REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus
|
|
- Margit Ráczné
- 8 évvel ezelőtt
- Látták:
Átírás
1 SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott: Az ábrán látható A pontban csapáazott csillapított, szabad rezőrendszer ukált rezőrendszere. Az általános koordináta leen a rúd szöelfordulása: q( t) = ϕ ( t). A helettesítő rezőrendszer jellemzői: / c = 875 Nm rad, k = 75 Nms/rad, m = 6 km /rad. 3 3 Kezdeti feltételek: t = : = ϕ = 8 rad, = v = ϕ = rad/s. Feladat: a) Mehatározni a csillapított rendszer ν körfrekvenciáját! b) Eldönteni, ho kialakul-e rezés! c) Mehatározni a csillapított rezőrendszer T ν rezésidejét és a rezés f ν frekvenciáját. d) Felírni a rezőrendszer mozáseenletének meoldását! e) A Λ loaritmikus dekrementum kiszámítása. f) Komple kitérés(elmozdulás) vektor és a komple sebessévektorok közötti Φ fázisszö mehatározása. Kidolozás: a) A csillapított rezőrendszer ν körfrekvenciájának mehatározása: rad rad = = = = 85,58, = 85,58 = 3, 6, 5 m c 6 8, 6 8, s s k 75 rad β = = = 8,398, m 6 s rad ν = β = 85,58 7,533 =,7. s b) = 3,6 rad/s > ν =,7 rad/s. Ezért kialakul a rezés! π π 6,8 c) A T ν rezésidő kiszámítása: ν = Tν = = =,585 s. Tν ν,7 A csillapított rezés f ν frekvenciája: fν = = =, 7 =Hz. Tν,585 s d) A rezőrendszer mozáseenletének meoldása (komple alakban):
2 ( β + iν) t () ( β+ iν ) t ( β+ iν ) t ( β+ iν ) t z z t Ae a ib e ae ibe ( β+ ) Ebből a meoldás képzetes része: i ν t z t = be = ( t) ( β iν) t ( β iν) A kezdeti feltételből: = = = + = + - a komple elmozdulás. Im t = = be = be = = b= 8 rad. = β+ iν t β+ iν t zt () = A β + iν e = a+ ib β + iν e. A komple sebessévektor: Elvéezve a kijelölt műveleteket: ( β+ ν zt a b e ) i ( a b ) e ( β+ ν = β ν + ν β ) Ebből a meoldás képzetes része: ( β+ Im i ν ) t z t = aν bβ e = ( t). i t i t (). A kezdeti feltételből: ( β + iν ) t ( β + iν ) t = = = aν bβ e = aν bβ e = v. = 3 3 v + bβ + 8 8,398 ( aν bβ) = v a= =, rad. ν,7 Az a és b paraméterek mehatározása után a komple meoldásfüvén: ( β+ iν) t β+ iν t βt iνt βt z = z() t = Ae = a+ ib e = e a+ ib e = e a+ ib (cosν t+ isin ν t), () ( cos sin ) t t zt a t b te β β = ν ν + i ( asinνt+ bcos νt) e, βt Im z t = ( asinνt+ bcos νt) e = t. Ebből a meoldás képzetes része: β t = ( a sinνt+ bcos νt) e t = (, sin, 7t+, 8cos, 7 t) e A fenti összefüés a rúd A pont körüli, radiánban értelmezett ϕ() t () t szöelfordulását adja me az idő füvénében. β 8,398 e) Loaritmikus dekrementum: Λ= ln = π = 6, 8 =,9. ν,7 e) A komple kitérés és a komple sebessévektor közötti fázisszö mehatározása és szemléltetése: 8,39t a =, rad, b =,8 rad. zt ( ) b Φ ϑ a zt ( ) π β 8,398 Φ= + ϑ, ahol tϑ = = =,783 ν,7 ϑ = arct, π Φ= + ϑ = = 8.
