Diszkrét Matematika MSc hallgatók számára. 4. Előadás
|
|
- Zsanett Szilágyi
- 6 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d -gal jelöljük d, p R {, }). Igaz a következő Gyenge-dualitás tétel): d p. 1. Erős dualitás Az erős dualitás tétel azt mondja ki, hogy d = p bizonyos feltételek mellett. A bizonyos feltételekre sokféle lehetőség van. Egész iparág alakult ilyenek kifejlesztésére. Mi csak egy lehetőséget ismeretünk. 1. Tétel Slater-tétel). Adott a következő optimalizális probléma: Tegyük fel, hogy Minimalizáljuk cx),-et Feltéve, hogy f i x) 0 i = 1,..., k g i x) = 0 i = 1,...l 1) A probléma konvex. Tehát c és f i konvex függvény, g i pedig affin függvény. Ez azt jelenti, hogy a g i x) = 0 i = 1,..., l) feltételek a következő alakban írhatók: Ax b = 0, ahol A R l n és b R l. S) Létezik olyan s D, amelyre f i s) < 0 i = 1,...,k) és g i s) = 0 i = 1,..., l). Speciálisan s L. Továbbá s int D = {x i : r > 0 Bx, r) D}, D belső pontjainak halmaza, ahol Bx, r) az x középpontú r sugarú gömb. Ekkor erős dualitás van, azaz d = p. Megjegyzés. S)-et Slater feltételnek nevezzük. Az S)-beli feltételt kielégítő s pontokat Slater-pontoknak nevezzük. 1) és S) gyengíthetők. A tétel állítása igaz marad az alábbi gyengített) feltételek mellett: 1) 0 f i x) < 0, ha f i nem affin, továbbá f i s) 0, ha affin. S) 0 s relint D = D belső pontjai D affin burkában int D relint D). Az alábbiakban a bizonyítást írjuk le egy fontos feltevés mellett: A teljes sorrangú. A feltevés nélkül a bizonyítás megmaradna, csupán néhány technikai bonyodalommal lenne hosszadalmasabb. 4-1
2 Bizonyítás. Észrevétel 1. S)-ből következik, hogy L amiből p <. Továbbá a gyenge dualitásból következik az erős dualitás, ha p =. Így feltehető, hogy p >. Összegezve p R! Legyen E = {ϕ 1, ϕ 2,...,ϕ k, γ 1, γ 2,...,γ l, τ) R k R p R : x D, hogy F = {0, 0,..., 0, τ) R k R l R : τ < p }. Észrevétel 2. E, F konvexek Észrevétel 3. E zárt a ϕ i és τ koordináták növelésére. 2. Lemma. E F =. ϕ i f i x) i = 1,...,k γ i = g i x) i = 1,..., l τ cx)}, Bizonyítás. Lemmáé) Indirekt úton fogjuk bizonyítani. Tegyük fel, hogy v E F, azaz v E és v F. v F azt jelenti, hogy v = 0,...,0, τ), ahol τ < p. v E azt jelenti, hogy van olyan x D, amelyre f i x) 0, g i x) = 0, továbbá τ cx). Az első kettő feltételből kapjuk, hogy cx) p, amiből τ p. Ellentmondás. 3. Tétel Konvex halmazok szeperációs tétele Farkas lemma). K, L konvex és K L = akkor létezik H hipersík, amely elválasztja a két halmazt. Azaz úgy osztja fel a teret H és H zárt félsíkokra, hogy H K és H L. Ebből a tételből és a 2. Lemmából adódik, hogy létezik n = λ 1, λ 2,...,λ k, µ 1,...,µ 2, ν) n R k+l+1 = R k R l R) nem-nulla vektor és α valós szám, hogy a H n,α = {x R k+l+1, n T x = α} hipersík két félterére: H n,k = {x Rk+l+1 : n T x α} E, H n,k = {x Rk+l+1 : n T x α} F. A 3. Észrevételből tudjuk, hogy az első k és az utolsó koordináta növelésével E-ben és így H -ben is maradunk. Ebből λ 0 és ν 0. Észrevétel 4. 0, 0, p ǫ) F, amiből 0, 0, p ǫ) H, azaz νp ǫ) α. Mivel ǫ > 0 tetszőleges, ǫ ց 0 esetén kapjuk, hogy νp α. Észrevétel 5. x D esetén fx), gx), cx)) E, továbbá H ). Kaptuk, hogy minden x D esetén: λ i f i x) + µ i g i x) + νcx) α. 4-2
3 A bizonyítás befejezése két eset vizsgálatára bomlik. 1. eset: ν 0 ν > 0). Ekkor minden x D-re Adódik L ν, µ ) i ν, x = λ i ν f ix) + µ i ν g ix) + cx) α ν. ĉ ν, µ ) i α ν ν p. ) k ν egyenlőtlenségből adódik, hogy d L λ i a duális optimalizálási feladat lehetséges megoldásai. Ebből és az előző ) p. A gyenge dualitással összevetve, kapjuk az erős dualitást. 2. eset: ν = 0., µ i ν ν Ekkor k λ if i x) + l µ ig i x) α νp = 0 minden x D esetén. Írjuk fel az egyenlőtlenséget x = s pontra, ahol s egy Slater-pont. λ i f i s) + µ i g i s) 0, ahol λ i 0, f i s) < 0 és g i s) = 0. Ekkor minden i-re λ i -nek nullának kell, hogy legyen. Kiinduló egyenlőtlenségünk újra egyszerűsödik: µ i g i x) 0, ami átírva µ T Ax b) 0 minden x D-re. Legyen x = s + δ, ahol δ R k+l+1 és δ < r 0, ahol r 0 olyan kicsi, hogy Bs, r 0 ) D. µ T As + δ) b) = µ T As + Aδ b) = µ T b + Aδ b) = µ T Aδ = µ T A) i δ i 0. Ez teljesül δ-ra is, amiből µ T A = 0. Kezdeti feltételünk A teljes sorrangú) miatt µ = 0. Így n = λ, µ, ν) = 0, ami ellentmondás. 2. Lazaság slackness) Jelölés. Legyen x L. Azt mondjuk, hogy x-ben az i-edik egyenlőtlenség feltétel laza, ha f i x) < 0. Legyen x primál optimális hely és λ, µ ) duál optimális hely. Speciálisan λ 0. A gyenge duálitás bizonyítását összefoglaljuk. Legyen Lλ, µ, x) = cx) λ T fx) + µ T gx). Ekkor d =ĉλ, µ ) = inf Lλ, µ, x) = inf x D cx) + λ T fx) + µ T gx)) cx ) + λ T fx ) + µ T gx ) cx ) = p. Amennyiben erős dualitás van, akkor végig egyenlőség teljesül. 4-3
4 Definíció. Legyen x 0 primál lehetséges megoldás, azaz f i x 0 ) 0, g i x 0 ) = 0. Legyen λ 0, µ 0 ) duál lehetséges megoldás, azaz λ 0 ) i 0. Ezen megoldáspár rendelkezik a komplemetáris lazasági tulajdonsággal, ha i) f i x 0 ) < 0, akkor λ 0 ) i = 0. ii) λ 0 ) i > 0, akkor f i x 0 ) = 0. Észrevétel. Az első egyenlőtlenségben akkor és csak akkor van egyenlőség, ha x és λ, µ ) komplementárisan laza tulajdonságú. Észrevétel. Ha a második egyenlőtlenség egyenlőség, akkor cx)+λ T fx)+µ T gx) függvényeknek x egy optimális helye. Tegyük fel, hogy c és f i függvények differenciálhatók. Ekkor cx ) + λ T fx ) + µ T gx ) = 0. Abból, hogy c, f i konvexek és g i affin következik, hogy cx) + λ T fx) + µ T gx) is konvex λ 0). Ekkor a fenti feltétel szükséges és elégséges is a második egyenlőtlenség egyenlőségként való teljesüléséhez. 3. Karash Kuhn Tucher-tétel A tétel Karash MSc tézise volt a 30-as években. Később Kuhn és Tucker is felfedezik a tételt és ők tették ismertté az 50-es években. Összefoglalva a fentieket: Tegyük fel, hogy c, f i differenciálhatóak, x primál optimum, és λ, µ ), duál optimum. Továbbá tegyük fel, hogy erős dualitás van. Karash Kuhn Tucker-feltételek x, λ, µ -ra a következők: KKT1) f i x ) 0 és g i x ) = 0, azaz x L. KKT2) λ i 0, azaz λ, µ ) duál lehetséges megoldás. KKT3) x és λ, µ ) komplementárisan laza tulajdonságú. KKT4) c)x ) + T fx ) + µ gx ) = Tétel KKT tétel). Tegyük fel, hogy g i affin függvény, c, f i konvex és differenciálható függvények. Akkor és csak akkor van erős dualitás, ha van olyan x 0 és λ 0, µ 0 ), amelyek teljesítik a KKT1), KKT2), KKT3), KKT4) feltételeket. Sőt, ha van ilyen x 0, λ 0, µ 0 ), akkor ezek primál és duál optimum helyek. Bizonyítás. A szükségességet láttuk korábban. Az elégséghez ĉλ 0, µ 0 ) = infcx)+λ T 0 fx)+µt 0 gx)) = cx 0 )+λ T 0 fx 0)+µ T 0 gx) = cx 0 ). KKT4) KKT3) Hiszen KKT4 a differenciálhatósági és konvexitási feltétel miatt szükséges és elegendő feltétele annak, hogy x 0 optimum hely legyen. Ezekután d KKT2) ĉλ 0, µ 0 ) = cx 0 ) p KKT1) gyenge dualitás Az egyenlőtlenség láncból kiolvasható, hogy végig egyenlőség teljesül, azaz erős dualitás van, x 0 primál optimál hely és λ 0, µ 0 ) duál optimál hely. 4-4 d.
