloway és munkatársai eredményét Hawking feketelyuk-tételének általánosításaiként emlegetjük. Ugyan mindkét tétel az Einstein-elméletre vonatkozik, az általánosítások azonban nemcsak négydimenzióban érvényesek, így ebben az vonatkozásban biztosan általánosabbak Hawking tételénél. A látszólagos különbség valójában onnan ered, hogy míg Hawking a tételét olyan stacionárius feketelyuk-téridőkre bizonyította, amelyek regulárisan megjósolhatóak ezek eleget tesznek Penrose gyenge Kozmikus Cenzor hipotézisének is addig az általánosítások a szó legszorosabb értelemében vett általános dinamikai feketelyukakra is érvényes formában kerültek megfogalmazásra. Így a látszólagos ellentmondás akkor is megmarad, ha figyelembe vesszük, hogy a Hawking-tételben tekintett stacionárius feketelyuk-téridő eseményhorizontjának szelései ugyanúgy marginálisan csapdázott felületek, mint a Galloway-ék tételeiben szereplő látszólagos, vagy dinamikus feketelyuk-horizont szelései. Ahogyan azt a dolgozatom 2.2-es alfejezetében felidézem, Hawking azt is bebizonyította [6, 7], hogy minden aszimptotikusan megjósolható téridőben a csapdázott felületeknek az eseményhorizont mögött, a feketelyuk tartományban kell elhelyezkedniük. Érdemes megjegyezni, hogy Hawking ezen eredményével összhangban, a dinamikus feketelyuk-téridők általános vizsgálataiban azt tapasztaljuk (lásd például [8]), hogy a látszólagos, vagy dinamikai horizont aszimptotikusan sík esetben mindig a feketelyuk-tartomány belsejében fut, és csak a dinamikai folyamatok lejátszódása után, közelít belülről az eseményhorizonthoz. Mindezekből automatikusan adódik a Hawking és Galloway-ék tételeiben alkalmazott feltételek és a használt bizonyítások egyes részleteinek szükségszerű eltérése is. Hawking azt mutatja meg, hogy amennyiben az eseményhorizont valamely szelése nem lenne gömbi topológiájú, úgy létezne az adott szelést teljes egészében a feketelyuk-tartomány komplementerébe képező olyan deformáció, amely eredményeként egy olyan csapdázott felület jelenne meg a külső kommunikációs tartományban, amelynek létezését éppen Hawking fent említett általános tétele zárja ki. Galloway és munkatársai nem használhatták ezt az indirekt bizonyítást, mert a fentebb említett példából is látszik, hogy az általános esetben a térszerű hiperfelületen fekvő marginálisan csapdázott felület deformációjával előállított felület nem kerül 3
4 25 τ c ρ 1. ábra. Az ábrán egy numerikus szimuláció segítségével követett gömbszimmetrikus (minden pont egy gömböt helyettesít) gravitációs összeomlás során kialakuló feketelyuk dinamikai horizontja (vastag folytonos vonal), valamint a centrumban elhelyezkedő görbületi szingularitás (vastag szaggatott vonal) látható [8]. A dinamikai horizont aszimptotikusan közelit az egyik közel egyenes kifelé futó fényszerű geodetikushoz, mely lényegében a kialakuló feketelyuk eseményhorizontjának is tekinthető. ki a feketelyuk-tartomány belsejéből. Éppen ezért vezetik be az általuk alkalmazott matematikai kerethez jobban illeszkedő szigorú értelemben vett stabilitási feltételt, mely lényegében azt biztosítja, hogy a használt térszerű hiperfelületen belül mozogva ne lehessen teljes egészében kifelé deformálni egy marginális csapdafelületet úgy, hogy az így kapott felület jövő-értelemben csapdázott legyen. Mindezekből az is következik, hogy abban az esetben, ha Galloway-ék tételét stacionárius feketelyuk-téridőkre alkalmaznánk, akkor a szigorú értelemben vett stabilitási feltételt lecserélhetnénk a Hawking által használt, aszimptotikusan megjósolhatóságra vonatkozó feltételre és így Hawking feketelyuk-topológiai tételének valóban egy szigorú értelemben vett általánosításához jutnánk. Gödöllő, 2011 május Rácz István Hivatkozások [1] Wald R M General relativity, University of Chicago Press, Chicago (1984) [2] H. Friedrich, I. Rácz and R.M. Wald: On rigidity of spacetimes with stationary eventor compact Cauchy horizons, Commun. Math. Phys (1999) 4
5 [3] I. Rácz: On further generalisation of the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon, Class. Quant. Grav (2000) [4] I. Rácz: On the existence of Killing vector fields, Class. Quant. Grav. 16, (1999) [5] I. Rácz: Symmetries of spacetime and their relation to initial value problems, Class. Quant. Grav. 18, (2001) [6] S.W. Hawking and G.R.F. Ellis: The large scale structure of spacetime, Cambridge University Press, Cambridge, (1973) [7] S.W. Hawking: Black holes in general relativity, Commun. Math. Phys. 25, (1972) [8] Péter Csizmadia, István Rácz: Gravitational collapse and topology change in spherically symmetric dynamical systems, Class. Quantum Grav (2010) 5
FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN
Rácz István FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN Doktori értekezés tézisei MTA KFKI RMKI Budapest, 2010 2 1. Témaválasztás Az Einstein-elméletben a feketelyukakkal kapcsolatos tudásunk igen
FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN
FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN Doktori értekezés Rácz István MTA KFKI RMKI Budapest 2010 Tartalomjegyzék 1. Bevezetés 5 1.1. Sötét csillag................................... 5 1.2.
Válaszok Gergely Árpád László opponens. FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire
Válaszok Gergely Árpád László opponens Rácz István MTA KFKI RMKI FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire 1. Az első kérdés: A második
FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN
FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN Doktori értekezés Rácz István MTA KFKI RMKI Budapest 2010 Tartalomjegyzék 1. Bevezetés 5 1.1. Sötét csillag................................... 5 1.2.
Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő
1 / 32 Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő Fodor Gyula MTA KFKI Részecske- és Magfizikai Kutatóintézet Integrálhatóság Nyári Iskola Budapest, 2008 augusztus 25 Bevezetés 2 / 32
Válaszok E. Szabó László opponens. FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire
Válaszok E. Szabó László opponens Rácz István MTA KFKI RMKI FEKETELYUKAK A GRAVITÁCIÓ GEOMETRIZÁLT ELMÉLETEIBEN című doktori értekezése kapcsán megfogalmazott kérdéseire 1. Az első kérdés: A 25. oldalon
Ramsey-féle problémák
FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:
Autonóm egyenletek, dinamikai rendszerek
238 8. Autonóm egyenletek, dinamikai rendszerek 8.8. tétel. (Andronov Witt) 5 6 Ha a Γ periodikus pálya karakterisztikus multiplikátorainak abszolút értéke 1-nél kisebb, akkor a Γ pálya stabilis határciklus.
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Az idő problémája a kanonikus gravitációban
Az idő problémája a kanonikus gravitációban Gergely Árpád László Szegedi Tudományegyetem 2012 A probléma A Schrödinger egyenletben az idő és a tér markánsan szétválik nem árt, ha tudjuk, mi az idő Miként
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20.
A görbületek világa 1 Kristály Sándor Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest 2015. június 20. 1 Az MTA Bolyai János Kutatói Ösztöndíj által támogatott kutatás. Eukleidészi világnézet
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
A hiperbolikus síkgeometria Poincaré-féle körmodellje
A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a
Wigner tétele kvantummechanikai szimmetriákról
Szegedi Tudományegyetem, Bolyai Intézet és MTA-DE "Lendület" Funkcionálanalízis Kutatócsoport, Debreceni Egyetem 2014. Október 30. Elméleti Fizika Szeminárium A tétel története Wigner tétele Tétel Legyen
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Formális nyelvek - 5.
Formális nyelvek - 5. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Lineáris
Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja
Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával Szondy György ELFT tagja? GPS ELFT Fizikus Vándorgyűlés Szombathely, 2004. Augusztus 24.-27. Ált. Rel. GRAVITÁCIÓ
Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
Kevert állapoti anholonómiák vizsgálata
Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom
MATEMATIKAI PROBLÉMAMEGOLDÓ GYAKORLAT
MATEMATIKAI PROBLÉMAMEGOLDÓ GYAKORLAT Ergodelmélet Dávid Szabolcs Papp Dániel Stippinger Marcell 2009.12.11 2 Definíció: A T endomorfizmust ergodikusnak nevezzük, ha bármely f L 2 függvényre f const. (Miután
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás
5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )
szerepet tölt be. A nagy evolúciós átmenetek szinte minden esetben tekinthetők
Vélemény Szolnoki Attila Együttműködés térbeli koevolúciós modellekben című MTA doktori értekezéséről. 1. A témaválasztásról Az együttműködés a biológiai összes szerveződési szintjén kulcsfontosságú szerepet
(Diszkrét idejű Markov-láncok állapotainak
(Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben
Formális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s
3. TENZORANALÍZIS Legyen V egy n-dimenziós vektortér, V a duális tere, T (k,l) V = V V V V a (k, l)-típusú tenzorok tere. Megállapodás szerint T (0,0) V = R (általában az alaptest). Ha e 1,..., e n V egy
Az Einstein egyenletek alapvet megoldásai
Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
1. A Hilbert féle axiómarendszer
{Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
Wigner FK RMI, Budapest
Térelméletek kvantálása görbült fix háttéren Rácz István Wigner FK RMI, Budapest Page 1 of 39 Szeged 2012. szeptember 28. Page 2 of 39 A háttérről: Nincs olyan végleges elmélet, amit a gravitáció kvantumelméletének
Alap fatranszformátorok II
Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Diszkrét Matematika MSc hallgatók számára. 4. Előadás
Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
ÁLTALÁNOS RELATIVITÁSELMÉLET
ÁLTALÁNOS RELATIVITÁSELMÉLET 1943 2004 Perjés Zoltán ÁLTALÁNOS RELATIVITÁSELMÉLET I AKADÉMIAI KIADÓ, BUDAPEST Megjelent a Magyar Tudományos Akadémia támogatásával ISBN 963 05 8423 9 Kiadja az Akadémiai
FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY
FÜGGVÉNYTANI ALAPOK Foglalkoztunk az alaptulajdonságnak tekinthető értelmezési tartománnyal, és a paritással, továbbá az összetett függvények képzési módjával, illetve ezeknek az elemi függvényekre való
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
Exponenciális, logaritmikus függvények
Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)
1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
Julia halmazok, Mandelbrot halmaz
2011. október 21. Tartalom 1 Julia halmazokról általánosan 2 Mandelbrot halmaz 3 Kvadratikus függvények Julia halmazai Pár deníció Legyen f egy legalább másodfokú komplex polinom. Ha f (ω) = ω, akkor ω
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
MM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
Kvantum marginális probléma és összefonódási politópok
Kvantum marginális probléma és összefonódási politópok Vrana Péter Budapesti műszaki és Gazdaságtudományi Egyetem Geometria Tanszék 04. október. / Összetett rendszerek Jelölések k darab részrendszer H,
Loops and Groups. tudni ezzel kapcsolatban valamit? A válasz: 4 nilpotenciaosztályú loopot sem találtak még kommutatív belső permutációcsoporttal.
Válasz Szendrei Máriának a Loops and Groups című doktori értekezésem bírálatára Mindenek előtt nagyon megköszönöm Szendrei Mária alapos és körültekintő munkáját, amit a nagyon jó kérdései is bizonyítanak.
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések
A Riemann-terekkel kapcsolatos fogalmak, jelölések Az R m euklideszi tér természetes bázisának az e 1 = (1, 0,..., 0),..., e m = (0,..., 0, 1) vektorokból álló bázist mondjuk. Legyen M egy összefügg nyílt
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
Eötvös Loránd Tudományegyetem
Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikai Intézet Az n-dimenziós hiperbolikus tér izometria csoportjának konjugált osztályai SZAKDOLGOZAT Szerző Harsányi Tamás Témavezető: Szeghy
1. FELADATSOR. x = u + v 2, y = v + z 2, z = z. u y + z. u x + y. v x + y. v y + z. w x + y. w y + z
1. FELADATSOR 1-0: Írjuk le az R3 euklideszi tér Riemann-metrikáját az u, v, z koordináták használatával, ahol x = u + v, y = v + z, z = z. Megoldás. (L. Gy.) 1. változat: Az eredeti metrika a x, x x,
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Feladatok Házi feladat. Keszeg Attila
2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
A vegetatív működés modelljei
Tartalom 1 Motiváció 2 Decentralizált irányítási modellek 3 Működőképesség és stabilitás 4 Összehasonlítás 5 Következtetések Az Anti-Equilibriumtól a Hiányig Az Anti-Equilibriumban ígért konstruktív kritika:
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
4. Előadás: Erős dualitás
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d
Opponensi vélemény. Fullér Róbert: Multicriteria Decision Models with Imprecise Information. című akadémiai doktori értekezéséről
Opponensi vélemény Fullér Róbert: Multicriteria Decision Models with Imprecise Information című akadémiai doktori értekezéséről Az értekezés témája a többkritériumú döntési modellek, a fuzzy rendszerek
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium
Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ
Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből
Matematika az építészetben
Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
ERŐ-E A GRAVITÁCIÓ? 1
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási rendszer, ahol érvényes Newton első törvénye (! # = 0 ' = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben tett felfedezések:
A klasszikus mechanika matematikai módszerei
A klasszikus mechanika matematikai módszerei Házi feladatok 2015/16 tavasz A feladatok közül szabadon lehet választani. Az összpontszám alapján alakul ki az érdemjegy a szokásos ponthatárokkal: 40-55-70-85.
[17] L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra, megjelenés alatt.
Beszámoló a T46023 pályázat zárójelentéséhez A projekt során megőrzési transzformációk szerkezetének a leírásával foglalkoztunk elsősorban kvantumstruktúrákon. Megőrzési transzformációkkal kapcsolatos
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
Az S 2 R tércsoportjainak az osztályozása
Az S 2 R tércsoportjainak az osztályozása Farkas József Zoltán Budapesti Műszaki Egyetem Természettudományi Kar III. évf. alkalmazott matematikus Témavezető: Dr. Molnár Emil egyetemi tanár TDK dolgozat
Gravitációs hullámok,
Mechwart nap, 2016 Gravitációs hullámok, avagy a 2017. évi Nobel-díj Dr. Kardos Ádám Tudományos főmunkatárs Debreceni Egyetem, Fizikai Intézet Bevezetés helyett Bevezetés helyett 2015 Szeptember 14. 11:50:45
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris
Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák