Trócsányi Zoltán. Kozmológia alapfokon
|
|
- Brigitta Pásztor
- 9 évvel ezelőtt
- Látták:
Átírás
1 Magyar fizikatanárok a CERN-ben augusztus Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal
2 Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát, valamint mikro- és makrokozmosz fizikájának összefonódását hozta
3 A kvantumvilág megválaszolatlan nagy kérdései Vannak-e eddig fel nem fedezett természeti törvények? Hogyan érthetjük meg a sötét energia rejtélyét? Létezik-e több mint három tér-dimenzió? Egyesülnek-e az alapvető kölcsönhatások? Miért van oly sokfajta elemi részecske? Van-e esetleg több? Mi a sötét anyag, elő tudjuk-e állítani laboratóriumban? Mit mondanak a neutrínók? Hogyan keletkezett a Világegyetem? Hová tűnt az antianyag?
4 Értjük-e ezeket a kérdéseket? Vannak-e eddig fel nem fedezett természeti törvények? Hogyan érthetjük meg a sötét energia rejtélyét? Létezik-e több mint három tér-dimenzió? Egyesülnek-e az alapvető kölcsönhatások? Miért van oly sokfajta elemi részecske? Van-e esetleg több? Mi a sötét anyag, elő tudjuk-e állítani laboratóriumban? Mit mondanak a neutrínók? Hogyan keletkezett fejlődött a Világegyetem? Hová tűnt az antianyag?
5 A Világegyetem szerkezete Nagy skálán homogén és izotróp, (1. kérdés: Honnan tudjuk, ha látha- tóan szerkezete van?) Galaxisban (0,1Mfényév) Δρ/ρ = Galaxishalmazokban (3 Mfényév) Δρ/ρ = 1000 Szuperhalmazokban (100 Mfényév) Δρ/ρ = 10
6 A VE összetétele (%-os járulék az energiasűrűséghez) nehéz elemek! 0.03% neutrínók! 0.3% sötét anyag! 26.8% sötét energia 68.3% fénylő! anyag! 0.3% H, He! gáz! 4% Részecskefizikai kapcsolat
7 Honnan tudjuk mindezt? Sok-sok kozmológiai megfigyelésből... szemezgessük...de nincs időnk a legérdekesebbeket! mind áttekinteni
8 1. rész A táguló Világegyetem
9 A Világegyetem szerkezete Egy-egy galaxisban mintegy db csillagot látunk (2. kérdés: Honnan tudjuk?)
10 A Világegyetem szerkezete db galaxist látunk
11 Minél messzebb nézünk, annál korábbra látunk d 2 d 1 Δt = (d 2 -d 1 )/c
12 Hubble űrtávcső milliárd fényévre is lát
13 Hubble űrtávcső
14 Hogyan lehet ezeket a képeket mennyiségileg vizsgálhatóvá tenni?
15 Méretek Háromszögelés:!! r!! r = d d vagy d = /r! jellemző szögméret a szögmásodperc (4.85 µrad) pl. Nap sugara m = CsE, Nap - Föld távolság 1 CsE = m = kérdés: Honnan ismerjük r-t (1 CsE)?
16 Méretek Távolságmérésre használható (kis távolságra) Parallaxis módszer: π-2 = r/d 1pc = 1 CsE/1
17 Luminozitás és fluxus Égitest luminozitása (L) az égitest által kisugárzott összes teljesítmény, [L] = W Észlelt fluxus (f ) a távcsőben mért energiaáramsűrűség [f ] = W/m 2! d távolságra található L luminozitású égitestről a távcsőbe érkező fluxus f = L/(4πd 2 ) 4. kérdés: Egy kékes színű csillag 1.36 pc távolságra van, és a Földön mért fluxusa W/m 2. Nagyon hasonló csillagot sikerült találni egy távoli csillaghalmazban, amelynek mért fluxusa W/m 2. Hány Mpc távolságra van a csillaghalmaz?