3 6. feladat: Csillapítatlan erjesztett rezőrendszer A c β c c c c 3 ϕ m rúd F (t) c Q(t) m q= q t Adott: Az ábrán látható az A pontban csapáazott rezőrendszer ukált rezőrendszere qt= ϕ t. (3. feladat). Az általános koordináta leen a rúd szöelfordulása: () () / c = 3875 Nm rad, m = 6 km /rad, F ( t) = F sin( ω t), F = N, ω = rad/s, = m, ε =. Feladat: a) A ukált rezőrendszer mozáseenletének felírása. b) A ukált rendszer mozáseenletének általános meoldása. c) A Z komple ellenállás mehatározása. d) A rezés vektorábrájának merajzolása. Kidolozás: a) A rezőrendszer mozáseenlete: Általános koordináta: q = ϕ. d de de A Larane-féle másodfajú mozáseenlet: = Q c + Q. dt dq dq Az általános erjesztő erő: Q () t Q ( t) = F β = Fsin( ωt) j ( j) = Fsin( ωt), ahol v v ( ϕ j) F = F sin( ωt) j, β = = = = j. q ϕ ϕ A rezőrendszer mozáseenlete: 6 cos 9 cos m ϕ + F sin( t). rúd ϕ= ω c c c3 c A ukált rezőrendszer mozáseenlete: mq + q = Q () t = Q sin( ω t). c 6q q= sin( t). b) A mozáseenlet általános meoldása: iωt i t Pe zt () = zh() t + zp() t = Ae +. iω Z Állandósult rezések esetén bennünket a meoldás partikuláris része érdekel: iωt Pe i i zt () zp () t = iωz, ahol P Q ( Nm ). e ε ε = = F e = F e = F =
4 c) A rezőrendszer komple ellenállása: 3875 Z = i ωm = i 6 = i( ,75) = i( 59,5) Nms. c ω d) A erjesztett rezés vektorábrája: P iω t P F 3 zp ( t = ) = e = = = = = 6,8 rad, iωz iω Z iωz i ( i = 59,5) 59,5 iωt Pe 3 z p( t = ) = iω = iω zp( t) = i ( 6,8 ) = i,5 rad/s, iω Z z ( t = ) = ω z t = 6,8 =,5 rad/s. 3 p p z ( p t ) z Z ( p t ) z ω ( p t ) P P P z t e t i t ( ω ω ) () = iωt p cos sin, iωz = iωz + p ( 3 3 ) z ( t) = 6,8 cos t + i 6,8 sin t, z ( t) =,5sin t + i,5cos t, p z ( t) =,5cos t + i,5sin t. p A ténlees meoldást az ω körfrekvenciával foró komple vektoroknak a füőlees, képzetes tenelre eső merőlees vetülete szoláltatja: 3 t = Im zp( t) = 6,8 sin t rad, t () = Im z p () t =,5cost rad/s, t = Im zp ( t) =,5sin t rad/s. 7. feladat: Csillapítatlan erjesztett rezőrendszer A c β c c c c 3 ϕ m rúd F (t) c Q(t) m q= q t Adott: Az ábrán látható az A pontban csapáazott rezőrendszer ukált rezőrendszere qt= ϕ t. (3.feladat). Az általános koordináta leen a rúd szöelfordulása: () () / c = 3875 Nm rad, m = 6 km /rad, F ( t) = F sin( ω t), F = N, ω = rad/s, = m, ε =. Feladat: a) A rezőrendszer mozáseenletének mehatározása. b) A ukált rezőrendszer saját körfrekvenciájának mehatározása. c) A erjesztett rezés imális kitérésének mehatározása.
5 d) A rúd imális szöelfordulásának ábrázolása a erjesztési körfrekvencia füvénében (a rezonanciaörbe merajzolása). e) A c ruóállandójú ruóban ébő imális Q ruóerőt mehatározása. Kidolozás: a) A rendszer mozáseenlete: d de de A Larane-féle másodfajú mozáseenlet: = Q c + Q. dt dq dq A ukált rezőrendszer mozáseenlete: mq + q = Q () t = Q sin( ω t), c 6q q= sin( t). b) A rendszer saját körfrekvenciája: 3875 rad rad = = = 65, = 65, =,66. m c s s c) A imális kitérés mehatározása: ϕstat = c Q = c F = =,3( rad) ϕstat =, ,66 3 ϕ = ϕstat =,3 = 6,8 ( rad) ϕ =,36. ω,66 ( ) c) A ϕ ϕ ( ω ) = rezonenciafüvén mehatározása: A füvén jellezetes pontjai: - statikus állapot esetén( ω = ) :,3,66 ϕ = ϕstat = =,3 rad ϕ = ϕ,59. stat = ( ω ) (,66 ) - rezonancia állapot esetén( ω = =,66 rad/s ):,3,66 ϕ = ϕstat = = (rad). ω,66,66 - ( ) ( ) ϕ ω = ϕstat esetén: ω ϕ = ϕstat = ϕ stat = ξ = = ω ξ ω =, ( ) rad ω = = = ϕ = ϕ = s,66 3,79 esetén stat,59 A rezonancia örbe:
6 ϕ, ϕ = ϕ ω,8,6,, 3 5 ω rezonancia d) A c ruóállandójú ruóban ébő imális Q ruóerőt mehatározása. 9 cos 9 cos 3 3 Q ( t) ϕ = ( t) = ( 6,8 sin t) = 6sin ( t), c ( t) Q = 6sin = 6 N. = 8. feladat: Úterjesztés - erjesztés ruón keresztül c c ϕ l A m k (t) rad s Adott: Az ábrán látható, az A pontban csapáazott rezőrendszer. A rendszert a c ruó pontjában az () t = sin( ωt+ ε ) füvén szerint (úterjesztés) erjesztjük. l = m, c = m N, c = m N, m = k, k = Ns/m, = mm, ω = rad/s. Feladat: a) Az ábrán látható rezőrendszer mozáseenletének felírása kis szöelfordulások esetén. b) A ukált rendszer jellemző paramétereinek mehatározása. Kidolozás: Az általános koordináta leen a rúd szöelfordulása q = ϕ. a) A mozáseenlet felírása: d de de A Larane-féle másodfajú mozáseenlet: = Q. dt dq dq
7 A rendszer kinetikai eneriája: E= Jaω = Ja q = J aϕ = m l ϕ. de de d de = = ml ϕ = ml ϕ, dq d ϕ dt d ϕ de de = =. dq dϕ A ruókban felhalmozódott alakváltozási eneria: ( l /ϕ) ( / ) l ϕ U = U+ U = +. c c Az általános visszatérítő erő és erjesztő erő: du du l l l Q = = = ϕ + ϕ, dq dϕ c c c Q Q l l l Qc = ϕ + ϕ, Q =. c c c Az általános csillapító erő: Q = F β, c k k l j l v ϕ l Fk = k vd = k ϕ j, β = = = j, ϕ ϕ l l Qk = k ϕ j j = kl. ϕ. d de de A Larane-féle másodfajú mozáseenlet: = Q k + Q c + Q. dt dq dq l l l ml ϕ+ kl ϕ+ + ϕ = sin( ωt). c c c b) edukált rezőrendszer jellemzői: m km, = ml = = k Nsm, = kl = = l l = + = + = 75 Nm, c c c l Q = Qsin( ωt) = sin( ωt) =, sin( t) 5sin( t) Nm. = c A ukált rezőrendszer mozáseenlete: ϕ + ϕ+ 75ϕ = 5sin( t).
8 Q = Q t c m k q= q t
Ns/m, y0 3 mm, v0 0,18 m/s. Feladat: meghatározása. meghatározása. 4 2 k 1600 Ns 1. , rad/s, rad/s. 0,209 s.
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 8. MECHANIKA-EZGÉSTAN GYAKOLAT (kidoloza: Fehér Lajos, sz. mérnök; Tarnai Gábor, mérnök anár; Molnár Zolán, ey. adj., Dr. Nay Zolán, ey. adj.) Ey
4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer
Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
l 1 Adott: a 3 merev fogaskerékből álló, szabad rezgést végző rezgőrendszer. Adott továbbá
SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK ECHANIKA-REZGÉSTAN GYAKORLAT (kidolgozta: Fehér Lajos tsz mérnök; Tarnai Gábor mérnök tanár; olnár Zoltán egy adj r Nagy Zoltán egy adj) Több szabadságfokú
Matematika a fizikában
DIMENZIÓK 53 Matematikai Közlemények III kötet, 015 doi:10031/dim01508 Matematika a fizikában Nay Zsolt Roth Gyula Erdészeti, Faipari Szakközépiskola és Kolléium nayzs@emknymehu ÖSSZEFOGLALÓ A cikkben
u u IR n n = 2 3 t 0 <t T
IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε
y f m l merevrúd 2.1. Példa: Különböző irányú rugók helyettesítése Adott: Az ábrán látható rezgőrendszer. Feladat:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-EZGÉSTAN GYAKOLAT (kidolgozta: Feér Lajos, tsz. érnök; Tarnai Gábor, érnök tanár; Molnár Zoltán, eg. adj., Dr. Nag Zoltán, eg. adj.) ugók
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
GÉPEK DINAMIKÁJA 7.gyak.hét 1. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉEK DINAMIKÁJA 7.gyak.hét 1. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) 7.gyak.hét 1. feladat: RUGALMASAN ÁGYAZOTT
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
Rezgőmozgások Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. , Egyirányú 2 / 66 Rezgőmozgásnak nevezünk egy mozgást, ha van a térnek egy olyan pontja, amihez a mozgást végző test többször
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
L-transzformáltja: G(s) = L{g(t)}.
Tartalom 1. Stabilitáselmélet stabilitás feltételei inverz inga egyszerűsített modellje 2. Zárt, visszacsatolt rendszerek stabilitása Nyquist stabilitási kritérium Bode stabilitási kritérium 2018 1 Stabilitáselmélet
Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
Fizika 1X, pótzh (2010/11 őszi félév) Teszt
Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást
3.1. Példa: Szabad csillapítatlan rezgőrendszer. Adott: A 2a hosszúságú, súlytalan, merev
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-REZGÉSTAN GYAKORLAT (iolgozta: Fehé Lajos tsz. ménö; Tanai Gábo ménö taná; Molná Zoltán egy. aj. D. Nagy Zoltán egy. aj.) Egy szabaságfoú
Járművek lengései. Gépjármű Futóművek II. Szabó Bálint
Járművek lengései Gépjármű Futóművek II. Szabó Bálint 1 Bevezetés 2 2 Bevezetés Koordináta-rendszerek Gyakran alkalmazott koordináta rendszer 3 SAE koordináta rendszer 3 Bevezetés Dinamikai irányok felbontása
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 2013. szeptember 6. 1. Folytonos
Fazorok március 18.
Fazorok 2016. március 18. A fazorok fázist ábrázoló vektorok. Használatukkal a zika legkülönböz bb területein (mechanikai rezgések és hullámok, váltóáramú hálózatok, optika) tudunk egyszer en megoldani
4.1. VÁLTÓÁRAMÚ HÁLÓZATSZÁMÍTÁS
4. VÁTAKOZÓ ÁRAM A váltóáramú hálózatszámításhoz szükséges általános alapismeretek a Váltóáramú hálózatszámítás c. részben vannak leírva, de a legfontosabbakat itt is összefoglaljuk. 4.. VÁTÓÁRAMÚ HÁÓZATSZÁMÍTÁS
A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei
A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.
Analízis IV. gyakorlat, megoldások
Analízis IV. akorlat, meoldások BSc matematikatanár szakirán /. tavaszi félév. Differenciáleenletek Határozzuk me az alábbi differenciáleenletek összes, valamint a meadott feltételeket kieléítő meoldásait!.
4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
2.11. Feladatok megoldásai
Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások november 10.
Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások Surján Péter 2018. november 10. 2 Tartalomjegyzék 1. Körmozgás 5 1.1. Az egyenletes körmozgás leírása.................. 5 1.2. A centripetális
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése
Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika
Rezgések és hullámok; hngtn Rezgéstn Hullámtn Optik Geometrii optik Hullámoptik Hullámtn és optik Ajánlott irodlom Budó Á.: Kísérleti fizik I, III. (Tnkönyvkidó, 99) Demény-Erostyák-Szbó-Trócsányi: Fizik
Pere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2
Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.
izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás
Adatok: fénysebesség, Föld sugara, Nap-Föld távolság, Föld-Hold távolság, a Föld és a Hold keringési és forgási ideje.
FOGALAK, DEFINÍCIÓK Az SI rendszer alapmenniséei. Síkszö, térszö. Prefixumok. Adatok: fénsebessé, suara, Nap- távolsá, -Hold távolsá, a és a Hold kerinési és forási ideje. Foalmak, definíciók: kinematika,
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1
Suárzásos hőátadás misszióképessé:, W/m. eljes hősuárzás elnyelt hő visszavert hő a testen áthaladó hő R D R D R D a test elnyelő képessée (aszorció), R a test a visszaverő-képessée (reflexió), D a test
4. Ingamozgás periodikus külső erő hatására
. Ingamozgás periodikus külső erő hatására.1. Fékezetlen ingamozgás periodikus külső erő hatására Fékezetlen lineáris matematikai inga Ha az ''+k =0 egenletre valamilen periodikus külső erő hat, akkor
Indoklás: Hamis a D, mert csak az a rezgőmozgás egyúttal harmonikus rezgőmozgás is, amelyik kitérése az idő függvényében szinuszfüggvénnyel írható le.
Bolyai Farkas Orszáos Fizika Tantáryverseny 04 Bolyai Farkas Eléleti Líceu Válaszoljatok a következő kérdésekre:. feladat Az alábbi állítások közül elyik a hais? A) A test rezőozást véez, ha két szélső
3.3. A feszültség-munkadiagram
3.3. A feszültség-munkadiagram Eddig csak olyan eseteket vizsgáltunk, amelyeknél az áramkörre ideális feszültségforrást kapcsoltunk (kapocsfeszültsége a terhelés hatására nem változik), és a kör eredő
SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.
Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika
Dinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel
Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA
Az inga mozgásának matematikai modellezése
Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.
A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
Egy kinematikai feladathoz
1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
Végeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
Motorteljesítmény mérés diagnosztikai eszközökkel Készült a Bolyai János Ösztöndíj támogatásával
Motorteljesítmény mérés dianosztikai eszközökkel Készült a Bolyai János Ösztöndíj támoatásával Dr. Lakatos István h.d., eyetemi docens* * Széchenyi István Eyetem, Közúti és Vasúti Járművek Tanszék (e-mail:
ELEKTROKÉMIA. Alapmennyiségek. I: áramersség, mértékegysége (SI alapegység): A:
ELEKTOKÉMIA Alapmennyiségek I: áramersség, mértékegysége (SI alapegység): A: A az áram erssége, ha 2 végtelen hosszú, elhanyagolható átmérj vezetben áramló konstans áram hatására a két vezet között 2 0-7
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ
Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö
Irányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kdogozt: r. Ngy Zotán egyetem djunktus 4. fedt: Mndkét végén efzott rúd ongtudnás rezgése (kontnuum mode) A, ρ, E Adott: mndkét
Werner Miklós Antal május Harmonikusan rezgő tömegpont. 2. Anharmonikus rezgések harmonikus közelítése Elmélet...
Rezgések, kiegészítés Werner Miklós Antal 014. május 8. Tartalomjegyzék 1. Harmonikusan rezgő tömegpont 1. Anharmonikus rezgések harmonikus közelítése 3.1. Elmélet..............................................
Kvázistacionárius jelenségek
0-0 Kvázistacionárius jelenségek Majdnem időben állandó = lassú (periodikus) változás. Időben lassan változó mezők: eltolási áram elhanyagolható a konduktív áram mellet Maxwell-egyenletek: rot E = 1 c
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
Laplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
SZABÁLYOZÁSI KÖRÖK 2.
Irányítástechnika (BMEGERIA35I) SZABÁLYOZÁSI KÖRÖK 2. 2010/11/1. félév Dr. Aradi Petra Zárt szabályozási körrel szemben támasztott követelmények tulajdonság időtartományban frekvenciatartományban pontosság
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
1. Az üregsugárzás törvényei
1. Az üregsugárzás törvényei 1.1. A Wien féle eltolódási törvény és a Stefan-Boltzmann törvény Egy zárt, belül üres fémdoboz kis nyílása az úgynevezett abszolút fekete test. A nyílás elektromágneses sugárzást
Fizika és 6. Előadás
Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) y k c S x x m x Adatok m kg c
Serret-Frenet képletek
Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika jellemzőinek Rendszerek stabilitása és minőségi jellemzői. Soros kompenzátor. Irányítástechnika Budapest, 29 2 Az
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus. 17. feladat: Kéttámaszú tartó (rúd) hajlító rezgései (kontinuum modell)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kidogota: Dr. Nagy Zotán egyetemi adjunktu 7. feadat: Kéttámaú tartó (rúd) hajító regéei (kontinuum mode) y v( t ) K = 8m E ρai
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015
Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 2015 Egyenletek a hengerkoordináta-rendszerben (HKR) SP = OQ = r z QP = z e r = cos ϕ e x + sin ϕ e y e ϕ = sin ϕ
Kalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
14. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4 MECHANIKA-MOZGÁSTAN GYAKOLAT (kidolgozt: Németh Imre órdó tnár Bojtár Gergel egetemi t Szüle Veronik eg t) 4/ feldt: Emelő zerkezet kinetikáj ()
4. Hálózatszámítás: a hurokmódszer
4. Hálózatszámítás: a hurokmódszer Kirchhoff törvényeinek alkalmazásával bármely hálózatban meghatározhatók az egyes ágakban folyó áramok és a hálózat tetszés szerinti két pontja közötti feszültség. A
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1
Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n
A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m
Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Alkalmazott spektroszkópia
Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
Teljesítm. ltség. U max
1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete