Kozmológiai n-test-szimulációk
|
|
- György Nagy
- 7 évvel ezelőtt
- Látták:
Átírás
1 Kozmológiai n-test-szimulációk Dobos László Komplex Rendszerek Fizikája Tanszék É április 21.
2 Inhomogenitások az Univerzumban A háttérsugárzás lecsatolódásakor (z 1100) a sűrűségfluktuációk nagyon kicsik ρ ρ 10 5 hogyan jöttek létre a mai galaxisok? ρ ρ 106 A gravitációs erő kis skálán már nem lineáris minél több anyag gyűlik össze egy helyen, annál mélyebb a potenciál egyre több anyagot tud begyűjteni A struktúrák fejlődésének elméleti követése a korai Univerzumban a gravitáció hatása még lineáris a FRLW-metrika perturbálásával első rendben később:?? nincsen rá egzakt ált.rel. módszer
3 A nem lineáris fejlődés leírása Az Einstein egyenletek newtoni gravitáció linearizálhatók: g µν = η µν + h µν h µν kis metrikus perturbáció további közeĺıtés: gyenge erőterek határesete akkor működik, ha a pekuliáris sebességek kicsik A nem lineáris struktúrafejlődést newtoni közeĺıtésben nézzük analitikusan részleteiben nem kezelhető numerikus közeĺıtés: N-test szimulációk
4 Kozmológiai n-test-szimulációk A nem lineáris fejlődés analitikusan nem kezelhető gravitáló részecskék a táguló Univerzumban csak sötét anyag, a galaxisokat bele kell tenni Összekapcsolható hidrodinamikai kódokkal is barionikus anyag és a nyomás figyelembe vétele csillagkeletkezés, galaxisfejlődés, szupernóvák AGN-visszahatás Néhány fontos szimuláció Millennium, Millennium II, Millennium XXL (Springel et al.) Bolshoi (Klipyn et al.) Indra (Szalay et al.) Illustris
5
6 Nagyon nagy szimulációk Tipikus méretek: 10 10,,részecske egyenként M tömeggel 500 Mpc oldalú kockában, periodikus határfeltétel mellett kialakult halók száma kb. 20 millió Számítási igény 300 CPU év CPU mag 5-20 TB memória gyors hálózat TB adat
7 A gravitációs erő számítása A részecskék száma nagyon nagy: naivan lépésenként távolságszámítást igényelne a részecskék nem férnek el egyetlen gép memóriájában minden koordinátát át kellene küldeni a hálózaton ez kivitelezhetetlen, nagyon lassú lenne Ötlet: távoli részecskék esetében elég átlagerőt venni a teret térrészekre osztva kell kezelni a közel levő részecskék mindig egy gép memóriájában vannak a közeli kölcsönhatás számolható egzaktul a távoli erőhatásokat a gépek hálózaton keresztül kommunikálják meg
8 A szimula cio ku lo nbo zo ido pillanatokban
9 Kezdeti feltételek generálása Kezdetben a tömegpontoknak random eloszlásuk van viszont P(k) k n spektrummal a síkhullámok fázisát random kell választani Az Univerzumnak nincsen széle szimuláció periodikus határfeltétellel ami a kocka egyik lapján kimegy, bejön a másikon a doboz mérete nagy hatással van a kis hullámszámokra
10 A re szecske k mozga sa A so te t anyag nem turbulens I a re szecskepa lya k nem is keresztezik egyma st Arago n-calvo et al. (2011)
11 Sötétanyag-halók azonosítása A szimuláció eredményeként csak a fázisteret kapjuk pozíció és sebessége minden egyes részecskére néhány fix időpillanatban eltárolva Ebből kell azonosítani a kialakult sötétanyag-halókat korábban megismert friend-of-friend algoritmus két adott távolságnál közelebb levő részecske: azonos haló Meghatározható a halók sűrűségprofilja: NFW-profil halók tömegeloszlása, belső sebességdiszperziók stb. a tömegeloszlás fejlődése a halók összeolvadási hierarchiája
12 Csak szimulációból vizsgálható Klaszterek pontos térbeli alakja, és sebességeloszlása megfigyelésekben csak látóirányú Doppler-sebesség a klaszter összes galaxisa azonos z-n van, nincsen harmadik koordináta Al-halók száma és tömegeloszlása a Tejút környékén látunk pár szatellit galaxist más galaxisok körül sejtjük, hogy vannak, de nem látjuk a szimuláció becslést ad a számukra és jelentőségükre Halók összeolvadási fája (merger tree) sötétanyag-halók összeolvadása időben követhető pontos kép a hierarchikus struktúraképződésről időben visszafele követhető, hogy egy klaszter miből lett
13 Halók összeolvadási fája
14 Galaxisok modellezése A szimuláció csak sötét anyaggal számol a halók mélyére galaxisokat képzelünk a barionikus anyag mennyisége modellfüggő az ebből létrejövő csillagok össztömege is Halóbetöltöttség-eloszlás 1 milyen a haló galaxis tömegarány eloszlása egy adott tömegű halóbán mekkora és hány galaxis jön létre a barionikus anyag eloszlása a sötét anyaghoz képest (a barionikus anyagnak van nyomása, lecsatolódhat!) a barionikus anyag sebességének eloszlása a sötét anyaghoz képest 1 Halo occupation distribution (HOD)
15 Galaxisok szemi-analitikus modellezése Ismerjük az összeolvadási fát amikor két haló összeolvadt, akkor a bennük levő két galaxis is aktív csillagkeletkezés, majd aktív mag periódus Galaxis csillagpopulációjának szimulációja az összeolvadási eseményekből csillagkeletkezési történet adható: Ψ(t) [M yr 1] mikor mennyi, milyen tömegű csillag jött létre ebből elő tudjuk álĺıtani a galaxis spektrumát összeolvadáskor a két korábbi spektrumot összeadjuk
16 Szimulált katalógusok Eredmény: szemi-analitikus mock-katalógus mintha egy valódi égtérkép lenne magnitúdók, színek, vöröseltolódások A szimuláció csak diszkrét z értékeknél kerül lementésre 2 a távolabbi galaxisokat korábbi időlépésből kell venni így a vöröseltolódás is szimulálható Szemi-analitikus modellek szupermasszív fekete lyukakra is itt is az összeolvadási fából kell kiindulni összeolvadáskor a tömeg összeadódik + akkréció 2 snapshot
17 A különböző vöröseltolódások összetolása
Komplex Rendszerek Fizikája Tanszék április 28.
A nagyléptékű szerkezet kialakulása, fejlődése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. Az Univerzum sűrűségfluktuációinak fejlődése A struktúra kis
A nagy skálás szerkezet statisztikus leírása
A nagy skálás szerkezet statisztikus leírása Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. április 7. A nagy skálás szerkezet statisztikus leírása Össze akarjuk hasonĺıtani
Galaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17.
Galaxishalmazok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. március 17. Szatellitgalaxisok Nagy galaxisok körül keringő törpegalaxisok a Tejút körül 14-16 szatellit,
Csillagok parallaxisa
Csillagok parallaxisa Csillagok megfigyelése elég fényesek, így nem túl nehéz, de por = erős extinkció, ami irányfüggő Parallaxis mérése spektroszkópiailag a mért spektrumra modellt illesztünk (kettőscsillagokra
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12.
Galaxisfelmérések: az Univerzum térképei Bevezetés a csillagászatba 4. 2015. május 12. Miről lesz szó? Hubble vagy nem Hubble? Galaxisok, galaxishalmazok és az Univerzum szerkezete A műszerfejlődés útjai
Az univerzum szerkezete
Az univerzum szerkezete Dobos László dobos@complex.elte.hu É 5.60 2017. május 16. Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Komplex Rendszerek Fizikája Tanszék március 3.
Extragalaxisok és távolságuk mérése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. március 3. Galaxisok észlelése Alapvető technikák IR, optikai és UV tartományokban
Aktív galaxismagok, szupermasszív fekete lyukak
Aktív galaxismagok, szupermasszív fekete lyukak Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 17. Aktív magvú galaxisok egyesített modellje 2 Úgy gondoljuk,
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
Aktív galaxismagok, szupermasszív fekete lyukak
Aktív galaxismagok, szupermasszív fekete lyukak Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. március 10. Aktív magvú galaxisok egyesített modellje 2 Úgy gondoljuk,
A világegyetem elképzelt kialakulása.
A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,
Trócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2015. augusztus 16-22. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12
Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs
A Wigner FK részvétele a VIRGO projektben
Kettős rendszerek jellemzőinek meghatározása gravitációs hullámok segítségével A Wigner FK részvétele a VIRGO projektben Vasúth Mátyás PhD, MTA Wigner FK A Magyar VIRGO csoport vezetője MTA, 2016.05.05
Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
2011 Fizikai Nobel-díj
2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784
Bevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
A sötét anyag és sötét energia rejtélye
A sötét anyag és sötét energia rejtélye Cynolter Gábor MTA-ELTE Elméleti Fizikai Kutatócsoport Részecskefizika Határok Nélkül 2018. november 17. ELTE TTK Cynolter Gábor Sötét anyag és energia... A Standard
Trócsányi Zoltán. Kozmológia alapfokon
Magyar fizikatanárok a CERN-ben 2013. augusztus 12-17. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
Aktív magvú galaxisok és kvazárok
Aktív magvú galaxisok és kvazárok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 3. Tipikus vörös galaxis spektruma F λ 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 4000
Komplex Rendszerek Fizikája Tanszék április 28.
A kozmikus mikrohullámú háttérsugárzás Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. A kozmikus háttérsugárzás eredete Az ősi plazmában a fotonok folyamatosan
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.
Pelletek térfogatának meghatározása Bayes-i analízissel
Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
Szupermasszív fekete lyukak. Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető
Szupermasszív fekete lyukak Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető 100 évvel ezelőtt Egy elmélet jóslatainak kidolgozásához jobban megéri pacifistának lenni. r = 2GM c 2 Broderick,
Gravitációelméletek tesztelése gömbhalmazokkal
Gravitációelméletek tesztelése gömbhalmazokkal Sötét anyag vagy alternatív gravitáció? A modern csillagászat egyik legnagyobb felfedezése és mindmáig megoldatlan rejtélye a galaxisok és galaxishalmazok
Térbeli struktúra elemzés szél keltette tavi áramlásokban. Szanyi Sándor szanyi@vit.bme.hu BME VIT. MTA-MMT konferencia Budapest, 2012. június 21.
Térbeli struktúra elemzés szél keltette tavi áramlásokban Szanyi Sándor szanyi@vit.bme.hu BME VIT MTA-MMT konferencia Budapest, 2012. június 21. 1 Transzportfolyamatok sekély tavakban Transzportfolyamatok
Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja
Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával Szondy György ELFT tagja? GPS ELFT Fizikus Vándorgyűlés Szombathely, 2004. Augusztus 24.-27. Ált. Rel. GRAVITÁCIÓ
Kozmológia egzakt tudomány vagy modern vallás?
Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős
Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös
A Mössbauer-effektus vizsgálata
A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
Komplex Rendszerek Fizikája Tanszék április 28.
A kozmikus mikrohullámú háttérsugárzás Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. április 28. A korai Univerzumot kitöltő plazma Az Univerzum kezdetén egzotikus
Szedimentáció, elektroforézis. Biofizika előadás Talián Csaba Gábor
Szedimentáció, elektroforézis Biofizika előadás Talián Csaba Gábor 2012.03.20. szedimentáció = ülepedés Sedeo2, sedi, sessum ül Sedimento 1 - ülepít Cél: 1 - elválasztás 2 - a részecskék méretének vagy
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
Bevezetés a kozmológiába 1: a Világegyetem tágulása
Horváth Dezső: Kozmológia-1 HTP-2016, CERN, 2016.08.16. p. 1 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2016, CERN, 2016 augusztus 16. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner
Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
A hosszúhullámú sugárzás stratocumulus felhőben történő terjedésének numerikus modellezése
A hosszúhullámú sugárzás stratocumulus felhőben történő terjedésének numerikus modellezése Lábó Eszter 1, Geresdi István 2 1 Országos Meteorológiai Szolgálat, 2 Pécsi Tudományegyetem, Természettudományi
A mikroskálájú modellek turbulencia peremfeltételeiről
A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása
Dimenzióváltás becsapódásos fragmentációban
Dimenzióváltás becsapódásos fragmentációban Pál Gergő Témavezető: Dr. Kun Ferenc Debreceni Egyetem Döffi 2013, Balatonfenyves Heterogén anyagok fragmentációja Próbatest töredezési folyamata - nagy mennyiségű
Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)
Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási
Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI
Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,
A sötét anyag nyomában
A sötét anyag nyomában Az atomoktól a csillagokig Dávid Gyula 2016. 09. 08. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig dgy 2016. 01. 21. A csillagok fénye
A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.
1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény
AZ UNIVERZUM GYORSULÓ TÁGULÁSA
bességet adunk irányukat pedig a helyvektorokkal ugyanakkora szöget bezárónak vesszük A rendszert ily módon elindítva a testek Kepler-mozgást végeznek miközben konfigurációjuk önmagához hasonló (konvex
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf
Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big
Az Univerzum szerkezete
Az Univerzum szerkezete Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március Kifelé a Naprendszerből: A Kuiper(-Edgeworth)-öv
KÖSZÖNTJÜK HALLGATÓINKAT!
KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. Az Univerzum keletkezése Amit tudunk a kezdetekről,
Folyami hidrodinamikai modellezés
Folyami hidrodinamikai modellezés Dr. Krámer Tamás egyetemi docens BME Vízépítési és Vízgazdálkodási Tanszék Numerikus modellezés 0D 1D 2D 3D Alacsony Kézi számítások Részletesség és pontosság Bonyolultság
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
ERŐ-E A GRAVITÁCIÓ? 1
ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási rendszer, ahol érvényes Newton első törvénye (! # = 0 ' = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben tett felfedezések:
Az Einstein egyenletek alapvet megoldásai
Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
Csabai István ELTE Komplex Rendszerek Fizikája Tanszék AZ UNIVERZUM 3D TÉRKÉPE
Csabai István ELTE Komplex Rendszerek Fizikája Tanszék AZ UNIVERZUM 3D TÉRKÉPE Csabai István ELTE Komplex Rendszerek Fizikája Tanszék AZ UNIVERZUM 3D TÉRKÉPE Csabai István ELTE Komplex Rendszerek
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
Forgalmi modellezés BMEKOKUM209
BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése
Gravitációs hullámok. Vasúth Mátyás. Wigner FK, RMI. Wigner FK,
Gravitációs hullámok Vasúth Mátyás Wigner FK, RMI Wigner FK, 2014.09.17-19 Bevezetés Gravitációs hullámok és detektorok Adatgyűjtés Adatfeldolgozás, GPU Einstein-egyenletek, hullámformák Kettős rendszerek
Plakátok, részecskerendszerek. Szécsi László
Plakátok, részecskerendszerek Szécsi László Képalapú festés Montázs: képet képekből 2D grafika jellemző eszköze modell: kép [sprite] 3D 2D képével helyettesítsük a komplex geometriát Image-based rendering
A galaxisok csoportjai.
A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei
SOKDIMENZIÓS TUDOMÁNYOS ADATHALMAZOK HATÉKONY KEZELÉSE
SOKDIMENZIÓS TUDOMÁNYOS ADATHALMAZOK HATÉKONY KEZELÉSE SZALAI-GINDL JÁNOS MÁRK TÉMAVEZETŐK: DR. CSABAI ISTVÁN ÉS DR. DOBOS LÁSZLÓ KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM MOTIVÁCIÓ
Reakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az
Asztrometria egy klasszikus tudományág újjászületése. ELFT Fizikus Vándorgyűlés, Szeged, augusztus 25.
Asztrometria egy klasszikus tudományág újjászületése ELFT Fizikus Vándorgyűlés, Szeged, 2016. augusztus 25. Történeti visszapillantás Asztrometria: az égitestek helyzetének és mozgásának meghatározásával
Numerikus szimuláció a városklíma vizsgálatokban
Numerikus szimuláció a városklíma vizsgálatokban BME Áramlástan Tanszék 2004. 1 Tartalom 1. Miért használunk numerikus szimulációt? 2. A numerikus szimuláció alapjai a MISKAM példáján 3. Egy konkrét MISKAM
Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával.
A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A Szimulink programcsomag rendszerek analóg számítógépes modelljének szimulálására alkalmas grafikus programcsomag. Egy SIMULINK
Mátrixhatvány-vektor szorzatok hatékony számítása
Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=
Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V
MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József
MATROSHKA kísérletek a Nemzetközi Űrállomáson Kató Zoltán, Pálfalvi József Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2010 A Matroshka kísérletek: Az Európai Űrügynökség (ESA) dozimetriai programjának
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
Geofizikai kutatómódszerek I.
Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS Országos Meteorológiai Szolgálat 1 TARTALOM A numerikus modellezés alapjai Kategorikus és
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged,
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport Fizikus Vándorgyűlés Szeged, 2016.08.25 Vázlat Mértékelméletek Tulajdonságaik Milyen fizikát írnak le? Perturbációszámítás
Gravitációshullám-asztrofizika egy új korszak kezdete
2016. május 5. Magyar Tudományos Akadémia A gravitációs hullámok felfedezése, asztrofizikai perspektívák Gravitációshullám-asztrofizika egy új korszak kezdete Kocsis Bence GALNUC ERC Starting Grant kutatócsoport
A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása
A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása Összeállította: dr. Szuhay Péter Budapest, 2013 Filename, 1 Hang és zaj 1. rész Dr. Szuhay Péter B & K Components Kft
Idegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
A változócsillagok. A pulzáló változók.
A változócsillagok. Tulajdonképpen minden csillag változik az élete során. Például a kémiai összetétele, a luminozitása, a sugara, az átlagsűrűsége, stb. Ezek a változások a mi emberi élethosszunkhoz képest
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Ősrobbanás: a Világ teremtése?
Horváth Dezső: A kozmológia alapjai Telki, 2010.01.14 p. 1/37 Ősrobbanás: a Világ teremtése? (A kozmológia alapjai) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest
Válaszok a feltett kérdésekre
Válaszok a feltett kérdésekre Megmarad-e az energia a VE tágulása során? Tapasztalatunk szerint az energia helyileg (tehát az energiasűrűség) megmaradó mennyiség Hol? Mit értünk energia alatt? Biztosan
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Theory hungarian (Hungary)
Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény
Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Csanád Máté, Nagy Márton, Lőkös Sándor ELTE Atomfizikai Tanszék Magfizikus Találkozó Jávorkút 2012. szeptember
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Az artériás véráramlás numerikus szimulációja
Az artériás véráramlás numerikus szimulációja Halász Gábor professor emeritus halasz@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111,