5 Példa. Minimalizáljuk 1 2 xt Px + q T x + r-et Feltéve, hogy Ax = b, ahol P S+ n. cx) konvex P S+) n és differenciálható, azaz KKT tétel alkalmazható. Olyan x 0, µ 0 értékeket kell keresnünk, amleyek mind a négy Karush Kuhn-Tucker-feltételt teljesítik: KKT1): Ax 0 = b. KKT2):. KKT3):. KKT4): cx 0 ) + µ T 0 Ax b) x=x0 = 0, azaz Px 0 + q + A T µ 0 = 0. A keresett x 0, µ 0 -k tulajdonságai összefoglalva: Pn n A T n k A k n 0 ) ) x0 = µ 0 q b Ezen egyenletrendszer megoldhatóságának diszkussziója, illetve megoldhatóság esetén a megoldás megkeresése egyszerű lineáris algebrai feladat. ). 4-5
4. Előadás: Erős dualitás
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d
11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás
Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek
Diszkrét Matematika MSc hallgatók számára. 14. Előadás
Diszkrét Matematika MSc hallgatók számára 14. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2012. Nem maradt rá idő 1. Feltétel nélküli optimalizálás 1.1. Az eljárások alapjai A feltétel nélküli
Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
Nemlineáris programozás: algoritmusok
Nemlineáris programozás: algoritmusok illes@math.elte.hu Operációkutatási Tanszék Budapest 2010. I. félév Feltétel nélküli optimalizálási feladat Feltétel nélküli optimalizálási feladat: Legyen adott az
4. Előadás. A legkisebb négyzetek problémája a következő optimalizálási alapfeladat: Minimalizáljuk
OPTIMALIZÁLÁSI ELJÁRÁSOK 4. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Magyari Nikolett 2011. március 2. 1. A legkisebb négyzetek probléma A legkisebb négyzetek problémája
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
Optimalizálási eljárások MSc hallgatók számára Előadás
Optimalizálási eljárások MSc hallgatók számára 2 3. Előadás Előadó: Hajnal Péter 2014. február 20-27. 1. Dualizálás Tekintsük az alábbi, explicit feltételekkel megadott optimalizálási feladatot, amelyet
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Lineáris programozás belsőpontos
Lineáris programozás belsőpontos módszerei illes@math.elte.hu Operációkutatási Tanszék Budapest 2007. február - április Speciális lineáris programozási feladat (példa) Legyen adott a következő lineáris
10. előadás. Konvex halmazok
10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Haladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris
Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
Paraméteres és összetett egyenlôtlenségek
araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:
DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék
FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
ANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0
Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek
7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Az impulzusnyomatékok általános elmélete
Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G
10. Előadás P[M E ] = H
HALMAZRENDSZEREK 10. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2010. április 20. Halmazrendszerek színezése Egy halmazrendszer csúcshalmazának színezése jó
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Paraméteres és összetett egyenlôtlenségek
araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Konvex optimalizálás feladatok
(1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
Az ellipszoid algoritmus
Az ellipszoid algoritmus Csizmadia Zsolt Eötvös Loránd Tudományegyetem Bevezető Az ellipszoid módszert a nemlineáris porgramozásra Shor [1970,0977] illetve Yudin és Nemirovskiî [1976] feljlesztették ki.
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
Függvények alkalmazása feladatokban. nemethj
Dr. Németh József Függvények alkalmazása feladatokban http://www.math.u-szeged.hu/ nemethj . Oldjuk meg a következő egyenletet: x 6 + 6 x x 5x 6. Megoldás. Vizsgáljuk az ÉT.-t! A bal oldalon x 6 0 x 6
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv
Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.
Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált
Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
Optimalizálási eljárások/operációkutatás MSc hallgatók számára
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 7. Előadás: MP(G) tesztelése, Gomory Hu-fák Előadó: Hajnal Péter 2018. tavasz 1. Egy vektor MP(G)-be esésének tesztelése A MP(G) Edmonds-tételbeli
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.
1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét