4. Előadás: Erős dualitás
|
|
- Edit Németh
- 5 évvel ezelőtt
- Látták:
Átírás
1 Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d -gal jelöljük d,p R {, }). Igaz a következő Gyenge-dualitás tétel): d p. 1. Erős dualitás Az erős dualitás tételről akkor beszélünk, ha d = p -t garantálni tudjuk bizonyos feltételek mellett. A bizonyos feltételekre sokféle lehetőség van. Egész iparág alakult ilyenek kifejlesztésére. Mi csak egy lehetőséget ismeretünk. 1. Tétel Slater-tétel). Adott a következő optimalizális probléma: Minimalizáljuk Feltéve, hogy cx),-et f i x) 0 i = 1,...,k g i x) = 0 i = 1,...l Tegyük fel, hogy 1) A probléma konvex. Tehát c és f i konvex függvény, g i pedig affin függvény. Ez azt jelenti, hogy a g i x) = 0 i = 1,...,l) feltételek a következő alakban írhatók: Ax b = 0, ahol A R l n és b R l. S) Létezik olyan s D, amelyre i) f i s) < 0 i = 1,...,k) és g i s) = 0 i = 1,...,l). Speciálisan s L. ii) Továbbá s int D = {x : r > 0 Bx,r) D}, D belső pontjainak halmaza, ahol Bx,r) az x középpontú r sugarú gömb. Ekkor erős dualitás van, azaz d = p. Megjegyzés. S)-et Slater-feltételnek nevezzük. Az S)-beli feltételt kielégítő s pontokat Slater-pontoknak nevezzük. Si) és Sii) gyengíthetők. A tétel állítása igaz marad az alábbi gyengített) feltételek mellett: Si) 0 Az s Slater-ponttól csak azt kívánjuk meg, hogy f i s) < 0, ha f i nem affin, továbbá f i s) 0, ha affin. Sii) 0 s relint D = D belső pontjai D affin burkában int D relint D). Az alábbiakban a bizonyítást írjuk le egy fontos feltevés mellett: A az egyenlőség, affin feltételrendszer mátrixa) teljes sorrangú. A feltevés nélkül a bizonyítás lényegi része megmaradna, csupán néhány technikai bonyodalommal lenne hosszadalmasabb. 4-1
2 Bizonyítás. Észrevétel 1. S)-ből következik, hogy L amiből p <. Továbbá a gyenge dualitásból következik az erős dualitás, ha p =. Így feltehető, hogy p >. Összegezve p R. Legyen E = {ϕ 1,ϕ 2,...,ϕ k,γ 1,γ 2,...,γ l,τ) R k R l R : x D,hogy F = {0,0,...,0,τ) R k R l R : τ < p }. Észrevétel 2. E, F konvexek Észrevétel 3. E zárt a ϕ i és τ koordináták növelésére. 2. Lemma. E F =. ϕ i f i x) i = 1,...,k γ i = g i x) i = 1,...,l τ cx)}, Bizonyítás. Lemmáé) Indirekt úton fogjuk bizonyítani. Tegyük fel, hogy v E F, azaz v E és v F. v F azt jelenti, hogy v = 0,...,0,τ), ahol τ < p. v E azt jelenti, hogy van olyan x D, amelyre f i x) 0, g i x) = 0, továbbá τ cx). Azaz x L, továbbá cx) τ < p, ami ellentmondás. 3. Tétel Konvex halmazok szeperációs tétele Farkas lemma). K, L konvex és K L = akkor létezik H hipersík, amely elválasztja a két halmazt. Azaz úgy osztja fel a teret H és H zárt félsíkokra, hogy H K és H L. Ebből a tételből és a 2. Lemmából adódik, hogy létezikn = λ 1,λ 2,...,λ k,µ 1,...,µ 2,ν) n R k+l+1 = R k R l R) nem-nulla vektor és α valós szám, hogy a H n,α = {x R k+l+1,n T x = α} hipersík két félterére: H n,α = {x Rk+l+1 : n T x α} E, H n,α = {x R k+l+1 : n T x α} F. A 3. Észrevételből tudjuk, hogy az első k és az utolsó koordináta növelésével E-ben és így H -ben is maradunk. Ebből λ 0 és ν 0. Észrevétel 4. 0,0,p ǫ) F, amiből 0,0,p ǫ) H, azaz νp ǫ) α. Mivel ǫ > 0 tetszőleges, ǫ ց 0 esetén kapjuk, hogy νp α. Észrevétel 5. x D esetén fx),gx),cx)) E, speciálisan H ). Kaptuk, hogy minden x D esetén: k λ i f i x)+ µ i g i x)+νcx) α. 4-2
