Kvantumoptikai alkalmazások

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantumoptikai alkalmazások"

Átírás

1 Kvntumoptk lklmzások - Kvntumrdír - QKD - Kvdrtúr - CQKD - Összefonódott állpot (entngled-stte) - Kvntum-teleportácó - Késleltetett válsz (delyed choce) - Hong-Ou-Mndel kísérlet - Lézeres hűtés

2 . Kvntumrdír D D D D D P D P P P

3 A foton állpot és mérés D o 5 o 5 / P D P

4 Detektor jele és rdírozás ( detektor):

5 Mérés eredmény:

6 nylábtágító Lézer B.S. Polrzácó-beállító (polrzácó-sík forgtó) B.S. tükör Lézer-tápegység

7 . QKD (két egyszerű elrendezés) Mért s szükséges ttkosító kód küldése???

8 Kvntumttkosítás I. Mottó: Az Informtkusok ngy álm feltörhetetlen kód. II. Vlágháború ENIGMA A német kódolás szkemberek ezt nnyr feljvították, hogy gykorltlg feltörhetetlen volt. Azonbn 9-ben és 9-ben szövetségeseknek (elsüllyedt tengerlttjárókról) skerült egy-egy gépet zsákmányoln németek tudt nélkül. Ezután skeresen lehllgtták német csptmozgásokt megelőző ttkos hírforglmt. Mndez döntő módon hozzájárult győzelemhez. Alpvető fontosságú volt, hogy mndez német hdvezetés előtt ttokbn mrdjon. És vlóbn, ez Ttok háború ltt mndvégg Ttok mrdt.?? Láthtjuk tehát, hogy nncs %-os bztonság. A postás fejére eshet egy tégl és rejtjelkulcs lletéktelen kezekbe kerülhet.??

9 Kvntumttkosítás II. Vernm kód: h betűt kódoló számhoz más és más véletlenszerűen generált számot dunk, mjd z így kpott szöveget írjuk le, z már nem lesz megfejthető, csk nnk számár k kulcsot s smer. (Glbert Vernm, 98 ) OTP: one tme pd szöveghossz = kulcshossz (bt)?? Hogyn küldjünk ttkos kulcsot?? Kvntumos kulcsgenerálás: kvntumkrptográf (vgy kvntumttkosírás)

10 Kvntumttkosítás III.?? hír?? Jmes Bond e: hír = H = ete t: H = Kulcs: K = Üzenet = Ü = HK H K Ü Szbály:

11 Kvntumttkosítás IV. A CIA hvtlnok z Ü üzenetet z ő ttkos K kulcsávl dekódolj, és így megkpj H* = H hírt: H * K Ü J.B.: Ü H K H * K (H K) H (K K) H Ü K H Mnt említettük Vernm kódolás gykorltlg megfejthetetlen. A gyenge pontj K kulcs eljutttás (megosztás) hírszerzővel. A kockázt z, hogy postás-tégl ffér nem null vlószínűséggel beüthet.

12 Kvntumttkosítás V. Kvntumkrptográf. Az ötlet: Bennett és Brssrd (98). Mgyrul kvntumos kulcsmegosztásnk hívhtnánk. (Quntum Key Dstrbuton scheme). A protokoll neve : BB8. MZ ÁLLAPOTTÁBLA D b c d optk szál b output D Áll pot jele BS bemen et PS PS BS kmenet nput λ/ λ/ λ/ λ/ 5 λ/ 6 λ/ 7 λ/ 8 λ/

13 Kvntumttkosítás VI. D optk szál b output D nput optk szál A ttkos kulcs generálás I. :. A CIA egy cent -es feldobásávl, ( fej-vgy-írás lpon) ksorsolj, hogy melyk bemenetre ( vgy z jelzésűre) engedje fotont.. A CIA ( fej-vgy-írás lpon) ksorsolj zt s, hogy bekpcsolj-e PS-et (-t), vgy nem.. BOND ügynök egy fgán 5 -s érme feldobásávl eldönt, hogy bekpcsolj-e PS t (b-t).

14 Kvntumttkosítás VII. A ttkos kulcs generálás II. :. A CIA elküld fotont véletlenszerű bemenettel és PS beállítássl és feljegyz bemenet prmétereket ( és b oszlop).. J.B. feljegyz kmenet prmétereket (c és d).. Telefonon (kár publkus cstornán) kcserélk b és c oszlop értéket.. Mnden páros sor értéket összehsonlítják (ezeket z dtokt beáldozzák). 5. H z dtok megegyeznek, kkor bztos, hogy nem hllgtják le cstornát. Ekkor pártln sorok dt képezk kulcs-ot. 6. H z dtok nem egyeznek meg, kkor bztos, hogy lehllgtják cstornát!!! Dr Devl

15 Kvntumttkosítás VIII. BB8

16 . Kvdrtúr - kommunkácó E~ E t o e E o e t E( r,t ) e ( t ) n n / n

17 . CQKD (vgy CWQKD) Homodn mérés: Sgnl: Locl oszcllátor: I I A detektor jele: (t ) II cos( )

18 Egy konkrét CQKD elrendezés

19 5. Összefonódott állpot (entngled-stte) és Bell-egyenlőtlenég Egy egyszerű gondoltkísérlet: AK CP BP BK CP BP A B C CK BK AK AP A B C AP CK Nncs: (AP,AP), (AK,AK), (BP,BP), stb. Rejtett prméter!!!

20 Korrelácós típusok:. Ok-okozt (cuse & effect) típus:. Közös ok típusú: És még???

21 Bell-egyenlőtlenség I. A: B: + + k k S S k S x k x x Sx Fotonokkl: L H, L L V R H R R V, L L R R H V H V H V H V, H V V H

22 Bell-egyenlőtlenség II. Összefonódott fotonpárok létrehozás: P( E) E E

23 Kísérlet fotonokkl Korrelált fotonok D A C A C D B B Polárszűrők: Polárszűrők beállítás: A: Θ B: Θ C: Θ

24 Bell-egyenlőtlenség III. A () számú foton detektálás H H H P H H V P H V H P V H H P V V V es foton : V P( P P P ) P( ) P P P P( ) P P P? P( ) P( ) P( ) V V H V H V H V V P P P P P P P P?? P P P P P Bell-egyenlőtlenség: P( ) P( ) P( )

25 Bell-egyenlőtlenség IV. P( ) P( ) P( ) Válsztásu nk : és Alklmzzuk Mlus törvényt! P( ) sn ( ) P( ) sn ( ) sn ( ) sn ( ) cos( ) o 5 < 5 esetén sérül Bell-egyenlőtlenség nncs rejtett prméter!!!

26 Kvntum-teleportácó I. A kvntum teleportácó Megvlósításánk vázlt A kvntum teleportácó elv vázlt

27 Kvntum-teleportácó II. A kísérletben három foton szerepel. Jelölje ezeket (), (), (). Az ()-es foton állpotát fogjuk átvnn (teleportáln) tőle ngy távolságr lévő ()-s számú fotonr. Az eljárás protokollj következő: A ()-es és ()-s foton vlmlyen Φ + () összefonódott állpotbn vn. Az ()-es foton állpot ψ(). Az A megfgyelő z () és () fotont (egy nylábosztóvl) összekever. Ennek htásár ()-es foton állpot megváltozk és így megváltozk vele összefonódásbn lévő ()-s foton állpot s. Ezt fotont B megfgyelő mér. A közöl B -vel telefonon egy lklms nformácót. Ennek lpján B elvégez egy mérést ()-s fotonon, melynek eredményeképpen ()-s foton ψ() állpotb kerül. Ezzel ψ állpotot átvttük z () fotonról ()-számúr. Ez kvntumteleportácó.

28 Kvntum-teleportácó III.

29 Kvntum-teleportácó IV. Kvntum teleportácó legutolsó (Távolságcsúcs) megvlósítás szbdtér terjedéssel mles dstnce between Bdlng nd Bejng. (Chn)

30 Kvntum-teleportácó V. Hlbert-tér állpotok: H V A teleportálndó állpot áltlábn legyen: Az összefonódott állpotok terének ortogonáls bázs négy állpotot trtlmz: V V V H H V H H V V H () H H V V () H H V V () H V V H () H V V H V Bell bázs: H H

31 Kvntum-teleportácó VI. ( ) () () k, k k,, () hol: m m m () n ( ) n () k () n,,, () H H V V () H H V V () H V V H () H V V H

32 Kvntum-teleportácó VII. ** Péld: A teleportálndó állpot: V H Legyen ()()-s fotonpár β -es Bell állpotbn: n( ) n() k () () () H V V H V H H V V H V H V H V H V H

33 Kvntum-teleportácó VII. Péld: A teleportálndó állpot: V H Legyen ()()-s fotonpár β -es Bell állpotbn: () H V V H () V H H V V H ( ) (,) H V (,) H V V H (,) V H (,)

34 Késleltetett válsztás

35 PHYSICAL REWIEW LETTERS Vol.8 JANUARY No

36 Kvntumrdír fotonr ll. késleltetett válsztás H H e V V és összefonódott párok : lézer tükör Kvrc lemez HWP pre-kompenzátor dler D PBS HWP e PBS sgnl D p( 5 p( 5 o o D, 5, 5 o o ) ) cos sn HWP p( 5 p( 5 D o o,h ),V )

37 r Nylábosztó klsszkus E E t r r t E E t r r t t r r t t r r t t r r t r t t r rt E E E E r t t r t r t t r E E E E E E E Hong-Ou-Mndel kísérlet I.

38 exp Nylábosztó kvntummechnk modellje (egyfotonos eset) Hong-Ou-Mndel kísérlet II.

39 Kétfotonos effektusok: Hong-Ou-Mndel (987) Hong-Ou-Mndel kísérlet III.

40 Lézeres hűtés Hűtés lézerrel: h E E Atomcspd: kb.: K

41 Látom, de nem hszem.

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

A kvantumelmélet és a tulajdonságok metafizikája

A kvantumelmélet és a tulajdonságok metafizikája A kvantumelmélet és a tulajdonságok metafizikája Szabó Gábor MTA Bölcsészettudományi Központ email: szabo.gabor@btk.mta.hu p. 1 Kvantumelmélet Kialakulása: 1900, Planck: energiakvantum 1905, Einstein:

Részletesebben

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4) Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

6 x 2,8 mm AGYAS LÁNCKEREKEK 04B - 1 DIN 8187 - ISO/R 606. Osztás 6,0 Bels szélesség 2,8 Görg átmér 4,0

6 x 2,8 mm AGYAS LÁNCKEREKEK 04B - 1 DIN 8187 - ISO/R 606. Osztás 6,0 Bels szélesség 2,8 Görg átmér 4,0 6 x 2,8 04B 1 6,0 2,8 4,0 6,0 0,7 2,6 h 2 h 3 Anyaga: St 50 192 Kód d D 8 18,0 15,67 PS 02008 9,8 5 10 9 19,9 17,54 PS 02009 11,5 5 10 10 21,7 19,42 PS 02010 13 6 10 11 23,6 21,30 PS 02011 14 6 10 12 25,4

Részletesebben

Formális nyelvek. Aszalós László, Mihálydeák Tamás. Számítógéptudományi Tanszék. December 6, 2017

Formális nyelvek. Aszalós László, Mihálydeák Tamás. Számítógéptudományi Tanszék. December 6, 2017 Formális nyelvek Aszlós László, Mihálydeák Tmás Számítógéptudományi Tnszék Deember 6, 2017 Aszlós, Mihálydeák Formális nyelvek Deember 6, 2017 1 / 17 Problémfelvetés Az informtikábn ngyon gykori feldt

Részletesebben

2000. évi XXV. törvény a kémiai biztonságról1

2000. évi XXV. törvény a kémiai biztonságról1 j)10 R (1)4 2000. évi XXV. törvény kémii biztonságról1 z Országgyűlés figyelembe véve z ember legmgsbb szintű testi és lelki egészségéhez, vlmint z egészséges környezethez fűződő lpvető lkotmányos jogit

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek

Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek Bevezetés progrmozásb 3. Elődás Algortmusok, tételek ISMÉTLÉS Specfkácó Előfeltétel: mlyen körülmények között követelünk helyes működést Utófeltétel: mt várunk kmenettől, m z összefüggés kmenet és bemenet

Részletesebben

finanszírozza más városnak, tehát ezt máshonnan finanszírozni nem lehet.

finanszírozza más városnak, tehát ezt máshonnan finanszírozni nem lehet. 19 finnszírozz más városnk, tehát ezt máshonnn finnszírozni lehet. Amennyiben z mortizációs költség szükségessé váló krbntrtási munkár elég, s melynek forrás csk ez, bbn z esetben z önkormányzt fizeti

Részletesebben

Kvantumkriptográfia II.

Kvantumkriptográfia II. LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket

Részletesebben

TENGELY szilárdsági ellenőrzése

TENGELY szilárdsági ellenőrzése MISKOLCI EGYETEM GÉP- ÉS TERMÉKTERVEZÉSI TASZÉK OKTATÁSI SEGÉDLET GÉPELEMEK c. tntárgyhoz TEGELY szilárdsági ellenőrzése Összeállított: Dr. Szente József egyetemi docens Miskolc, 010. A feldt megfoglmzás

Részletesebben

Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről

Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről Egyházshollós Önkormányzt Képviselőtestületének 9/ 24. (IX.7) ÖR számú rendelete helyi hulldékgzdálkodási tervről Egyházshollós Önkormányztánk Képviselőtestülete z önkormányzti törvény (99. évi LXV. tv.)

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 2. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02

Részletesebben

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória 1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

Térbeli pont helyzetének és elmozdulásának meghatározásáról - I.

Térbeli pont helyzetének és elmozdulásának meghatározásáról - I. Térbeli pont helyzetének és elmozdulásánk meghtározásáról - I Egy korábbi dolgoztunkbn melynek címe: Hely és elmozdulás - meghtározás távolságméréssel már volt szó címbeli témáról Ott térbeli mozgást végző

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivlók Formi előírások:

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

E5CN Alkalmazási segédlet

E5CN Alkalmazási segédlet PNSPO! E5N Alklmzási segédlet 2 TARTALOMJEGYZÉK Bekötések...4 Beállítások...6 Egyszerű ON-OFF szbályozás beállítás...6 Egyszerű ON-OFF szbályozás beállítás (risztási funkcióvl)...6 PID szbályozás beállítás...7

Részletesebben

Piaci kitekintő Erste Alapkezelő Kommentár 2014.09.30 1 000 000 000

Piaci kitekintő Erste Alapkezelő Kommentár 2014.09.30 1 000 000 000 Pici kitekintő Kommentár 2014.09.30 1 000 000 000 Jegyzet mgyr bnkrendszer kihívási hzi bnkrendszerrel kpcsoltos gzdsági (és politiki) eseményeket vizsgálv fontos kiemelni kereskedelmi bnkokt érintő legfrissebb

Részletesebben

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál!

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál! FIGYELEM! Ez kérdőív z dtszolgálttás teljesítésére nem lklms, csk tájékozttóul szolgál! KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) ekezdése

Részletesebben

Kvantumparadoxonoktól a kvantumtechnikáig. A munkára fogott kísérteties hatás

Kvantumparadoxonoktól a kvantumtechnikáig. A munkára fogott kísérteties hatás Kvantumparadoxonoktól a kvantumtechnikáig A munkára fogott kísérteties hatás I. Mi egy részecske? Mérhető tulajdonságok halmaza 1 foton: [k=hullámszám, Ