A nagy skálás szerkezet statisztikus leírása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A nagy skálás szerkezet statisztikus leírása"

Átírás

1 A nagy skálás szerkezet statisztikus leírása Dobos László Komplex Rendszerek Fizikája Tanszék É április 7.

2 A nagy skálás szerkezet statisztikus leírása Össze akarjuk hasonĺıtani megfigyeléseket sötétanyag-szimulációkat kozmikus mikrohullámú háttérsugárzás fluktuációit Ehhez mindenképp valamilyen statisztikus leírás kell a szimulációk sosem magát a valóságot adják a KMHS csak elméleti úton kapcsolható össze a ma látható galaxisokkal

3 Statisztikai elemzésre alkalmas minta készítése Spektroszkópiai égtérképek készítésekor előzetesen csak becsülni lehet egy objektum vöröseltolódását spektroszkópiára kijelölés látszólagos fényesség alapján ezért a minta általában magnitúdó-limitált Malmquist-torzítás fluxuslimitált minta problémája a halványabb galaxisokat távol már nem látjuk közelebb nagyobb galaxissűrűséget látunk, mint távol

4 Vörös óriásgalaxisok Ideálisak a nagy skálás szerkezet tanulmányozására fényesek könnyű mérni a vöröseltolódásukat A vörös galaxisok evolválnak nincsen csillagkeletkezés a csillagaik passzívan öregednek a spektrumuk időben változik Evolúció-korrekció: modell alapján korrigáljuk a magnitúdókat a K-korrekció mellett egy e-korrekciót is ad

5 Magnitúdó-limitált minta: látszólagos magnitúdó m r [mag] z

6 Magnitúdó-limitált minta: abszolút magnitúdó M r [mag] z

7 Térfogat-limitált minta Explicit abszolút magnitúdó és vöröseltolódás vágás kell a minta jelentős részét elveszítjük cserébe a statisztika egyszerű M r [mag] z

8 Az együtt mozgó távolságok és a térfogat Mért koordináták: α, δ, z ezeket át kell számolni 3D koordinátákra z R = D C (z) kell De az Univerzum tágul nagy z tartományokat nézünk régen a galaxisok közelebb voltak egymáshoz (méterben!) ezért használjuk a D C együtt mozgó távolságot kitranszformáljuk a skálaparaméter Szerencsére az Univerzum majdnem pontosan sík a transzverzális távolságok megegyeznek a látóirányúval D M = D C V = D 3 C

9 A térbeli eloszlás jellemzése Elsődleges cél: minket elsősorban nem a galaxiseloszlás térképe érdekel arra vagyunk kíváncsiak, hogy hogyan alakult ki ez az eloszlás A galaxisok eloszlását össze akarjuk hasonĺıtani sötétanyag-szimulációkkal a kozmikus háttérsugárzás mintázatával Ehhez statisztikai leírás kell próbálkozzunk a statfizből ismert korrelációs függvénnyel ρ( r) ξ(r)

10 A párkorrelációs függvény r dv 2 dv 1 Mi annak a valószínűsége, hogy két r távolságban levő, véletlenül elhelyezett dv 1 és dv 2 térfogatú tércella mindegyikében találtunk galaxist?

11 A párkorrelációs függvény definíciója Az előbb definiált valószínűség: δp = n 2 [1 + ξ(r)] dv 1 dv 2 n a galaxisok átlagos számsűrűsége Mpc 3 ξ(r) az ún. párkorrelációs függvény, dimenziótlan A párkorrelációs függvény és a sűrűség korrelációja ρ(r) folytonos sűrűségeloszlás gond: a galaxiseloszlásból ezt nem tudjuk megmondani! most feltesszük, hogy igen

12 Összefüggés a folytonos sűrűségeloszlással Statisztikus fizikában valamilyen térmennyiség autokorrelációja: ρ(x)ρ(x + r) = 1 ρ(x)ρ(x + r) dx V V valami jól meghatározott térfogatra integrálunk az a térfogat, amiben megfigyeltük a galaxisokat ρ(x) folytonos, a galaxisok eloszlása nem az Ha feltesszük, hogy a galaxisok azonos M G tömegűek, akkor ρ(x) = i M G δ xi a galaxisok tömege természetesen nem azonos kellően nagy mintára ez akár ki is átlagolódhat

13 A sűrűség autokorrelációja és a párkorrelációs függvény Az előbbi definíció alapján az irányfüggő párkorrelációs függvény: ξ(r) = ρ(x)ρ(x + r) ρ(x) 2 1 Fel kell még összegezni az összes irányra, majd normálni: ξ(r) = 1 4πr 2 ξ(r) dr S(r)

14 A sűrűségfluktuáció Fourier-transzformáltja A sűrűségfluktuációt az átlagos sűrűségtől való eltéréssel definiáljuk: δ(x) = ρ(x) ρ ρ ξ(r) = δ(x)δ(x + r) A sűrűségfluktuációt kifejthetjük síkhullámok szerint δ(x) = δ(k)e ikx dk Ekkor δ(k) a hullámszám függvényében adott: δ(k) = 1 δ(x)e ikx dx V

15 A korrelációs függvény Fourier-transzformáltja Írjuk fel a korrelációs függvényt a Fourier-transzformáltakból: δ(x)δ(x + r) = 1 δ(k)δ(k ) e ikx e ik (x+r) dk dk dx V Kihasználva, hogy δ(k) = δ( k), és a bázisfüggvények ortogonálisak ξ(r) = δ(x)δ(x + r) = δ(k) 2 e ikr dr Ez definiálja a teljesítményspektrumot 1 : P(k) = δ(k) 2 Vagyis a párkorrelációs függvény a teljesítményspektrum inverz-fourier-transzformáltja 2. 1 más néven spektrális sűrűség, angolul power spectrum 2 Wiener Kkinchin-tétel

16 A teljesítményspektrum meghatározása Először ξ(r) meghatározása megfigyelésekből térfogat-limitált mintát készítünk minden galaxis távolságát megmérjük minden másiktól hisztogramot készítünk (általában csak 1D) ξ(r)-t Fourier-transzformálva kapjuk P(k)-t ez numerikusan diszkrét Fourier-transzformációt jelent általában FFT ezért érdemes a hisztogram felbontását kettő hatványának venni

17 A teljesítményspektrum és a párkorrelációs függvény Egymás Fourier-transzformáltjai. Mi a különbség? Párkorrelációs függvény jobbára csak galaxisokra határozható meg Teljesítményspektrum az elméleti számolások hullámszám-térben mennek ezekből a teljesítményspektrumot kapjuk a kozmikus háttérsugárzásnak is csak a spektrumát tudjuk mérni, ebből számolhatjuk vissza a korrelációs függvényt

18 A távolsághisztogram meghatározása A távolsághisztogram binjeit normálni kell minden galaxist minden másikkal össze kell párosítani naivan összegezve a hisztogram ξ(r) r 2 módon skálázna Pontosan kell ismerni a megfigyelt térfogat határait vöröseltolódás limitek megfigyelt terület az égen a széleken levő galaxisoknál figyelni kell az r sugarú gömb nincsen benne teljesen a megfigyelt térfogatban a szélek erős torzítást okoznak

19 Egy ötlet a különböző torzítások kiküszöbölésére A cél a hisztogram binjeinek megfelelő normálása tekintsük a megfigyelt mintát generáljunk egy teljesen random mintát azonos n-nel, ugyanabban a térfogatban Határozzuk meg a két mintában az r távolságokra levő galaxisok számát DD: a távolságokat a megfigyelt adatokban mérjük RR: a távolságokat a random mintában mérjük Ezzel becsülhető a korrelációs függvény: 1 + ξ(r) = DD RR

20 Landy Szalay-féle becslés Hisztogram meghatározásánál egy fő kérdés: mekkora az egyes binekben a hiba? ideális esetben Poisson-eloszlás Stephen Landy és Szalay Sándor (1993) az 1 + ξ(r) = DD RR becslés hibája túl nagy helyette mást javasoltak 1 + ξ(r) = DD 2DR + RR RR itt DR a mért és a random minta közötti korreláció ennek a varianciája effektíve a Poisson-hiba

21 Mérési eredmények: a teljesítményspektrum

22 A párkorrelációs függvény szakaszai

23 Az SDSS mérési eredményei: párkorrelációs függvény

24 A párkorrelációs függvény modellezése Kis távolságokra (< 8 Mpc) a galaxisok párkorrelációs függvénye: ξ(r) r γ γ 1,75 Függ a galaxisok típusától is elliptikus galaxisok erősebben klasztereződnek avagy: az erősebben klasztereződött galaxisok inkább elliptikusak γ ell = 1,86 γ sp = 1,41

25 A Limber-egyenlőség Régen nem állt rendelkezésre elegendő vöröseltolódás mérése csak a projektált eloszlást látjuk szögkorrelációkat néztek: w = w(θ) kis vöröseltolódásokig D M θ Ki lehet-e találni a 3D γ exponenst a 2D eloszlásból? egymáshoz közel levő galaxisokra igen: Limber (1954) w(θ) θ 1 γ ξ(r) r γ

26 Az SDSS eredményei: párkorrelációs függvény

27 Barionikus akusztikus oszcillációk A párkorrelációs függvényen 100 h 1 Mpc-nél csúcs az SDSS vörös óriásgalaxisaiból sikerült kimutatni a vártál élesebb a csúcs A korai Univerzum hanghullámainak lenyomata az ősi plazmában legerősebb harmonikus a kozmikus mikrohullámú háttérsugárzásban is látjuk hullámhossza megfelel az akkori akusztikus horizont méretének

28 A Kaiser-effektus A galaxisok a Hubble-áramláshoz képest mozognak pekuliáris sebesség csak a látóirányba eső sebességet tudjuk mérni de ezt is csak a vöröseltolódással együtt Galaxishalmazokban jelentős sebességdiszperzió belül random mozgás kívül befelé zuhanás Nagy skálákon áramlás a filamentumok irányába filamentumok mentén a szuperklaszterekbe

29 A Doppler-eltolódás torzító hatásai valós térben áramlás ρ(x) áramlás vöröseltolódás-térben ρ(z)

30 Redshift-space distortion Bontsuk fel a párkorrelációs függvényt két irányra: π: galaxisok közti távolság látóirányban (z-ből) σ: galaxisok közti transzverzális távolság (szögekből + z-ből) ezzel a párkorrelációs függvény ξ = ξ(π, σ)

31 A redshift-space distortion korrigálása Redshift-space korrelációs függvény: ξ = ξ(s) valójában ez az, amit eddig néztünk Megkülönböztetjük a valódi térben vett r távolságtól mivel a Doppler-eltolódás torzítja a távolságmérést de Doppler csak látóirányban van transzverzálisan a valódi távolságokat mérjük Projektált korrelációs függvény: w p = w p (r p ) r p a két galaxis transzverzális távolsága ez redshift függő, nem simán a szögből jön

32 A galaxisok okozta torzítás A galaxisok eloszlása nem azonos az anyagsűrűséggel a sötét anyag folytonosan tölti ki a teret a galaxisok a potenciálgödrökben ez erős torzítást okoz a statisztikában Kérdések a galaxis mindig a potenciálgödör közepén van? hogyan függ a galaxis tömege a gödör mélységétől? A kozmológiai szimulációs csak a sötét anyagot szimulálják bele kell tenni a galaxisokat galaxiskeletkezési modellek tesztelése

33 Magasabb rendű korrelációs függvények A kétpont-korreláció nem mond sokat a topológiáról elsősorban csak a klasztereződésre érzékeny pl. az üregek méreteloszlásáról nem mond semmit Kettőnél több pont korrelációját is lehet definiálni Három pont esetén még egyszerű háromszögek paraméterek: a három oldal vagy két oldal és egy szög jól jellemezheti a mintázatban levő körök eloszlását

Kozmológiai n-test-szimulációk

Kozmológiai n-test-szimulációk Kozmológiai n-test-szimulációk Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 21. Inhomogenitások az Univerzumban A háttérsugárzás lecsatolódásakor (z 1100)

Részletesebben

Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12.

Galaxisfelmérések: az Univerzum térképei. Bevezetés a csillagászatba május 12. Galaxisfelmérések: az Univerzum térképei Bevezetés a csillagászatba 4. 2015. május 12. Miről lesz szó? Hubble vagy nem Hubble? Galaxisok, galaxishalmazok és az Univerzum szerkezete A műszerfejlődés útjai

Részletesebben

Komplex Rendszerek Fizikája Tanszék április 28.

