l 1 Adott: a 3 merev fogaskerékből álló, szabad rezgést végző rezgőrendszer. Adott továbbá
|
|
- Etelka Pásztor
- 7 évvel ezelőtt
- Látták:
Átírás
1 SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK ECHANIKA-REZGÉSTAN GYAKORLAT (kidolgozta: Fehér Lajos tsz mérnök; Tarnai Gábor mérnök tanár; olnár Zoltán egy adj r Nagy Zoltán egy adj) Több szabadságfokú rezgőrendszer mozgásegyenletének felírása Példa: Két szabadságfokú szabad csillapítatlan rezgőrendszer l R J R J R l J Adott: a merev fogaskerékből álló szabad rezgést végző rezgőrendszer Adott továbbá J J J 0 kgm R R R 0 m 0 Nm/rad Feladat: a) Határozza meg az ábrán látható rezgőrendszer mozgásegyenlet rendszerét kis szögelfordulások esetén mátrios formában számszerű adatokkal Kidolgozás: A () és () fogaskerekek közötti teljesen merevnek tekintett- kapcsolat miatt írható: R R R a két szögelfordulás nem független egymástól R R R rad R rad rad és R R s R s A rendszerben az l és l hosszúságú tengelyek mint torziós rugók szerepelnek melyek toriós rugóállandóit a és paraméterek fejezik ki A szabadságfokok száma i Az általános koordináták: rad rad s 0-Több szabadságfokú rezgőrendszer mozgásegyenletének felírása /9
2 A Lagrange-féle másodfajú mozgásegyenlet: A teljes rendszer kinetikai energiája: E d de de Q dt d d i i i R E J J J J J J J J J R R E J J J R A rugókban felhalmozódott deformációs energia ( a tengelyek mint torziós rugók): U R 0 R U UU i esetén R R J J J J de de d de d d R dt d R de de 0 d d Az általános visszatérítő erő (csavaró nyomaték): Q c Q R du du R R c d d R i esetén de de d de J J d d dt d de de 0 d d Az általános visszatérítő erő (csavaró nyomaték): Q c Q du du c d d Az egyes tömegek mozgásegyenletei: R R J J 0 R R J 0 átrios alakban felírva: R R J J 0 R R 0 C0 0 J C ci 0-Több szabadságfokú rezgőrendszer mozgásegyenletének felírása /9
3 R J 0 0 J 0 kgm A tömegmátri: R 0 0 rad 0 J R Nm R a rugómátri: C rad A rezgőrendszer mozgásegyenletének végső alakja: Több szabadságfokú rezgőrendszer mozgásegyenletének felírása /9
4 Példa: Két szabadságfokú szabad csillapítatlan rezgőrendszer m y A A c y c Adott: a kettő tömegből álló szabad rezgést végző rezgőrendszer Az általános koordináta: A és c c 0 m N l m c 00 m N m m 8kg l Feladat: Határozza meg az ábrán látható rendszer mozgásegyenletét kis szögelfordulások esetén mátrios formában számszerű adatokkal m l C c C Kidolgozás: C A és a C pontok közötti karos áttétel alapján írható: tg C l l A szabadságfokok száma i Az általános koordináták: A A A m A m s A A Lagrange-féle másodfajú mozgásegyenlet: A teljes rendszer kinetikai energiája: E d de de Q dt d d i i i A C A C A A E m v m v m v m v m m m m 8 A rugókban felhalmozódott deformációs energia: U A C A ( / ) U U U U c c c c c c A U c c 9c Az első mozgásegyenlet felírása (i=) Az egyenletek bal oldalán álló mennyiségek: de de d de de de m A m A 0 d da dt da d da ci Az általános visszatérítő erő: Q c du du A Qc ( ) A d da c c c 0-Több szabadságfokú rezgőrendszer mozgásegyenletének felírása /9
5 Az első mozgásegyenlet felírása (i=) Az egyenletek bal oldalán álló mennyiségek: de de d de de m m d d 9 dt d 9 d de d 0 Az általános visszatérítő erő: Q c du du A Qc A d d c c 9c c c c 9c Az egyes tömegek mozgásegyenletei: m A A 0 c c m A 0 9 c c c 9c átrios alakban felírva: m 0 c c A A 0 0 m 9 c c c 9c C 0 C m A tömegmátri: kg 0 m 0 9 c c N a rugómátri: C m c c c 9c A rezgőrendszer mozgásegyenletének végső alakja: 8 0 A A Több szabadságfokú rezgőrendszer mozgásegyenletének felírása /9
6 Példa: Hajtómű torziós rezgéseinek mozgásegyenlet rendszere Adott: az ábrán látható hajtómű továbbá J J J J J J l l l d d d továbbá és nyomatékok nem függenek az időtől Feladat: a) ozgásegyenlet rendszer felírása a fogaskerekek szögelfordulását választva általános koordinátáknak! b) Olyan általános koordináta választása amellyel a modell láncszerűvé válik és a láncszerű modell meghatározása Kidolgozás: A kinetikai energia: E J i i i A és áttétel figyelembevételével és általános koordináták választásával: E J J J J J J dii A másodrendű nyomatékok Ip i ii li i li i A torziós rugóállandók: ii i I G d G Pi i i i A tengelyekben felhalmozódott rugalmas energia: U A külső ER teljesítménye P mivel a és jelű fogaskerekeknél a pozitív szöglefordulás iránya az áttétel miatt fordított addig az jelű és az jelű fogaskerekeknek egymással azonos a forgásiránya Így a mozgásegyenlet-rendszer: 0-Több szabadságfokú rezgőrendszer mozgásegyenletének felírása /9
7 J d E dt du Qc d J J 0 d E du Qc dt d J J 0 d E dt du Qc d J d E dt du Qc d A szerkezet rezgéstani modellje áttételes rezgőrendszer b) Olyan általános koordináta választása amellyel a modell láncszerűvé válik és a láncszerű modell maghatározása: Általános koordináták: ahol: Ezzel a kinetikus energia J J J J J J E A rugókban felhalmozott rugóenergia U a teljesítmény P 0-Több szabadságfokú rezgőrendszer mozgásegyenletének felírása 7/9
8 A mozgásegyenlet-rendszer J J J 0 J J J A rendszer tömegmátria: J J J J J J a rugómátri: C Több szabadságfokú rezgőrendszer mozgásegyenletének felírása 8/9
9 A láncszerű modell elágazásmentes amely nem kötött rendszer: Q Q m m m m c c c A modellben az egyes mennyiségek az alábbi összefüggésekkel származtathatók: J J J J J J m m m m c c c Q Q 0-Több szabadságfokú rezgőrendszer mozgásegyenletének felírása 9/9
y f m l merevrúd 2.1. Példa: Különböző irányú rugók helyettesítése Adott: Az ábrán látható rezgőrendszer. Feladat:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-EZGÉSTAN GYAKOLAT (kidolgozta: Feér Lajos, tsz. érnök; Tarnai Gábor, érnök tanár; Molnár Zoltán, eg. adj., Dr. Nag Zoltán, eg. adj.) ugók
Részletesebben13.1. Példa: Nem kötött lánc szerű rezgőrendszer sajátfrekvenciái és rezgésképei. m 1. c 12. c 23 q 3
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-REZGÉSTAN GYAKORLAT (kidolgozta: Fehér Lajos, tsz. mérnök; Tarnai Gábor, mérnök tanár; Molnár Zoltán, egy. adj., Dr. Nagy Zoltán, egy.
RészletesebbenIrányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
RészletesebbenAlkalmazott Mechanika Tanszék. Széchenyi István Egyetem
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 2013. szeptember 6. 1. Folytonos
RészletesebbenGÉPEK DINAMIKÁJA 7.gyak.hét 1. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉEK DINAMIKÁJA 7.gyak.hét 1. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) 7.gyak.hét 1. feladat: RUGALMASAN ÁGYAZOTT
Részletesebben2. E L Ő A D Á S D R. H U S I G É Z A
Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A
RészletesebbenREZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:
Részletesebben3.1. Példa: Szabad csillapítatlan rezgőrendszer. Adott: A 2a hosszúságú, súlytalan, merev
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-REZGÉSTAN GYAKORLAT (iolgozta: Fehé Lajos tsz. ménö; Tanai Gábo ménö taná; Molná Zoltán egy. aj. D. Nagy Zoltán egy. aj.) Egy szabaságfoú
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
RészletesebbenMechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
RészletesebbenPélda: Háromszög síkidom másodrendű nyomatékainak számítása
Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög
RészletesebbenDINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)
DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény
RészletesebbenDFTH november
Kovács Ernő 1, Füves Vktor 2 1,2 Elektrotechnka és Elektronka Tanszék Mskolc Egyetem 3515 Mskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18 fax : +36-(46)-563-447 elkke@un-mskolc.hu 1, elkfv@un-mskolc.hu
Részletesebben1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
RészletesebbenRugalmas tengelykapcsoló mérése
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék
Részletesebben6. A Lagrange-formalizmus
Drótos G.: Fejezetek az elméleti mechanikából 6. rész 1 6. A Lagrange-formalizmus A Lagrange-formalizmus alkalmazásával bizonyos fizikai rendszerek mozgásegyenleteit írhatjuk fel egyszerű módon. Az alapvető
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.
RészletesebbenAz alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós
RészletesebbenPere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
RészletesebbenRezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Részletesebben2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
RészletesebbenÁ Á ő É ö ö ő É ő ö ö ő ö É É Á ő É ő ö ö ö ő ő ő ő ő ő Ó É ő ő ő ő ü ő ő ü ü ö ö ő ő ú ű ű ö ő ö ú ő ü ő Ü ö ö ő ö ü ő ö ö ö ö ö ő ő ö ö ő ő ö ú ü ű ü ú ő É Á ő ő ö ő ő Ü ö ő ö ö ü ő ő ú ű ü ő Í ö ü ú
Részletesebbenö ü ö Ö ü ü ü ü Í Í Í Í ű ö ö ű ú ö ö ö ü ú ü ü ü ü ü ü ü ü ö ü ú ü ü ú ü ö ü ü ü ü ú ú ö ö ü ú Ö Ő Ü É Ó Ö Ó Ó ö ö ö ö É ü ö Í ö Ó Ó ű Ó Ó ű ü Ó Ó Í ü Ó Ü ü ü Ö ü ü Í ö ü ü ú ú ü ü ü ö ö ö ö ü ü ö ü ü
RészletesebbenÉ É Í ü ü ü ű ü ü ü ü ü ü ú Í ű ú ü ű Á ú Ú ű űü Ú Ú É É ű Ú ü ú ű ú ű ü ű Í Í Ú É Ú Ú Ú Í ú ú Ú Ú É ü űü ü ü ü Ú ű ú ü ú ü ú ű ű ü ú ü ú ü Ú ü ú ü ü ú úü ú ú ü ú ü ú Ú ű ú ü ú Ú ű ü Ú ú ü ú ú ü ü ú ú
Részletesebbenő ő Á ő ő ő ü ő ü ő ő ő ű ő ő ő ü ő ő ő ő ő ő ő ő ü ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ű ő ő ü ü ű ő ő ő Á ő ü Ó ő ő ő ő ő ü ő ü ő ő ő ő ü ő ő ü ő ő ü ő ü ő ü ő ő ő ő ő ü ő ü ü ő ő ő ű ő ű ü ü ő ő
RészletesebbenÍ ü ú ü ü ü ü ú ű ű Á ü ü ű ü ű ű ü ü ü ü ü ü ü ű ű ű ű ű ü ű ü ű ü ü ű Ö ű ű ű ü Ö Í ü ű ü ű ű ű ű Í ü ű ű ü ű ű ü ű ü ű ü ű ű ü ű ű ű ű ű ü ü ü ű ü ű ü Í ű ü ű ű ű ü ű ü ü ű ü ű ü ű ü ű ű ű ű ü ü ü ü
RészletesebbenÜ Ö Á Á Á Á É É Ü ű ű ű ű Á Ú Ü Ü ű Á Ú Ü Á Ü Ü Ü ű É Ü É Á ÜÜ Ü Á Ü Ü Ü Ü Ü Ü ű Ú ű ű ű Ü Ú Ü Ü ű Ü ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű ű ű Ü Ü Ü Ú Ü Ü ű Ü Ü ű Ú Ú Ü ű ű Ü Ü Ü ű ű Ú ű Ő Ü Ü Ü Ü Ü Ö Ú ű Ú ű ű
Részletesebbenü Í Í Í Í Í Í Ö Í Í ú ő ü Ú ő Í Í Í ü ü ő ő ő ú Í ú ő Ó Í ő ü ű ű Í ő Í ű ű Í ú Í ú ü ú ő ő ü Ü Í Í ú Ó ű ő Í ő ő ü ő ő ő Í Í ü ü ú Ú ü ü ü ő ű ü ő ő ú ő ü ő ú ő ő ő ű ő ő ü ü ű ü ő ü ő ú ő ő ü ő ő ő ü
Részletesebbenö Ö ü ö ü ö Ö í ü ö ü ű ö ö í ö ö ö ö í ü í ö í ö ö ü ú ö í ö ö ö í ö ú ü ö ö ö ű ö ü í í ö í í ö ö ö ü Í í Ú ú ü ű ö í ű ö ö ö ü ú ö ö í ö í ú ö ö ö ö Ö ü Ö ű ö Ö ü ö ö ö ö ü ű ö í ú í Á ü í í ö ü ö Ö
RészletesebbenÜ É É ü ü ú ú Á ü ú ü ú ú ú ü ű É ü ü Ü É Á Á Á ú ü Ö Á ű ű ú ű É ú Ű ű ü ü ú ű ü ú ü ű ü ú ú ü Ú ú Ó ú ü ű ü Í ü ú ü ü ü ü ú ü ú ú ü ú ü ú ű ű ü Ü Ű ú ü ű ú ű ú ú ü Ü ü ü Ü ü Ü ü ü Ó Ö ü Ú ú ü ú ű ü ú
Részletesebbenő ú É É ő ő ő ő ő ű ő ő ő ő ő ő ő ú ű ő ú ü ü ő ő ü ő ú ú ü ő ő ő Ó É ő ő ő ő ő ő ő ő ő ü ő ő ő Í ü ű ő ő Í ü ő úú ú ű ü É Ő Í ü ő ő ő ő ü ő ű ő ü ő ü Ű ü ü ú ü ü ü ü ú ő ő ő ő ű ő ő ú ü ő ü ő ő ű ü ő
RészletesebbenÉ É ő ő ő ő Ü ú ú ő ú ú ú ú Ú ő ű ú ű ú ő ú ú ú É É ú Ú ő ő ú ú Ó Ó ú ú ú ő É É Ü Ó É ő ű ú ő ő É ú ú ú ő ő ő ő ő ú ő ő ú ú ú ű ő ő ő ű ő ő ú ő ú ú Ó ő ú ú ú ú ú ő ú ő Ó ő ő ő ú ú ő ő ő ú ű ú ű ű ű ú ő
RészletesebbenÍ ú Í Ú É Á É Á Ü Ü Ü É Ü Á É Á Á Í Á Á Á Á É É Á Á Ú É ú Í Ú Í Í ú ú ú Í ú ú ú ú Í ú Ú ú ú ú ú ú ú ú Í Í Í Í Ú Í ú Ú Ú Ö Í ú ú Ú É Ú É ú ű ú ú ú ú ú ú ű ű ú Í ú ú Ú É ú ú ű ú ú ú ú Ú ű Ú ú Ú ú Ú É ű ű
RészletesebbenÖ Ú É ő ú Ü Ú É É ö ú ő ú ú ú ú ö ö ú ő ú ú ö ú Ő ö ő Ö Ú Ó ö ü ú Ü ö ú ü ü ú Ü Ú Ö Ú É ü Ú Ó ú Ú É É ő ú ő ő Ö ö Ö ü Ó Ú ú É ú ú ö úú ú ö Ü Ú É ö ő ő Ó É Ú Ú Ú Ó É É Ü É Ú Ú É ú ö ú ö ő Ú É ö ü ö ő ü
Részletesebbenű ő Ü ő Ü ő ő ő ő ő ő ő Ó Ú Ú Ü Ú ű Ú Ö ő ő Ó ő Ú ő ő Ú Ú ű ő ő ő ő ő Ú ő ő ő ű ő Ú Ú ő ő ő ő ő Ü ő Ú ő ő ő ű ő Ú Ú ő Ú ő Ú ő Ü ő ő Ö ő ő Ú ő Ú Ú Ü ű Ö ű Ö Ó ő Ó Ú ő ő ő ű ő Ó Ú ő Ü Ú Ü ő ű ő ő ű ő ő ő
Részletesebbenű ű ű ö ö ö ö ú ö ö ö ú ö ö ö ö ú ö ö ö ö ú ú ú ö ö ö ú ú ú ú ö ö ö ú ű ű ű ú ú ö ö ö ö ú ú ö ű ö ö ö ö ö ö ű ú ö ú ö ö ö ö ö ö ö ö ö ö ű ú ú ö ö ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ú ö ö ú ú ú ö ú ú ú ű ú
RészletesebbenÓ Á Á ű Ü Á Á ű ű ű ű ű Á ű ű Ö ű Á Á Á Ú Ú Á Á Ú Ü Á Ö Ú Ó Ó Ő ű ű Ő ű ű ű ű ű ű ű ű ű ű Ú Ő ű ű ű Á ű ű ű Ü Ü Ü Ú Ó Ü Ü Ö ű Ü Ú Ó Ó Ó ű Ü Ü Ü Ü Á Á Á Ö Ú ű ű ű ű Ö Á ű Ö Ö Ö ű Ú Ó Ö Ö Ö ű ű ű Ú Ú Ö
Részletesebbenő ö ú ö ű ü ő Ö ő ő ő ő ö ö ö ö Ü Ö Ö Ö Ö ő ő Ö Ú Ő ő Ü ö ő ő ő ő ö ú ö ö ö ő ö ú ö ú ő ű ú ö ú ü ű ö Ú ü ü ö ő ő Ó ÜÜ ő ő ö ö ű ö ö Ü Ó ö ö ú ö ú ű ö ú ö ú ö ö ö ű ő ö ő ö ő ö ú ő ő ő ő ő ú ő ő ő ö ú
RészletesebbenÍ Í Ü Á ú Ú É ú Ú Í ű ú ú ú ú ú Í ú ú Ú ú ú ú Ú É ú ű ú ú ű ú ú Í ű ú ú ú Ú É ú ú ú ű ú Ú ű ú Í ű ú ú ú Á ú Ú É É ú ú ú ú ú Á Í ú ú Í Ú É ú ú ú Í Ü ű ú Í ú ú ű ú ú Í Í ú Í Ú É ú ű ú ú ú Í ű ú ú ú ű ű ű
Részletesebbenü ű Ü ü Ü ü Ü ü ü Ó ü ü ü ü ü ü ü ü ű ű ü ü ü ü ü ű ű ü ü Ú ű ü Ú ű ü ü ü ü ü ü ű Ú Ú ű ü ü ü ü ü ü ü ü ü ü ü ü ü ű ű ü Ú ű ü ü ü ü ü ű ü Ó Ó Ö Ó Ó ü Ö Ó Ü Ó Ó Ó Ó Ó Ö Ó Ó Ö Ó Ó Ó Ó Ü Ü Ú Ó Ó Ö Ó Ó Ó ű
RészletesebbenÍ Ú ü Á Á ü ű ü ü Ö É Ő ű ű ú ú ű É ű Í Ü É ü ü Ü úü ü ü Í ú ü Ő ű Í ű Í Ú Í Ú ü ú ű ű Ú ű É ú ú Í ü ü Ú Ú Ú Ú Á ű ü ü Í Ú Á Á ű ü ü Ú Á ű ü ú Ú ü ü Ú Ö É Ö ü ú ú ú ü ü ú Ö Ü ü Ü ú üü Á ú É Í É Í Í ű Á
RészletesebbenÜ ő Á ü ú ü Ó ú ő ú ú ő ü ü Á ú ü Í Ó ú ü ú ü ü Á Á ú ő ú ü ü ő Ö ő Í ő ü ő ü ű ü ú ú ü ü ú ő ű ú ú Á Á Á ő ő ú Ó Ö Á Ö ü ő Á ü ü ü ü ő ű üü ü ő ü ő ü ü Ú ú ü Í ú ü ü ü ő ő ő Á ő ő Ó Ó Á ő ü ü Ó ő ú ő
RészletesebbenÜ Í ú Í É Ú É É Ú Ó ú ü ü ü ú ú Ő ú ú Í ú ú ú ú ű ú ú Á ú ú ú ú ú ú ü ú ü ű É ú ú ű ü ü ú ú ú ú ü ú ü Ú ü ú ú ü ű ú ü ü ü Í ü ú ú ü ú ü ü Ú ü ü ú Ú Á ü ű ü ű ú ú ü ü Ú ü ü ü ü ü ű ű ü ú ú Í ü ú ű ú Ú ü
Részletesebbenü ő ő Á Á Á Á ú ú ő Í Á Ö Á ü Á ü ő ű ú ü ő ö ü ü ü ú ú ő ö ö ú Á Á Á ü ő ő ű ö ü ö ő ö ű ú ű ú ő ö ú ő ö ü ő ü ü ö ö ő ü ü ű ő ü ö ü ö ő ő ő ö ü ő ü ő ü ö ú ú ü ö ö ü ö ü ő ö ű ű ü ö ü ő ő ú ő ú ő ő ö
Részletesebbenö Ö Á ö ö ü ö É ű ö ö ú ö ö ö ö Á ö ö ö ö ö ö ü ö ö ü Ö ö ö ú ú ú ö ú ö ü ö ü ö ö ö ö ö ö ö ű ö ö ö ö ö ö ü ö ö ú ö ú ö ö Á ö ö ü ú ü ö ú ű ö ö ö ö ö ö ö É É Í ö É ü É ö ö ű ö ö ö ö ö ü ú üü ö ö ü ö ö
RészletesebbenÖ Á Ö Á ú ú ú ú ú ú ú ú ú ú Ú ú ú ű É ú ú Ó Á ú ú ú ú ú ú Ú ú ú ű ű ű ű Á ú ú ú ú É Ó ú ű ű Á ú ú ú ú Á ú ú ú ú ú ű ú ű ú ű ű ű ű ú Ú ú ű Ú ú ú ú ú Ö É Á Á Á Á ú Á Ú Ü ű Á Á Á Ö É Ú Á É Ü Ü ú Ú ú ú Ú Ú
RészletesebbenÍ Á Ó É ö ő Ö ö ő ü ő ü ő ü ö ö ő Ö ú ő ő ú ü ő ő ü ő ő ő ú ö ö ő ű ö ö ü ű ő ö ú ö ú ü ü ű É É É ö ö ú ű ő ú ő ú ő ű ö ö ü ö ű ö ú ö ú ü ú ő ő ö ü ö ű É É ö ö ú ő ö ő Ö ű ú ö ő ö ö ü ő ő ő ö ű ö ő ő ö
RészletesebbenÉ Ö É É Ö É É Í Ü Ü É Ó ö ú í Á ö í ö Ü ú í ú ö í ö ö í ü ö í ü ü ö ö ö í ü ü ö ú í ö ö ö í ü ü ú í ú í ú ú ú ö ü ö ú í ö ú ü ú ö ö ú ö Á í ö Ü Í Ü ö ö Ü Ó ö ü É í ö í ü ö í ö í í ú í í ü ö ö í ü ö ö í
RészletesebbenÉ ű ű ú ű ú ű ű ű ű ú ű ú ű Ü Ú Ú ú ű ú ú ú Ú Ú ú Ü ú Ó ú ú É Ő É ú ű ú Ü Ö ú Ö Ö ú ú Ü ú ú ú Ó ú Ö Ó ú ú Ü ű ú ú Ö Ü É Ú Ú Ú Ú É ű Ú Ö ú ú ű ú ú Ú ű ú ű Ú Ü ú Ó ú Ó ú Ü Ó É Ö É ú ú ú ú É ú Ü Ü ú ú ú ú
Részletesebbenű Ú Ü Ü Ü Ú Ű ű ű Ú Ú ű Ü Ú ű ű ű Ú Ü Ú ű Ú ű Ú Ú Ű Ú Ú Ű ű Ú Ú ű Ú Ú Ú ű Ú Ú ű Ú ű Ú Ú Ú Ú ű Ú Ú ű Ú ű ű ű Ú ű ű Ú Ó Ü Ü Ú Ú Ú ű ű ÜÜ Ú Ü Ú Ü ű Ú Ü Ü ű Ú Ú Ü Ú ű Ú Ú Ö Ü Ü Ú Ú Ú Ú Ü Ú Ö Ü Ú Ö Ü Ü ű Ú
RészletesebbenÁ Á Á Á Á Á Á Ú Ő Ő Ő Á Á Ú Á Á Á Ő Ú Ú Á Ú Ú Ú Ú Ú Ú Ő Ű Ú Ő Ú Ú Ú Ú Á Á Ú Ő Ő Ő Ő Ú Á Ő Ő Ű Ő Ú Á Ú Ő Ő Á Ú Ő Ő Ú Ú Ú Ú Á Á Ű Á Á Ő Á Á Ú Á Á Á Ú Ú Ú Ő Ú Ú Ú Ú Ő Ú Ő Ő Ő Ú Ő Ő Ő Ú Ű Ő Ú Ő Á Ú Ő Ú Á Á
RészletesebbenÉ Ü ú ü Ü Ü ú Ü Ü ü ü Ü ú ú ú ű ü É Ü É Í Ó É ü ű Ü É ü ü É Ü Í Ó Ó Ó Ü Ó Í Ó Ó Ó Í Ü ü Ó Ö Ü ü ü Ü Ü ű Ü Ö Ü É Ü É Ü É É É É É ű Ó É Ö Ö ü ü ú ú ú Ü Ü Ü ú ú Ü ú ú ú ú ú ú Ü ú ú É Ú ü Ú Ú Í Í Ú É Ü Ü Í
Részletesebbenú Á É ű ű Á ú ú ú Ú ű ú ű Ö ű ú ű É ú ú Ü Ú ú ú ú ú Ó Ú ú Ú Ú ú ú ú ú Ú Ú Ő É ú Á ú ú ú Á ú ú Á Á ú ú ű ú É ű ú ű ú ú ú ú ű ú É ű ú ű Ö Ü ú Ú ú ú Ú ú Ú ű ű ú ú ű É Ú ű Á ú ú ú ú Á ú ú ű ű ú ú ú ú ú ú Á
RészletesebbenÉ É Ő ö ő ő ő ö ő ö É ő ő ő Ü ö Ó Ü ő ő ő Ü ö ö Ó ü ö ő ö ű ö ű ö ő ö Ö ö ö Ö ú ö Ü ü ő ő ő ö ő ü ő Ú ú Ü ő ö ő É ő ő ű Í ő ő ö É ö ő Ö ő É Í ő ö ő Ü ő Í ú Ó ü Ő ú ö ú ű ú ú Í Í Í Í Í ő ö ö ö ő ő Ö ö ü
Részletesebbenö ü ó ö ü ü ó ó í ó í ó ú ó ö ö ö ü ü í ü ü ó ü ü ü ö ö ö ö í ü ü ö í ü ú ö í Í ö ö ó ö í ú ö ú ó ó ó í ú ö ú ó ó ó í ö ú ö ú ó í ó ü ö ö ó ú ó ó ó Ö ö ü ö í í ó í ü É ü ú ö í í ü í ó ó Í ö ü í ó í ö ö
RészletesebbenÁ ü Á Ü Í Ü ü ü ú Ú Ó ü ő ü ö ő ö Ö ú ö ú ö ü ü ő ú ü ü ő ű ő Ö ü ü ő Ú ö ő ü ő ő ö ö ö ö ö ő Í ő ő ő Ü ő ű ő ö ü ü ő ü ő ü ű ú ő ú ö ű ő ű ú ő ú ő Ű ü ő ő ú ő Ú Ö Ö Ö Ö ü Ó ő ö ö ö ö ú ö ü ü ő ő ő ő ű
Részletesebbenü Ö Ö É Ű ü ű É É É ő Ő É ű É ő ő ő ő ü ü ü ő ő ő Ü ő ő ő ő ü ő ü Í ő ű ü ő ő Ö Ö ő ü Ö Ö ő ő ő Ö ő ü ő ü ü ő Ö ü ü ő ő Ö ő ő ű ő ő ő ő ű ő ő ű ő ő ő ő ő Ö ő ü ő Ö Ö ő ű ű ő ő ő ő É ő ő ő Ö ő É ő ü ü ő
RészletesebbenÍ Ö Ű ő í Ú Ó Á ú ó É ű ú ő ó ó ő ó ü Á ó ű Ű ő í Ó Á ű í Ó ó Ó Á ó ó í ó í ó Ö í ú Á É Í Í Ú í í űü í ő í É Ó í í Ú Ü ű Ú ő ő Ű ő ű ő Ú ő ő ő Ü ő ő ű ő í É í í Í Ő ő ó í í ő ő ú ő ő ó ó ő ő ú ő ő Ö ő
Részletesebbenű Á Ü É Ü Ü Í ö ö ű ö ö ö ü ű ü ü ü ü Í ű Í ű ü ű ö ü ö ű ü ö Í ö ö Ö Á Á É Á Í Ő Ő Ő É Ü É ü É ö Ü ö Ü Ü ö ö ö ö ü ü ű ö ü ü ü É Á É ü ö Í ö ö É ö Á É É Á Á Ü ö ű Ü Á Á É É Á Á Á Á Ö Ü ű Ü ö ü Ü ü Ü Ö
RészletesebbenÍ í ú ú ű í í í í í í Í í í í í í í í í í í í í Á í í í í í Ó ÜÜ Ü ü ü í Á Á Á Ö í Á Á í í ü í í í í í í Í í í í í í ü í í ü í í í í í í í í í í í í ü í í í í í í í í í í í í í í í í í í í í í ű ü í í
Részletesebbenö ü ö ü í ü ü ü ö Á Á í ö ö ö ü ü í ü ü ü ö ű ö í í í í ö Ö ú ű ö Í ű ö ö í ö Ó Í ü ö ö í ö ú ű ö ö ö ű ö ö ü ü í í ö Ö ü ú ű ö Í ü ü ü ű ü ü ü ü ú ü í ö ü ü ö Ó ü ú ű ö ű í ö Á ö Á ö í ö ö ü ö ö ü ű í
RészletesebbenÚ Í ü ü Ö É ű ű ű ű Í Ú Í ű ű Ú Á ű Á Á Ú Á Ö Ó ű ű Í Ú ű Ú Ú Á Á Á Í Ű Í Á Ú Ú Ú ű Í ű Í ü É É Ú Ú Ú ű Ú Ú Ú Ú Á É Ú Ú Ú Ú Ú Ú Ú Í Í Ú ű Ú ű Ú Ú Í Í É ű Ó Ú ú Ú Ú Ú Ú Ú Ú Í É ű Í Á Á ű Í ű ű Ú Ú ű Ú
RészletesebbenFigyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenJárműelemek. Rugók. 1 / 27 Fólia
Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti
RészletesebbenRugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
RészletesebbenFogaskerékhajtás tudnivalók, feladatok
Fogaskerékhajtás tudnivalók, feladatok Tudnivalók A fogaskerékhajtás egy hajtómű - féleség A hajtómű olyan itt mechanikus berendezés, amely erőket és mozgásokat továbbít: a hajtó tengelyről a hajtott tengelyre
Részletesebben6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
Részletesebben14. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4 MECHANIKA-MOZGÁSTAN GYAKOLAT (kidolgozt: Németh Imre órdó tnár Bojtár Gergel egetemi t Szüle Veronik eg t) 4/ feldt: Emelő zerkezet kinetikáj ()
RészletesebbenEjtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
RészletesebbenBevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
RészletesebbenGeometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső
Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy
RészletesebbenVillamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz
Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
RészletesebbenA K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például
RészletesebbenSzilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
Részletesebben1. hét. Neptun kód. Összesen. Név
1. hét 1 5 1 3 28 1 1 8 1 3 3 44 1 5 1 3 2 3 1 7 5 1 3 1 45 1 5 1 1 1 6 51 1 1 1 1 1 5 1 2 8 1 7 3 4 8 5 8 1 1 41 1 5 8 1 1 3 46 1 8 1 3 2 33 1 7 8 1 3 38 1 5 7 1 7 1 49 1 1 5 1 1 45 1 8 1 3 31 1 8 8 1
RészletesebbenRezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
RészletesebbenMatematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
