Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf
|
|
- Klaudia Péter
- 8 évvel ezelőtt
- Látták:
Átírás
1 Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf
2 - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble ( ) - Ősrobbanás-elmélete (Big Bang = Nagy Bumm)
3 Hubble mérése A Galaxisok annál nagyobb sebességgel távolodnak tőlünk, minél nagyobb távolságra vannak.
4 Arno Penzias és Robert Wilson ben elmélet megerősítése - Háttérsugárzás
5 Az univerzum kialakulása - Ősrobbanás - Felfúvódás szakasza - Kvark korszak - Lepton korszak - Foton korszak - Atomok kialakulása - Csillagok, galaxisok, bolygók
6 Ősrobbanás és felfúvódási szakasz - Univerzum születése - Idő: s, hőmérséklet: K - Felfúvódási szakasz: m-ről 1 cm-re növekedés
7 Kvark korszak - Hőmérséklet: K Idő: s - Kvarkok, gluonok alakultak ki - Valamint a kvark-gluon plazmaállapotban elektronokból és neutrínókból álló könnyű részecskék voltak jelen.
8 Lepton korszak - Hőmérséklet: K Idő: 100 s - További tágulás kvarkból protonok és neutronok állhattak össze - Ekkor nukleonokból,fotonokból és könnyű részecskékből (leptonokból) állt
9 Foton korszak - Hőmérséklet tovább csökkent Idő: s (kb. 300 ezer év) - Nukleonok fúziójával már a 2 D, 3 T, 3 He és 4 He egyszerűbb atommagok is létrejöhettek a leptonok és fotonok mellet. - A hőmérséklet csökkenése miatt összetettebb magok fúzióval már nem keletkezhettek.
10 Az atomok kialakulása - Hőmérséklet:kb. 4-6 ezer K - Protonok és a kisebb atommagok elektronokat fogtak be így megalakultak az atomok - 75% hidrogénatomok 25% héliumatomok.
11 Anyagfelhők - Idő: 1 milliárd évnyi tágulás Hőmérséklet: 20 K - Hideg, hidrogénből álló anyagfelhők jöttek létre - Csillagok kialakulása, galaxisok formálódása
12 Csillagok - Idő: 1-5 milliárd évig keletkeznek és fejlődnek
13 Bolygók - Idő: Következő 10 milliárd év - Másodgenerációs csillagok és azokat körülvevő bolygórendszerek jöttek létre (ilyen a mi Naprendszerünk is)
14 Az univerzum lehetséges jövőbeli sorsa
15 A genfi CERN részecskegyorsító - CERN(Európai Nukleáris Kutatási Szervezet) - Kölcsönhatások egyesített elméletének megalkotása - Atommag-ütköztetés Kvarkgluon plazmaállapot előállítása.
16 Röviden a csillagászat múltjáról
17 Csillag születésének előzményei Az első csillagok kb milliárd éve keletkeztek. Gáz- és porfelhők, amiket a csillagközi anyag összesűrűsödése hoz létre. Akár több ezerszeresére is megnőhet a sűrűség Lófej köd
18 A csillagok születése Gravitációs összehúzódás Nyomás- és hőmérsékletnövekedés Protocsillag: A sűrű és forró gázgömb Nyomás és gravitáció harca. Amikor a gömb belsejében a hőmérséklet eléri a millió K-t, megindul a magfúzió. A nukleáris energia biztosítja a csillag egyenletes sugárzását akár több milliárd évre is Ha nagyobb a tömege egy csillagnak, akkor nagyobb a teljesítménye, ezért az élete rövidebb A Napunk kb 10 milliárd évesen fog fehér törpeként kihűlni
19 A barna törpe 0,08 naptömegnél kisebb anyagcsomóból nem alakulhat ki csillag, az ennél kisebb anyagcsomóból kialakuló objektumokat barna törpéknek nevezzük.
20 Nyílt csillaghalmazok A csillagok a felhők belsejében csoportosan születnek meg. Ezeket szabálytalan alakjuk miatt nyílt csillaghalmazoknak nevezzük. Több száz csillagból áll, amik szétszóródnak.
21 A galaxisokról röviden A csillagok eloszlása a világűrben nem egyenletes. A csillagok csillagrendszerekbe, más néven galaxisokba tömörülnek. Lehetnek spirálisak, elliptikusak vagy szabálytalanok Fekete-lyuk vagy kvazár (elektromágneses sugárzással rendelkező galaxismag)
22 Fúziós periódus, a vörös óriás Elfogy a hidrogénkészlet nagy része Csökken a teljesítmény és a belső nyomás, a belső rész összenyomódik Új gravitációs energia-felszabadulás, továbbforrósodik a csillag Kb. 100 millió kelvin hőmérsékleten a héliummagok berilliummagokká és szénatommagokká fejlődnek A belső nyomás megnő, amely a gravitációt legyőzve felfújja a csillagot, a csillagból vörösóriás válik Vörös, mert a hatalmas felszíne lehűl Új gravitációs összehúzódás, (C,O,N) keletkezik magasabb hőmérsékleten (ameddig van hélium) Nagy tömegű csillag esetén ez a folyamat addig tart, míg vas nem keletkezik a csillagban, ezután a csillag fúziós energiatermelése leáll.
23 A csillagok pusztulása Fehér törpe Neutroncsillag Fekete lyuk Ezek a pusztuló csillag tömegétől függnek
24 Fehér törpe Kis tömeg esetén fehér törpe keletkezik Magas hőmérsékleten, fehéren izzik még sok-sok évig az összehúzódásból származó energiájának köszönhetően Sűrűsége: néhány tonna/cm 3
25 Neutroncsillag Nap tömegének hétszerese A belső rész (plazma) nem tud ellenállni a nagy nyomásnak Az elektronok a nagy nyomás hatására bepréselődnek az atommagba, és a protonokkal neutronokká egyesülnek. Ezt az objektumot hívjuk neutroncsillagnak. Szupernova-robbanás: A nyomás hirtelen megszűnésével a külső anyag a az atommag sűrűségű belső részre zuhan, ahonnan lökéshullámszerűen kirobban a világűrbe.(10 44 J energia) Ez több, mint amit napunk egész élete alatt termel(10 milliárd év!) Erős gamma-sugárzás követi A galaxisunkban 50 évente történik szupernova-robbanás A neutron csillag 10 km átmérőjű, atommag sűrűségű Elektromágneses hullámot bocsájt ki Pulzár: gyorsan forgó neutroncsillag
26 Fekete lyuk A legnagyobb csillagok pusztulásából fekete lyukak keletkeznek A gravitációs összehúzódás még a neutroncsillag-állapotban sem szűnik meg Hatalmas tömeg, kis térfogat Erős gravitációs tér, melyből még a fény sem tud kilépni
27 Köszönjük a figyelmet!
A világegyetem elképzelt kialakulása.
A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,
RészletesebbenPósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
RészletesebbenA világegyetem szerkezete és fejlődése. Összeállította: Kiss László
A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.
RészletesebbenA FÖLD KÖRNYEZETE ÉS A NAPRENDSZER
A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,
RészletesebbenA csillagok kialakulása és fejlődése; a csillagok felépítése
A csillagok kialakulása és fejlődése; a csillagok felépítése Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március
Részletesebbenegyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
RészletesebbenA Föld helye a Világegyetemben. A Naprendszer
A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000
RészletesebbenKÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. Az Univerzum keletkezése Amit tudunk a kezdetekről,
RészletesebbenMagfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
RészletesebbenKÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. 1 Az Univerzum keletkezése Amit tudunk a kezdetekről,
Részletesebben2011 Fizikai Nobel-díj
2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784
RészletesebbenAxion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
RészletesebbenAz univerzum szerkezete
Az univerzum szerkezete Dobos László dobos@complex.elte.hu É 5.60 2017. május 16. Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek
RészletesebbenAz elemek eredete I.
Az elemek eredete I. A Föld kontinentális kérgében ma 90 elem (H U), de 112 ismert: - az első 82 (H Pb) stabil nuklid is (Tc és Pm nincs a természetben), - a 83-92 (Bi U) csak radioaktív nuklid ( 209 Bi,
RészletesebbenVálaszok a feltett kérdésekre
Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan
RészletesebbenKozmológia egzakt tudomány vagy modern vallás?
Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős
RészletesebbenHidrogéntől az aranyig
Hidrogéntől az aranyig Hogyan keletkezett az Univerzum? Hogyan jöttek létre a periódusos rendszert benépesítő elemek? Számos könyv és híres tudós foglalkozik és foglalkozott vele a múlt évszázadban és
RészletesebbenHadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
RészletesebbenAz ősrobbanás elmélete
Az ősrobbanás elmélete Kozmológia és kozmogónia Kozmológia: a világmindenséggel mint összefüggő, egységes egésszel, tér- és időbeli szerkezetével, keletkezésével, fejlődésével foglalkozó tudomány. Kozmogónia:
RészletesebbenNukleáris asztrofizika
Nukleáris asztrofizika 2015.05.14. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhető objektum: ~ 13,7 milliárd fényév sugarú gömb (4D), benne megfigyelhető
Részletesebben9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
RészletesebbenFekete lyukak, gravitációs hullámok és az Einstein-teleszkóp
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös
RészletesebbenNukleáris asztrofizika
Nukleáris asztrofizika 2011.05.10. A modern kozmológia születése Kozmológia: a Világegyetem fizikája, tárgya a Világegyetem mint mérhetı objektum: ~ 13 milliárd fényév sugarú gömb (4D), benne megfigyelhetı
RészletesebbenAz Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.
A világ keletkezése Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.Gamov elméleti fizikus dolgozott ki az, ún. "Big-bang",
RészletesebbenSzupernova avagy a felrobbanó hűtőgép
Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól a csillagokig Dávid Gyula 2013. 09. 19. 1 Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól
RészletesebbenMaghasadás, láncreakció, magfúzió
Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb
RészletesebbenCERN: a szubatomi részecskék kutatásának európai központja
CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az
RészletesebbenSugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
RészletesebbenDr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
RészletesebbenCSILLAGÁSZAT A NAPRENDSZER
CSILLAGÁSZAT A NAPRENDSZER ÁLTALÁNOS JELLEMZÉS A Naprendszer kifejezés, mint ahogyan azt a két szó összetétele is mutatja, központi csillagunkhoz: a Naphoz tartozó égitestek rendszerét jelenti. A Nap kitüntetett
RészletesebbenModern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
RészletesebbenAz Univerzum szerkezete
Az Univerzum szerkezete Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március Kifelé a Naprendszerből: A Kuiper(-Edgeworth)-öv
RészletesebbenA testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
RészletesebbenFöldünk a világegyetemben
Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője
RészletesebbenCSILLAGÁSZAT. Galileo Galilei a heliocentrikus világkép híve volt. Az egyház túl radikálisnak tartja Galilei elképzelését.
CSILLAGÁSZAT Az ember fejlődése során eljutott arra a szintre, hogy a természet jelenségeit már nemcsak elfogadni, hanem megmagyarázni, megérteni kívánta. Érdekelte, hogy miért fényesek, egyáltalán mik
RészletesebbenA galaxisok csoportjai.
A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,
RészletesebbenAz atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Részletesebben2. Rész A kozmikus háttérsugárzás
2. Rész A kozmikus háttérsugárzás A kozmikus sugárzás felfedezése 1965: A. Penzias és R. Wilson (Bell Lab) érzékeny mikrohullámú antennája A kozmikus sugárzás 1965: A. Penzias és R. Wilson érzékeny mikrohullámú
RészletesebbenHidrogénfúziós reakciók csillagokban
Hidrogénfúziós reakciók csillagokban Gyürky György MTA Atommagkutató Intézet 4026 Debrecen, Bem tér 18/c, 52/509-246 Napunk és a hozzá hasonló fősorozatbeli csillagok magfúziós reakciók révén termelik
RészletesebbenFIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
RészletesebbenBevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
RészletesebbenA CERN, az LHC és a vadászat a Higgs bozon után. Genf
A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting
RészletesebbenTrócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2013. augusztus 12-17. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
RészletesebbenÚjpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
RészletesebbenNehézion ütközések az európai Szupergyorsítóban
Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?
RészletesebbenCsillagászati földrajz december 13. Kitekintés a Naprendszerből
Csillagászati földrajz 2018. december 13. Kitekintés a Naprendszerből Csillag: saját fénnyel világító égitest A csillagok tehát nem más fényét veri vissza (mint a bolygók, holdak, stb.) a gravitációs összehúzó
RészletesebbenTrócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2015. augusztus 16-22. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
RészletesebbenFizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT
Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai és Természettudományi Értesítõt az Akadémia 1882-ben indította A Mathematikai és Physikai Lapokat Eötvös Loránd 1891-ben alapította LX. évfolyam 3.
RészletesebbenA világűr nem üres! A csillagközi anyag ezerarcú. Pompás képek sokasága bizonyítja ezt.
A világűr nem üres! A kozmoszban (görög eredetű szó) a csillagok közötti teret is anyag tölti ki. Tehát a fejezet címében olvasható megállapítás helyes. Egy példa arra, hogy a világegyetem mennyire üres
Részletesebben. T É M A K Ö R Ö K É S K Í S É R L E T E K
T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!
RészletesebbenNagy bumm, kisebb bumm, teremtés
Nagy bumm, kisebb bumm, teremtés Ez nem jelent egyebet, mint azt, hogy a világról szerzett ismereteinket gyökeresen más nézőpontból kell megközelíteni, és ennek következtében újra is kell értelmezni azokat.
RészletesebbenINTERGALAKTIKUS ÚTIKALAUZA
HOLD- RALI Az agymanók bemutatják A VILÁGŰR LEGSZUPEREBB INTERGALAKTIKUS ÚTIKALAUZA Illusztrálta: Lisa Swerling és Ralph Lazar Írta: Carole Stott CÉL London, New York, Melbourne, Munich, and Delhi A Dorling
RészletesebbenFOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete
FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete csillag: csillagrendszer: Nap: Naprendszer: a Naprendszer égitestei: plazmaállapot: forgás: keringés: ellipszis alakú pálya: termonukleáris
RészletesebbenHogyan termelik a csillagok az energiát?
Hogyan termelik a csillagok az energiát? Nagyon tanulságosak azok a gondolatok, amelyeket Dr. Kulin György fogalmazott meg Az ember kozmikus lény című könyvében: A Nap másodpercenként 3,86. 10 26 J energiát
RészletesebbenA csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
RészletesebbenA sötét anyag és sötét energia rejtélye
A sötét anyag és sötét energia rejtélye Cynolter Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Részecskefizika Határok Nélkül 2018. november 17. ELTE TTK Cynolter Gábor Sötét anyag és energia... A Standard
RészletesebbenAtommagok alapvető tulajdonságai
Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,
RészletesebbenAtomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
RészletesebbenA NAP. A Nap asztrológiai és csillagászati jele egy kör, középen ponttal:. Ez a jel Ré ókori egyiptomi napisten hieroglif jele is.
A NAP A Nap a Naprendszer központi csillaga. Körülötte kering a Föld, valamint a Naprendszerhez tartozó bolygók, törpebolygók, kisbolygók, üstökösök, stb.. A Földtől körülbelül 150 millió km távolságra
RészletesebbenRadioaktivitás. 9.2 fejezet
Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)
RészletesebbenA sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
RészletesebbenRészecskegyorsítókkal az Ősrobbanás nyomában
Csanád Máté Részecskegyorsítókkal az Ősrobbanás nyomában Zrínyi Ilona Gimnázium Nyíregyháza, 2010. december 10. www.meetthescientist.hu 1 26 Az anyag szerkezete Atomok proton, neutrok, elektronok Elektron
RészletesebbenBevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
RészletesebbenAdatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
RészletesebbenA második kozmikus sebesség
A második kozmikus sebesség 1. Függőleges felfelé hajítás homogén gravitációs mezőben A homogén gravitációs mező bármely pontjában a gravitációs térerősség (gravitációs gyorsulás) értéke ugyanaz. A Föld
RészletesebbenMikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető
Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető MAFIOK 2010 Békéscsaba, 2010.08.24. Hajdu Csaba MTA KFKI RMKI hajdu@mail.kfki.hu 1 Large Hadron Nagy Collider Hadron-ütköztető proton ólom mag
RészletesebbenRadiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
RészletesebbenA változócsillagok. A pulzáló változók.
A változócsillagok. Tulajdonképpen minden csillag változik az élete során. Például a kémiai összetétele, a luminozitása, a sugara, az átlagsűrűsége, stb. Ezek a változások a mi emberi élethosszunkhoz képest
Részletesebben1. A FÖLD KELETKEZÉSE
1. A FÖLD KELETKEZÉSE Az Univerzum, a csillagok és a bolygók keletkezése a földtudományok egyik legizgalmasabb kérdése. A Föld kialakulására vonatkozó korábbi elképzelések egyik része a Földet a Napból
RészletesebbenAlkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
RészletesebbenElemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.
Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ
RészletesebbenA relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
RészletesebbenBelső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
RészletesebbenAZ UNIVERZUM SZÜLETÉSE. Nagy Bumm elmélet 13,7 milliárd évvel ezelőtt A Világegyetem egy rendkívül sűrű, forró állapotból fejlődött ki
Az Univerzum titkai AZ UNIVERZUM SZÜLETÉSE Nagy Bumm elmélet 13,7 milliárd évvel ezelőtt A Világegyetem egy rendkívül sűrű, forró állapotból fejlődött ki Georges Lemaître (1894-1966) belga pap, a Leuven-i
RészletesebbenJÁTSSZUNK RÉSZECSKEFIZIKÁT!
JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com
RészletesebbenTRIGONOMETRIKUS PARALLAXIS. Közeli objektum, hosszú bázisvonal nagyobb elmozdulás.
TRIGONOMETRIKUS PARALLAXIS Közeli objektum, hosszú bázisvonal nagyobb elmozdulás. Napi parallaxis: a bázisvonal a földfelszín két pontja Évi parallaxis: a bázisvonal a földpálya két átellenes pontja. A
RészletesebbenEgy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
RészletesebbenBevezetés a kozmológiába 2: ősrobbanás és vidéke
Horváth Dezső: Kozmológia-2 HTP-2016, CERN, 2016.08.17. p. 1/39 Bevezetés a kozmológiába 2: ősrobbanás és vidéke HTP-2016, CERN, 2016 augusztus 17. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
RészletesebbenA csillagok születése, életútja és halála.
A csillagok születése, életútja és halála. Nem élőlények, de életük a miénkhez hasonlóak. Megszületnek, majd stabilan élnek az energiatermelés szempontjából, majd elérik a változó kort, amikor a korábbi
RészletesebbenJegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
RészletesebbenKozmikus sugárzás a laborban...?
Kozmikus sugárzás a laborban...? ELTE, Fizikai Intézet Atomfizikai Tanszék vg@ludens.elte.hu Az Atomoktól a Csillagokig ELTE, 2018. január 31. Méretskálák a természetben Big Bang Proton Atom Föld sugár
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenRészecskefizika kérdések
Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-
RészletesebbenBevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
RészletesebbenAz ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
RészletesebbenOsztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
RészletesebbenÁltalános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
RészletesebbenTermészettudományos Önképző Kör. Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem V. 25, péntek, 14:45-15:45
Természettudományos Önképző Kör Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem 2007. V. 25, péntek, 14:45-15:45 Sok szeretettel köszöntünk minden kedves érdeklődőt Csörgő Tamás iskolánk öregdiákja,
RészletesebbenTermodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
RészletesebbenA TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.
1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény
RészletesebbenModern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék
Modern kozmológia Horváth István NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék 2015 a fény nemzetközi éve 1015 Ibn Al-Haytham optika 1815 Fresnel fény hullámelmélete 1865 Maxwell egyenletek
RészletesebbenAdatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
RészletesebbenAz atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
RészletesebbenRöntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
RészletesebbenMinden olyan, nagy méretű csillagcsoportot így nevezünk, amely a Tejútrendszer határán túl van. De, hol is húzódik a Galaxis határa?
Az extragalaxisok. Innen az extragalaxisokat vizsgálni olyan, mintha egy bolhát beültetnénk egy öveg lekvárba és arra kérnénk, hogy figyelje meg a külvilágot Mai óránk háziállata a bolha. (Mindez Marik
RészletesebbenA LEHETSÉGES VILÁGOK LEGJOBBIKA?
A LEHETSÉGES VILÁGOK LEGJOBBIKA? avagy miért létezünk egyáltalán? Gesztesi Albert Filozófiai Vitakör, 2009. május 15. Magyarázzuk meg, hogy mit látunk! Nem csak látjuk, de értjük is amit látunk. Miért
RészletesebbenOPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
RészletesebbenElőadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok
Előadás menete Magfúzióból nyerhető energia és az energiatermelés feltétele Fúziós kutatási ágazatok Hőmérséklet és sűrűségmérés egyik módszere plazmafizikában a Thomson szórás Fúziós kutatás célja A nap
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenPh 11 1. 2. Mozgás mágneses térben
Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)
Részletesebben