3 A bizonyítás befejezése két eset vizsgálatára bomlik. 1. eset: ν 0 ν > 0). Ekkor minden x D-re Adódik λi L ν, µ ) i ν,x = k λi ) k ν egyenlőtlenségből adódik, hogyd c λ i λ i ν f ix)+ µ i ν g ix)+cx) α ν. λi c ν, µ ) i α ν ν p. a duális optimalizálási feladat lehetséges megoldásai. Ebből és az előző ) p. A gyenge dualitással összevetve, kapjuk az erős dualitást. 2. eset: ν = 0., µ i ν ν Ekkor k λ if i x)+ l µ ig i x) α νp = 0 minden x D esetén. Írjuk fel az egyenlőtlenséget x = s pontra, ahol s egy Slater-pont. k λ i f i s)+ µ i g i s) 0, ahol λ i 0,f i s) < 0 és g i s) = 0. Ekkor minden i-re λ i -nek nullának kell, hogy legyen. Kiinduló egyenlőtlenségünk újra egyszerűsödik: µ i g i x) 0, ami átírva µ T Ax b) 0 minden x D-re. Legyen x = s+δ, ahol δ R k+l+1 és δ < r 0, ahol r 0 olyan kicsi, hogy Bs,r 0 ) D. µ T As+δ) b) = µ T As+Aδ b) = µ T b+aδ b) = µ T Aδ = µ T A) i δ i 0. Ez teljesül δ-ra is, amiből µ T A = 0. Kezdeti feltételünk A teljes sorrangú) miatt µ = 0. Így n = λ,µ,ν) = 0, ami ellentmondás. 2. Lazaság slackness) Jelölés. Legyen x L. Azt mondjuk, hogy x-ben az i-edik egyenlőtlenség feltétel laza, ha f i x) < 0. Legyen x primál optimális hely és λ,µ ) duál optimális hely. Speciálisan λ 0. A gyenge duálitás bizonyítását összefoglaljuk. Legyen Lλ,µ,x) = cx)+λ ) T fx)+µ ) T gx). Ekkor d = cλ,µ ) = inflλ,µ,x) = inf x D cx)+λ ) T fx)+µ ) T gx)) cx )+λ ) T fx )+µ ) T gx ) cx ) = p. Amennyiben erős dualitás van, akkor végig egyenlőség teljesül. 4-3
4 Definíció. Legyen x 0 primál lehetséges megoldás, azaz f i x 0 ) 0, g i x 0 ) = 0. Legyen λ 0,µ 0 ) duál lehetséges megoldás, azaz λ 0 ) i 0. Ezen megoldáspár rendelkezik a komplemetáris lazasági tulajdonsággal, ha i) f i x 0 ) < 0, akkor λ 0 ) i = 0. ii) λ 0 ) i > 0, akkor f i x 0 ) = 0. Észrevétel. Az első egyenlőtlenségben akkor és csak akkor van egyenlőség, ha x és λ,µ ) komplementárisan laza tulajdonságú. Észrevétel. Ha a második egyenlőtlenség egyenlőség, akkor cx) + λ ) T fx) + µ ) T gx) függvényeknek x egy optimális helye. Tegyük fel, hogy c és f i függvények differenciálhatók. Ekkor cx )+λ ) T fx )+µ ) T gx ) = 0. Abból, hogy c, f i konvexek és g i affin következik, hogy cx) + λ ) T fx) + µ ) T gx) is konvex λ 0). Ekkor a fenti feltétel szükséges és elégséges is a második egyenlőtlenség egyenlőségként való teljesüléséhez. 3. Karush Kuhn Tucher-tétel A tétel Karush MSc tézise volt a 30-as években. Később Kuhn és Tucker is felfedezik a tételt és ők tették ismertté az 50-es években. Összefoglalva a fentieket: Tegyük fel, hogy c,f i differenciálhatóak, x primál optimum, és λ,µ ), duál optimum. Továbbá tegyük fel, hogy erős dualitás van. Karash Kuhn Tucker-feltételek x,λ,µ -ra a következők: KKT1) f i x ) 0 és g i x ) = 0, azaz x primál lehetséges megoldás. KKT2) λ i 0, azaz λ,µ ) duál lehetséges megoldás. KKT3) x és λ,µ ) komplementárisan laza tulajdonságú. KKT4) c)x )+λ ) T fx )+µ ) T gx ) = Tétel KKT tétel). Tegyük fel, hogy g i affin függvény, c,f i konvex és differenciálható függvények. Akkor és csak akkor van erős dualitás, ha van olyanx 0 és λ 0,µ 0 ), amelyek teljesítik a KKT1), KKT2), KKT3), KKT4) feltételeket. Sőt, ha van ilyen x 0,λ 0,µ 0 ), akkor ezek primál és duál optimum helyek. Bizonyítás. A szükségességet láttuk korábban. Az elégséghez cλ 0,µ 0 ) = infcx)+λ T 0 fx)+µt 0 gx)) = cx 0 )+λ T 0 fx 0)+µ T 0 gx) = cx 0 ). KKT4) KKT3) Hiszen KKT4 a differenciálhatósági és konvexitási feltétel miatt szükséges és elegendő feltétele annak, hogy x 0 optimum hely legyen. Ezekután d KKT2) cλ 0,µ 0 ) = cx 0 ) KKT1) p gyenge dualitás Az egyenlőtlenség láncból kiolvasható, hogy végig egyenlőség teljesül, azaz erős dualitás van, x 0 primál optimál hely és λ 0,µ 0 ) duál optimál hely. 4-4 d.
5 Példa. Minimalizáljuk 1 2 xt Px+q T x+r-et Feltéve, hogy Ax = b, ahol P S+. n cx) konvex P S+ n ) és differenciálható, azaz KKT tétel alkalmazható. Olyan x 0,µ 0 értékeket kell keresnünk, amelyek mind a négy Karush Kuhn-Tucker-feltételt teljesítik: KKT1): Ax 0 = b. KKT2):. KKT3):. KKT4): cx 0 )+µ T 0 Ax b) x=x 0 = 0, azaz Px 0 +q +A T µ 0 = 0. A keresett x 0,µ 0 -k tulajdonságai összefoglalva: ) ) ) Pn n A T n k x0 q =. A k n 0 b Ezen egyenletrendszer megoldhatóságának diszkussziója, illetve megoldhatóság esetén a megoldás megkeresése egyszerű lineáris algebrai feladat. Példa. Minimalizáljuk µ 0 Feltéve, hogy x 2 1 +x2 2 5, 2x x 1 x 2 +x x 1 10x 2 -et 3x 1 +x 2 6. Esetünkben D = R 2. Könnyen ellenőrizhető, hogy a célfüggvény konvex, az egyenlőtlenség feltételek f i függvényei is konvexek, minden előforduló függvény differenciálható. A KKT olyan primál/duál x 1,x 2,λ 1,λ 2 helyett keres, amelyek eleget tesznek a primál/duál feltételeknek KKT1) és KKT2)): x 2 1 +x2 2 5, 3x 1 +x 2 6, λ 1 0, λ 2 0. Továbbá KKT4) is teljesül. Ehhez: 2x x 1 x 2 +x x 1 10x 2 ) = x 2 1 +x 2 2x1 2 5) = 2x 2 Azaz KKT4) teljesülése kiírva: ) 4x1 +2x 2 10, 2x 1 +2x 2 10 ), 3x 1 +x 2 6) = ) x 1 +2x λ 1 x 1 +3λ 2 = 0, 2x 1 +2x λ 1 x 2 +λ 2 = 0. Amit még tudnia kell számnégyesünknek, az a komplementáris hézagosság tulajdonsága. Ez négyféle módon teljesülhet: I : x 2 1 +x2 2 = 5 és λ 1 0, 3x 1 +x 2 = 6 és λ
6 II : x 2 1 +x2 2 < 5 és λ 1 = 0, 3x 1 +x 2 < 6 és λ 2 = 0. III : x 2 1 +x 2 2 < 5 és λ 1 = 0, 3x 1 +x 2 = 6 és λ 2 0. IV : x 2 1 +x 2 2 = 5 és λ 1 0, 3x 1 +x 2 < 6 és λ 2 = 0. Elemi módszerekkel megállapítható, hogy I, II és III nem vezet megfelelő számnégyeshez. A IV lehetőség viszont, elvezet a x 1 = 1,x 2 = 2,λ 1 = 1,λ 2 = 0 megoldáshoz. Ebből adódik,hogy1, 2) egy primál optimális megoldás, 1, 0) egy duál optimális megoldás. Továbbá erős dualitás áll fenn. 4-6
Diszkrét Matematika MSc hallgatók számára. 4. Előadás
Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét
Részletesebben11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás
Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek
RészletesebbenDualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
RészletesebbenDiszkrét Matematika MSc hallgatók számára. 14. Előadás
Diszkrét Matematika MSc hallgatók számára 14. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2012. Nem maradt rá idő 1. Feltétel nélküli optimalizálás 1.1. Az eljárások alapjai A feltétel nélküli
RészletesebbenNemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
RészletesebbenBoros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
RészletesebbenNemlineáris programozás: algoritmusok
Nemlineáris programozás: algoritmusok illes@math.elte.hu Operációkutatási Tanszék Budapest 2010. I. félév Feltétel nélküli optimalizálási feladat Feltétel nélküli optimalizálási feladat: Legyen adott az
RészletesebbenA lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Részletesebben10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
RészletesebbenOptimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
RészletesebbenA szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Részletesebben4. Előadás. A legkisebb négyzetek problémája a következő optimalizálási alapfeladat: Minimalizáljuk
OPTIMALIZÁLÁSI ELJÁRÁSOK 4. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Magyari Nikolett 2011. március 2. 1. A legkisebb négyzetek probléma A legkisebb négyzetek problémája
RészletesebbenNemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
RészletesebbenSzemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
RészletesebbenOptimalizálási eljárások MSc hallgatók számára Előadás
Optimalizálási eljárások MSc hallgatók számára 2 3. Előadás Előadó: Hajnal Péter 2014. február 20-27. 1. Dualizálás Tekintsük az alábbi, explicit feltételekkel megadott optimalizálási feladatot, amelyet
RészletesebbenVEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
RészletesebbenMatematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
RészletesebbenLineáris programozás belsőpontos
Lineáris programozás belsőpontos módszerei illes@math.elte.hu Operációkutatási Tanszék Budapest 2007. február - április Speciális lineáris programozási feladat (példa) Legyen adott a következő lineáris
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
RészletesebbenA legjobb közeĺıtés itt most azt jelentette, hogy a lineáris
Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
RészletesebbenExplicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
RészletesebbenHadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
RészletesebbenAz impulzusnyomatékok általános elmélete
Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában
RészletesebbenMatematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Részletesebben1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
RészletesebbenFraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
RészletesebbenAlapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Részletesebben3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
RészletesebbenOpkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
RészletesebbenTotális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Részletesebben17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
RészletesebbenHaladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
RészletesebbenDiszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
RészletesebbenKonjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Részletesebben1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
RészletesebbenDR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék
FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Részletesebbenminden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Részletesebbenút hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.