Komplex Rendszerek Fizikája Tanszék április 28. A nagyléptékű szerkezet kialakulása, fejlődése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. Az Univerzum sűrűségfluktuációinak fejlődése A struktúra kis

Részletesebben

Galaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17.

Galaxishalmazok. Komplex Rendszerek Fizikája Tanszék március 17. Galaxishalmazok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. március 17. Szatellitgalaxisok Nagy galaxisok körül keringő törpegalaxisok a Tejút körül 14-16 szatellit,

Részletesebben

Komplex Rendszerek Fizikája Tanszék április 28.

Komplex Rendszerek Fizikája Tanszék április 28. A kozmikus mikrohullámú háttérsugárzás Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2017. április 28. A kozmikus háttérsugárzás eredete Az ősi plazmában a fotonok folyamatosan

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az

Részletesebben

Csillagok parallaxisa

Csillagok parallaxisa Csillagok parallaxisa Csillagok megfigyelése elég fényesek, így nem túl nehéz, de por = erős extinkció, ami irányfüggő Parallaxis mérése spektroszkópiailag a mért spektrumra modellt illesztünk (kettőscsillagokra

Részletesebben

Az univerzum szerkezete

Az univerzum szerkezete Az univerzum szerkezete Dobos László dobos@complex.elte.hu É 5.60 2017. május 16. Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Komplex Rendszerek Fizikája Tanszék március 3.

Komplex Rendszerek Fizikája Tanszék március 3. Extragalaxisok és távolságuk mérése Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. március 3. Galaxisok észlelése Alapvető technikák IR, optikai és UV tartományokban

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

Pelletek térfogatának meghatározása Bayes-i analízissel

Pelletek térfogatának meghatározása Bayes-i analízissel Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés

Részletesebben

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés

Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Csillagászati észlelés gyakorlat I. 2. óra: Távolságmérés Hajdu Tamás & Császár Anna & Perger Krisztina & Bőgner Rebeka A csillagászok egyik legnagyobb problémája a csillagászati objektumok távolságának

Részletesebben

Komplex Rendszerek Fizikája Tanszék április 28.

Komplex Rendszerek Fizikája Tanszék április 28. A kozmikus mikrohullámú háttérsugárzás Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2014. április 28. A korai Univerzumot kitöltő plazma Az Univerzum kezdetén egzotikus

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Aktív magvú galaxisok és kvazárok

Aktív magvú galaxisok és kvazárok Aktív magvú galaxisok és kvazárok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 3. Tipikus vörös galaxis spektruma F λ 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 4000

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Kozmikus mikrohullámú háttérsugárzás anizotrópiája

Kozmikus mikrohullámú háttérsugárzás anizotrópiája Kozmikus mikrohullámú háttérsugárzás anizotrópiája Bántó Balázs Eötvös Loránd University Bántó Balázs (ELTE) CMB 1 / 23 Történelmi áttekintés Robert Henry Dicke 1941-ben, az M.I.T. sugárlaboratóriumában

Részletesebben

Műholdas és modell által szimulált globális ózon idősorok korrelációs tulajdonságai

Műholdas és modell által szimulált globális ózon idősorok korrelációs tulajdonságai Műholdas és modell által szimulált globális ózon idősorok korrelációs tulajdonságai Homonnai Viktória II. éves PhD hallgató Témavezető: Dr. Jánosi Imre ELTE TTK, Komplex Rendszerek Fizikája Tanszék Bevezetés

Részletesebben

Geofizikai kutatómódszerek I.

Geofizikai kutatómódszerek I. Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Diszkréten mintavételezett függvények

Diszkréten mintavételezett függvények Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Hogyan mozognak a legjobb égi referenciapontok?

Hogyan mozognak a legjobb égi referenciapontok? Hogyan mozognak a legjobb égi referenciapontok? Moór Attila, Frey Sándor, Sebastien Lambert, Oleg Titov, Bakos Judit FÖMI Kozmikus Geodéziai Obszervatóriuma, Penc MTA Fizikai Geodézia és Geodinamikai Kutatócsoport,

Részletesebben

Z v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre:

Z v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre: 1 Korrelációs fügvények Hasonlóság mértéke a két függvény szorzatának integrálja Időbeli változások esetén lehet vizsgálni a hasonlóságot a τ relatív időkülönbség szerint: Keresztkorrelációs függvény:

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra) Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.

Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán

Részletesebben

Hogyan lehet meghatározni az égitestek távolságát?

Hogyan lehet meghatározni az égitestek távolságát? Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

A Fermi gammaműhold mozgásának vizsgálata

A Fermi gammaműhold mozgásának vizsgálata A Fermi gammaműhold mozgásának vizsgálata különös tekintettel a gamma-kitörésekre rárakódó háttér értékének alakulására Szécsi Dorottya ELTE fizikus MSc, I. évfolyam XXX. Jubileumi OTDK 211. április 27-29.

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Henger körüli áramlás Henger körüli áramlás. Henger körüli áramlás. ρ 2. R z. R z. = 2c. c A. = 4c. c p. = c cos. y/r 1.5.

Henger körüli áramlás Henger körüli áramlás. Henger körüli áramlás. ρ 2. R z. R z. = 2c. c A. = 4c. c p. = c cos. y/r 1.5. Henger körüli áramlás y/r.5 x/r.5 3 3 R w z + z R R iϑ e r R R z ( os ϑ + i sin ϑ ) Henger körüli áramlás ( os ϑ i sin ϑ ) r R + [ ϑ + sin ϑ ] ( ) ( os ) r R r R os ϑ + os ϑ + sin ϑ 444 3 r R 4 r [ os

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

STATISZTIKAI PROBLÉMÁK A

STATISZTIKAI PROBLÉMÁK A STATISZTIKAI PROBLÉMÁK A HULLÁMTÉR REPRODUKCIÓ TERÜLETÉN 2012. május 3., Budapest Firtha Gergely PhD hallgató, Akusztikai Laboratórium BME Híradástechnikai Tanszék firtha@hit.bme.hu Tartalom A hangtér

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

Pulzáló változócsillagok és megfigyelésük I.

Pulzáló változócsillagok és megfigyelésük I. Pulzáló változócsillagok és megfigyelésük I. 7. Cephei és SPB csillagok, megfigyelés Sódor Ádám ELTE MTA CSFK CSI 2015.11.10. 2 Sódor Ádám Pulzáló váltcsill. és megfigy. I. 6. Cep, SPB, megfigyelés 2 /

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Termék modell. Definíció:

Termék modell. Definíció: Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

2011 Fizikai Nobel-díj

2011 Fizikai Nobel-díj 2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 4. Asztrofizika II. és Műszerismeret Megoldások Dálya Gergely, Bécsy Bence 1. Bemelegítő feladatok B.1. feladat Írjuk fel a Pogson-képletet:

Részletesebben

Minőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás

Minőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

Aktív galaxismagok, szupermasszív fekete lyukak

Aktív galaxismagok, szupermasszív fekete lyukak Aktív galaxismagok, szupermasszív fekete lyukak Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 17. Aktív magvú galaxisok egyesített modellje 2 Úgy gondoljuk,

Részletesebben

Kvázisztatikus határeset Kritikus állapot Couette-teszt

Kvázisztatikus határeset Kritikus állapot Couette-teszt Wacha András Kvázisztatikus határeset Kritikus állapot Couette-teszt 2006. november 9. Kvázisztatikus határeset GDR_MiDi. On dense granular flows. Eur. Phys. J. E 14. pp 341-365 (2004). Dimenziótlan paraméterek

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása Összeállította: dr. Szuhay Péter Budapest, 2013 Filename, 1 Hang és zaj 1. rész Dr. Szuhay Péter B & K Components Kft

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Line aris f uggv enyilleszt es m arcius 19.

Line aris f uggv enyilleszt es m arcius 19. Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Trócsányi Zoltán. Kozmológia alapfokon

Trócsányi Zoltán. Kozmológia alapfokon Magyar fizikatanárok a CERN-ben 2013. augusztus 12-17. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,

Részletesebben

STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1

STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1 STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához 1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent

Részletesebben