Részletesebben1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
Részletesebben1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések
K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk
Részletesebben6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk
RészletesebbenVégeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
RészletesebbenPélda keresztmetszet másodrendű nyomatékainak számítására
Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált
RészletesebbenMerev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
RészletesebbenFrissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.
1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk
Részletesebben11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK
11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK 1. A gyakorlat célja Az ADXL10 integrált gyorsulás mérő felépitése, működése és használatának bemutatása. Centrifugális gyorsulás kimutatása, mérése és számitása
RészletesebbenGépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
RészletesebbenFÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA
FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA Vértes Katalin * - Iványi Miklós ** RÖVID KIVONAT Acélszerkezeti kapcsolatok jellemzőinek (szilárdság, merevség, elfordulási képesség) meghatározása lehetséges
RészletesebbenGyakorlati példák Dr. Gönczi Dávid
Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános
Részletesebben2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések
58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket
Részletesebben2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
RészletesebbenDR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST
DR. BUDO ÁGOSTON ' # i akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST 1991 TARTALOMJEGYZÉK Bevezette 1.. A klasszikus mechanika feladata, érvényességi határai
RészletesebbenSegédlet a Hengeres nyomó csavarrugó feladat kidolgozásához
Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához A rugók olyan gépelemek, amelyek mechanikai energia felvételére, tárolására alkalmasak. A tárolt energiát, erő vagy nyomaték formájában képesek
Részletesebben