18 Távolságmérés standard gyertyákkal (luminozitásuk ugyanakkora => d = L/(4πf) ) luminozitás-távolság: d = 10 (m-m+5)/5 pc m: látszó M: abszolút fényesség
19 Színkép (spektrum): a sugárzás fluxusának hullámhosszfüggése df d (W/m 3 ) hullámhossz (nm) ( ) 5. kérdés: Milyen hullámhossznál van az 5000 K hőmérsékletű feketetest sugárzó színképének maximuma?
20 Spektrum: a sugárzás fluxusának (intenzitásának) hullámhosszfüggése egy csillag spektruma általában abszorpciós vonalakat tartalmaz df d hullámhossz (nm)
21 J. Fraunhofer fedezte fel a nap színképvonalait
22 J. Fraunhofer fedezte fel a nap színképvonalait távolodó égitestek színképvonalai a vörös felé eltolódnak (vöröseltolódás, z) z = ( - 0 )/ 0
23 Sebességmérés színképelemzés alapján Ha a távolodó égitest sebessége v << c, és a vöröseltolódás a Doppler-hatás eredménye => a 0 = ct hosszúságú hullám = ct + vt hosszúságúra nyúlik, - 0 = vt és z = v/c! Hullámhosszeltolódás (z) igen pontosan mérhető színképelemzéssel vöröseltolódás kékeltolódás
24 Hubble felfedezése : Edwin Hubble a minden korábbinál jobb felbontású, Palomar-hegyi új távcsővel megméri az Androméda és 17 másik galaxis távolságát és vöröseltolódását (sebességét) tapasztalat: a távolodás sebessége arányos a távolsággal
25 J. Fraunhofer fedezte fel a nap színképvonalait
26 Hubble eredeti mérése távolodás sebessége távolság
27 A Hubble-törvény értelmezése: a Világegyetem mindenhol egyformán tágul v = H 0 r, H 0 =100 h (km/s) /Mpc =h/(9, év), h=0,7 6. kérdés: Mit ad meg H 0 reciproka?
28 Egyetemes tágulás: a skálafaktor a(t) megmutatja, hogy bármely távolság t 0-ban hogyan aránylik ugyanahhoz a távolsághoz t = 0-ban (most) z = / 0-1 = 1/a(t) -1 a(t) = 1/(z +1) Az egyetemes tágulást felülírhatják a helyi mozgások, ha az anyag elég sűrű, és a gravitáció erősebb 7. kérdés: Miért nem tágul a méterrúd?
29 8. kérdés: A Föld z = 0.58-nál keletkezett. A hozzánk legközelebbi csillagrendszerek most 1 Mpc távolságra vannak, és luminozitásuk W. Csupán Hubble-féle tágulást feltételezve hány Mpc távolságra voltak ezek a csillagrendszerek a Föld keletkezésekor? 29
30 Hubble törvény kísérleti ellenőrzése m-m 9. kérdés: Milyen messze van ez a SN? Gyorsuló tágulás! vöröseltolódás, z = / 0-1
31 Fizikai Nobel-díj 2011 Saul Perlmutter Brian P. Schmidt Adam G. Riess Lawrence Berkeley Ausztrál Nemzeti Johns Hopkins Nemzeti Labor, USA Egyetem, AUS Egyetem, USA a Világegyetem gyorsuló tágulásának felfedezéséért távoli szupernóvák megfigyelése révén
32 A táguló Világegyetem A távoli galaxisok fényében vöröseltolódást észlelünk, a hatás a távolsággal arányos Nagy skálán a vöröseltolódás a térrel együtt táguló fényhullám hullámhossznövekedésének eredménye Amikor a fényhullámok elindultak (régen), sokkal kisebb volt hullámhosszuk, tehát a Világegyetem sokkal sűrűbb és forróbb volt Szokásos értelmezés: Ősrobbanásban keletkezett (az elnevezés félrevezető) Van-e erre bizonyíték?
33 Az energiaegyenlet R sugarú gömb tömege M = 4 3 R3 A gömb felszínén található m tömegű galaxis potenciális energiája mozgási energiája E p = G mm R = Gm4 3 R2 E m = 1 2 mv2,v= dr A teljes mechanikai energia állandó: dt E m + E p = 1 2 m dr dt 2 Gm 4 3 R2 = E
34 A kritikus sűrűség E előjele határozza meg a VE sorsát: E > 0: a VE örökké tágul E < 0: a VE tágul, majd összeomlik E = 0: a VE kritikus állapotban van, az ehhez tartozó tömegsűrűség: ρ c 0= 1 2 m HR 2 Gm 4 3 R2 c ) c = 3H2 8 G 10. kérdés: Hány H atomot jelent ρ c m 3 -ként?
35 A szokásos egység A tömegsűrűséget ρ c egységben szokás mérni: Ω = Ω x + Ω y + pl. Ω L = 3 ρ x = Ω x ρ c! három lehetőség: Ω < 1 (ρ < ρ c ): a VE örökké tágul Ω > 1 (ρ > ρ c ): a VE tágul, majd összeomlik Ω = 1 (ρ = ρ c ): a VE kritikus állapotban van
36 c = 3H2 8 G A Friedmann-egyenlet ) H 2 8 G 3c 2 " tömegsűrűség jellegű energiasűrűség több forrása lehet A skálatényező változása (az Einstein-egyenletből): ȧ 2 a (t) = H 2 (t) = 8 G 3c 2 " r(t) + 8 G 3c 2 " kc 2 m(t) a 2 + c2 3 sugárzás anyag görbület vákuum ~ a -4 ~ a -3 ~ a -2 ~ a 0
37 c = 3H2 8 G A Friedmann-egyenlet ) H 2 8 G 3c 2 " tömegsűrűség jellegű energiasűrűség több forrása lehet A skálatényező változása (az Einstein-egyenletből): ȧ 2 a (t) = H 2 (t) = 8 G 3c 2 " r(t) + 8 G 3c 2 " kc 2 m(t) a 2 + c2 3 sugárzás anyag görbület vákuum ~ a -4 ~ a -3 ~ a -2 ~ a 0 Alexander Friedmann vezette le 1922-ben
38 A dominancia időrendje ȧ 2 a (t) = H 2 (t) = 8 G 3c 2 " r(t) + 8 G 3c 2 " m(t) kc 2 a 2 + c2 3 H 2 a -4 sugárzás anyag görbület vákuum ~ a -4 ~ a -3 ~ a -2 ~ a 0 a -3 a -2 a 0 jelen 0 1 ln a
39 A dominancia időrendje ȧ 2 a (t) = H 2 (t) = 8 G 3c 2 " r(t) + 8 G 3c 2 " m(t) kc 2 a + c2 3 H 2 a -4 sugárzás anyag görbület vákuum ~ a -4 ~ a -3 ~ a -2 ~ a 0 egyes időszakok hiányozhatnak a -3 a -2 a 0 jelen 0 1 ln a
40 Honnan lehet tudni, mennyi van az egyes energiasűrűség járulékokból? Válasz holnap de mielőtt elszaladnátok
41 +1 kérdés: Mekkora tömegű egy csillagrendszer? kétféle megközelítés: 1. kisugárzott energia átváltása tömeggé (fénylő anyag tömegét adja) 2. anyag mozgásából következtetünk a gravitáló tömeg mennyiségére
42 Fénylő anyag tömege Ismerjük a Nap tömegét (M ) és luminozitását (L ), Y = M /L Feltevés: Napunk átlagos csillag Y G = Y M G /L G = M /L M G = (L G /L ) M = (f G /f ) (d G /d ) 2 M Példa: M33 csillagrendszer fluxusa: f M33 = f távolsága: d M33 = 900 kpc = d tömege: M M33 = M
43 Feltevés pontosítása: Napunk nem teljesen átlagos csillag, a Herzsprung-Russel diagram szerint Y G = 4Y Fénylő anyag tömege L, Nap=1 színképosztály hőmérséklet óriások M M G = 4(L G /L ) M főág M33 fénylő tömege M M33 = M fehér törpék színindex
44 mért sebességek Gravitáló anyag tömege R sugarú gömbön belül található anyag tömege M a gömb felszínén keringő m tömegű anyag (pl. csillag, porfelhő) mozgásának dinamikai feltétele m v2 R = GmM R 2 ) v = Csillagrendszer megfigyelt és jósolt forgási görbéje r GM R forgási sebesség távolság a középponcól Kepleri jóslat
45 Gravitáló anyag tömege R sugarú gömbön belül található anyag tömege M a gömb felszínén keringő m tömegű anyag (pl. csillag, hidrogénfelhő) mozgásának dinamikai feltétele v 2 m R = GmM R 2 ) v = Csillagrendszer megfigyelt és jósolt forgási görbéje r GM R forgási sebesség távolság a középponcól Kepleri jóslat forgási sebesség távolság a középponcól Tejút
46 M33 gravitáló tömege fénylő anyag széléig: M M33 = M összesen: M M33 = M teljes sötét anyag csillagok gáz
47 Magyarázat módosított newtoni dinamikával (MOND)!!! tömegvonzás erőtörvénye módosul: F g = G mm R 2 +f 0 Remekül leírja a forgási görbéket!! Newton elmélete pontos a Naprendszerben (~10 2 CsE) Csillagrendszerek mérete ~10 10 CsE! Kiterjeszthetjük szabadon 8 nagyságrenddel az elméletet?!
48 MOND vagy SAny? Olyan ellenőrzési lehetőséget kell keresni, amelyre különböző a jóslatuk! Golyó halmaz? (ütköző galaxishalmazok) röntgen tartományban gravitációs hatás fényre
Trócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2013. augusztus 12-17. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
RészletesebbenBevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
RészletesebbenTrócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2007. augusztus 12-19. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal l úl d á d Az elmúlt negyedszázad a mikro- és makrokozmosz fizikájának összefonódását
RészletesebbenBevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2016, CERN, 2016.08.16. p. 1 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2016, CERN, 2016 augusztus 16. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
RészletesebbenBevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely.
A FÖLD GÖMB ALAKJA, MÉRETE, FORGÁSA A Föld alakja Égbolt elfordul világtengely. Vízszintessel bezárt szöge helyfüggő földfelszín görbült. Dupla távolság - dupla szögváltozás A Föld gömb alakú További bizonyítékok:
RészletesebbenTRIGONOMETRIKUS PARALLAXIS. Közeli objektum, hosszú bázisvonal nagyobb elmozdulás.
TRIGONOMETRIKUS PARALLAXIS Közeli objektum, hosszú bázisvonal nagyobb elmozdulás. Napi parallaxis: a bázisvonal a földfelszín két pontja Évi parallaxis: a bázisvonal a földpálya két átellenes pontja. A
Részletesebben2011 Fizikai Nobel-díj
2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784
RészletesebbenCsillagászati földrajz december 13. Kitekintés a Naprendszerből
Csillagászati földrajz 2018. december 13. Kitekintés a Naprendszerből Csillag: saját fénnyel világító égitest A csillagok tehát nem más fényét veri vissza (mint a bolygók, holdak, stb.) a gravitációs összehúzó
RészletesebbenA TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.
1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény
RészletesebbenA világegyetem elképzelt kialakulása.
A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,
RészletesebbenCsillagászati észlelés gyakorlat I. 2. óra: Távolságmérés
Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Hajdu Tamás & Császár Anna & Perger Krisztina & Bőgner Rebeka A csillagászok egyik legnagyobb problémája a csillagászati objektumok távolságának
RészletesebbenAz Univerzum szerkezete
Az Univerzum szerkezete Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március Kifelé a Naprendszerből: A Kuiper(-Edgeworth)-öv
RészletesebbenKozmológia egzakt tudomány vagy modern vallás?
Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős
RészletesebbenNemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az
RészletesebbenModern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék
Modern kozmológia Horváth István NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék 2015 a fény nemzetközi éve 1015 Ibn Al-Haytham optika 1815 Fresnel fény hullámelmélete 1865 Maxwell egyenletek
RészletesebbenKÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. Az Univerzum keletkezése Amit tudunk a kezdetekről,
RészletesebbenA csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
RészletesebbenHogyan lehet meghatározni az égitestek távolságát?
Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai
RészletesebbenA Föld helye a Világegyetemben. A Naprendszer
A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000
RészletesebbenVálaszok a feltett kérdésekre
Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan
RészletesebbenAz univerzum szerkezete
Az univerzum szerkezete Dobos László dobos@complex.elte.hu É 5.60 2017. május 16. Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek
RészletesebbenA világegyetem szerkezete és fejlődése. Összeállította: Kiss László
A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.
RészletesebbenMilyen színűek a csillagok?
Milyen színűek a csillagok? A fényesebb csillagok színét szabad szemmel is jól láthatjuk. Az egyik vörös, a másik kék, de vannak fehéren villódzók, sárga, narancssárga színűek is. Vajon mi lehet az eltérő
RészletesebbenGalaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12.
Galaxisfelmérések: az Univerzum térképei Bevezetés a csillagászatba 4. 2015. május 12. Miről lesz szó? Hubble vagy nem Hubble? Galaxisok, galaxishalmazok és az Univerzum szerkezete A műszerfejlődés útjai
RészletesebbenA sötét anyag és sötét energia rejtélye
A sötét anyag és sötét energia rejtélye Cynolter Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Részecskefizika Határok Nélkül 2018. november 17. ELTE TTK Cynolter Gábor Sötét anyag és energia... A Standard
RészletesebbenCsillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big
Részletesebben2. Rész A kozmikus háttérsugárzás
2. Rész A kozmikus háttérsugárzás A kozmikus sugárzás felfedezése 1965: A. Penzias és R. Wilson (Bell Lab) érzékeny mikrohullámú antennája A kozmikus sugárzás 1965: A. Penzias és R. Wilson érzékeny mikrohullámú
Részletesebbenegyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
RészletesebbenA galaxisok csoportjai.
A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,
RészletesebbenA gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
RészletesebbenCsillagászati megfigyelések
Csillagászati megfigyelések Napszűrő Föld Alkalmas szűrő nélkül szigorúan tilos a Napba nézni (még távcső nélkül sem szabad)!!! Solar Screen (műanyag fólia + alumínium) Olcsó, szürkés színezet. Óvatosan
RészletesebbenGalaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17.
Galaxishalmazok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. március 17. Szatellitgalaxisok Nagy galaxisok körül keringő törpegalaxisok a Tejút körül 14-16 szatellit,
RészletesebbenSzínképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok
RészletesebbenŐsrobbanás: a Világ teremtése?
Horváth Dezső: A kozmológia alapjai Telki, 2010.01.14 p. 1/37 Ősrobbanás: a Világ teremtése? (A kozmológia alapjai) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest
RészletesebbenBevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
RészletesebbenOPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
RészletesebbenA FÖLD KÖRNYEZETE ÉS A NAPRENDSZER
A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,
RészletesebbenA kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Részletesebben9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
RészletesebbenA világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
RészletesebbenTömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
RészletesebbenPósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
RészletesebbenMinden olyan, nagy méretű csillagcsoportot így nevezünk, amely a Tejútrendszer határán túl van. De, hol is húzódik a Galaxis határa?
Az extragalaxisok. Innen az extragalaxisokat vizsgálni olyan, mintha egy bolhát beültetnénk egy öveg lekvárba és arra kérnénk, hogy figyelje meg a külvilágot Mai óránk háziállata a bolha. (Mindez Marik
RészletesebbenKéplet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
RészletesebbenKozmológiai n-test-szimulációk
Kozmológiai n-test-szimulációk Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 21. Inhomogenitások az Univerzumban A háttérsugárzás lecsatolódásakor (z 1100)
RészletesebbenDr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
RészletesebbenAz ősrobbanás elmélete
Az ősrobbanás elmélete Kozmológia és kozmogónia Kozmológia: a világmindenséggel mint összefüggő, egységes egésszel, tér- és időbeli szerkezetével, keletkezésével, fejlődésével foglalkozó tudomány. Kozmogónia:
RészletesebbenA relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenFöldünk a világegyetemben
Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
RészletesebbenFIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged
FIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged A fizikai Nobel-díjat mintegy 115 éves történelme során több alkalommal
RészletesebbenModern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenAtomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
RészletesebbenFekete lyukak, gravitációs hullámok és az Einstein-teleszkóp
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös
RészletesebbenGravitációelméletek tesztelése gömbhalmazokkal
Gravitációelméletek tesztelése gömbhalmazokkal Sötét anyag vagy alternatív gravitáció? A modern csillagászat egyik legnagyobb felfedezése és mindmáig megoldatlan rejtélye a galaxisok és galaxishalmazok
RészletesebbenAsztrometria egy klasszikus tudományág újjászületése. ELFT Fizikus Vándorgyűlés, Szeged, augusztus 25.
Asztrometria egy klasszikus tudományág újjászületése ELFT Fizikus Vándorgyűlés, Szeged, 2016. augusztus 25. Történeti visszapillantás Asztrometria: az égitestek helyzetének és mozgásának meghatározásával
RészletesebbenAz elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
RészletesebbenMegmérjük a láthatatlant
Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy
RészletesebbenTheory hungarian (Hungary)
Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető
RészletesebbenKomplex Rendszerek Fizikája Tanszék április 28.
A nagyléptékű szerkezet kialakulása, fejlődése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. Az Univerzum sűrűségfluktuációinak fejlődése A struktúra kis
RészletesebbenLégköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
RészletesebbenA hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
RészletesebbenA csillagok fénye 1. Az atomoktól a csillagokig. Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21.
A csillagok fénye 1. Az atomoktól a csillagokig Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig sorozat 150. előadása 2016. 01. 21.
RészletesebbenATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
RészletesebbenKÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. 1 Az Univerzum keletkezése Amit tudunk a kezdetekről,
RészletesebbenA modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
RészletesebbenÚjpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
RészletesebbenMolekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
RészletesebbenFIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
Részletesebben[ ]dx 2 # [ 1 # h( z,t)
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
RészletesebbenFIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI
FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI 1. Egyenes vonalú mozgások 2012 Mérje meg Mikola-csőben a buborék sebességét! Mutassa meg az út, és az idő közötti kapcsolatot! Három mérést végezzen, adatait
RészletesebbenNemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 4. Asztrofizika II. és Műszerismeret Megoldások Dálya Gergely, Bécsy Bence 1. Bemelegítő feladatok B.1. feladat Írjuk fel a Pogson-képletet:
RészletesebbenBevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Részletesebben2016. április 5. Balogh Gáspár Sámuel Kvazárok április 5. 1 / 28
Kvazárok Balogh Gáspár Sámuel 2016. április 5. Balogh Gáspár Sámuel Kvazárok 2016. április 5. 1 / 28 Jellemző sűrűségadatok ρ universe 10 27 kg Balogh Gáspár Sámuel Kvazárok 2016. április 5. 2 / 28 Jellemző
RészletesebbenFontos tudnivalók. Fizikai állandók táblázata. Hasznos matematikai összefüggések
Fontos tudnivalók Az elméleti forduló időtartama 5 óra. A feladatok hibátlan megoldásával összesen 450 pontot lehet szerezni, a részpontszámok az egyes kérdéseknél zárójelben fel vannak tüntetve. Figyelem!
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
RészletesebbenSpektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
RészletesebbenMETRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva:
METRIKA D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: dl = dx + dy Általános alak ha nem feltétlenül Descartes-koordinátákat használunk: dl =... dx 1 +... dx +...dx 1 dx +...dx
RészletesebbenBelső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Részletesebben11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
RészletesebbenA Mindenség mérése. Mi a kozmológia? PATKÓS ANDRÁS
PATKÓS ANDRÁS A Mindenség mérése Patkós András fizikus, az MTA levelezô tagja A Világmindenség kora, mérete, a benne található anyag mennyisége és összetétele az emberi környezetben felfedezett természeti
RészletesebbenSZAKDOLGOZAT Az extragalaktikus távolságlétra Takáts Katalin
SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR OPTIKAI ÉS KVANTUMELEKTRONIKAI TANSZÉK FIZIKA SZAK SZAKDOLGOZAT Az extragalaktikus távolságlétra Takáts Katalin Témavezető: Dr. Vinkó József,
RészletesebbenSugárzásos hőtranszport
Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek
RészletesebbenCsillagok parallaxisa
Csillagok parallaxisa Csillagok megfigyelése elég fényesek, így nem túl nehéz, de por = erős extinkció, ami irányfüggő Parallaxis mérése spektroszkópiailag a mért spektrumra modellt illesztünk (kettőscsillagokra
RészletesebbenEgy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
RészletesebbenA sötét anyag nyomában
A sötét anyag nyomában Az atomoktól a csillagokig Dávid Gyula 2016. 09. 08. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig dgy 2016. 01. 21. A csillagok fénye
RészletesebbenAz atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
RészletesebbenAz Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.
A világ keletkezése Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.Gamov elméleti fizikus dolgozott ki az, ún. "Big-bang",
RészletesebbenFIZIKAI NOBEL-DÍJ 2011: SZUPERNÓVÁK ÉS A GYORSULVA TÁGULÓ UNIVERZUM Szalai Tamás SZTE Optikai és Kvantumelektronikai Tanszék, Szeged
A gammakitörések gyakorisága és hatása a földi életre Jelenleg a Föld körül keringô mesterséges holdak naponta átlagosan egy gammakitörést észlelnek. Minthogy a gammakitörések akkora távolságról látszanak,
RészletesebbenAxion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenGravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions
Gravitational lenses as cosmic rulers: Ωm, ΩΛ from time delays and velocity dispersions D. Paraficz & J. Hjorth Gravitációs lencsék mint kozmikus vonalzók: Ω, Ω az idő késésből és a sebesség m Λ diszperzióból
RészletesebbenReológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
RészletesebbenRészecskefizika 2: kozmológia
Horváth Dezső: Kozmológia Debreceni Egyetem, BSc, 2014.04.22. p. 1/41 Részecskefizika 2: kozmológia Debreceni Egyetem, BSc, 2014.04.22. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,
RészletesebbenA változócsillagok. A pulzáló változók.
A változócsillagok. Tulajdonképpen minden csillag változik az élete során. Például a kémiai összetétele, a luminozitása, a sugara, az átlagsűrűsége, stb. Ezek a változások a mi emberi élethosszunkhoz képest
RészletesebbenMODERN CSILLAGÁSZATI VILÁGKÉPÜNK
MODERN CSILLAGÁSZATI VILÁGKÉPÜNK STONEHENGE-TŐL A KOZMOLÓGIAI NOBEL-DÍJIG Dr. Both Előd a Magyar Asztronautikai Társaság alelnöke Szent László Gimnázium, Természettudományos Önképzőkör Budapest, 2015.
RészletesebbenTermodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Részletesebben