1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost
Részletesebben1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
RészletesebbenGPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
RészletesebbenEgészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
RészletesebbenGeometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
RészletesebbenPrincipal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Részletesebben2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
Részletesebben10. előadás. Konvex halmazok
10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója
RészletesebbenA KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
RészletesebbenOptimálási módszerek Galántai Aurél
Optimálási módszerek Galántai Aurél 2004-2-8 Optimálási módszerek, 2003/2004, II. félév (óravázlat) 2 1 Bevezetés Optimalizálási feladat számos helyen elýofordul. Példák: 1. Dido probléma. 2. Legrövidebb
RészletesebbenA L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
RészletesebbenKétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
RészletesebbenAz ellipszoid algoritmus
Az ellipszoid algoritmus Csizmadia Zsolt Eötvös Loránd Tudományegyetem Bevezető Az ellipszoid módszert a nemlineáris porgramozásra Shor [1970,0977] illetve Yudin és Nemirovskiî [1976] feljlesztették ki.
RészletesebbenParaméteres és összetett egyenlôtlenségek
araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:
Részletesebben10. Előadás P[M E ] = H
HALMAZRENDSZEREK 10. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2010. április 20. Halmazrendszerek színezése Egy halmazrendszer csúcshalmazának színezése jó
Részletesebben1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek
7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,
RészletesebbenHatározatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
RészletesebbenVektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.
Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.
RészletesebbenMátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Részletesebben3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok
Részletesebben6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
RészletesebbenFeladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
Részletesebben2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
RészletesebbenKonvex optimalizálás feladatok
(1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy
RészletesebbenHORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása
Bevezetés HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Discrete smooth approximation: an application of linear programming The best discrete approximation can be
RészletesebbenBevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
Részletesebbenf(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
RészletesebbenDiszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenMatematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
RészletesebbenGauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
RészletesebbenMATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Részletesebben"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
RészletesebbenOptimalizálási eljárások/operációkutatás MSc hallgatók számára
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 7. Előadás: MP(G) tesztelése, Gomory Hu-fák Előadó: Hajnal Péter 2018. tavasz 1. Egy vektor MP(G)-be esésének tesztelése A MP(G) Edmonds-tételbeli
RészletesebbenA szemidefinit programozás alkalmazásai a kombinatorikus optimalizálásban című jegyzetemhez
Kiegészítések az A szemidefinit programozás alkalmazásai a kombinatorikus optimalizálásban című jegyzetemhez Ujvári Miklós Utolsó módosítás: 2011 szeptember A 4.25 Megjegyzés mögé beszúrandó (4.26-ból
RészletesebbenDifferenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
RészletesebbenA fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
RészletesebbenSorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Részletesebben1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:
1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
RészletesebbenIlles, Tibor (2014) Lineáris optimalizálás : elmélete és belsőpontos algoritmusai. [Report], / Strathprints
Illes, Tibor (2014) Lineáris optimalizálás : elmélete és belsőpontos algoritmusai. [Report], 10.13140/2.1.5086.4004 This version is available at https://strathprints.strath.ac.uk/55708/ Strathprints is
RészletesebbenMolnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0
Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum
RészletesebbenOPERÁCIÓKUTATÁS No. 5. Etienne de Klerk Cornelis Roos Terlaky Tamás NEMLINEÁRIS OPTIMALIZÁLÁS
OPERÁCIÓKUTATÁS No. 5. Etienne de Klerk Cornelis Roos Terlaky Tamás NEMLINEÁRIS OPTIMALIZÁLÁS Budapest, 2004 Etienne de Klerk Cornelis Roos Terlaky Tamás: NEMLINEÁRIS OPTIMALIZÁLÁS OPERÁCIÓKUTATÁS No.
RészletesebbenA következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
RészletesebbenDeterminánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
RészletesebbenParaméteres és összetett egyenlôtlenségek
araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:
RészletesebbenVektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
RészletesebbenMetrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Részletesebben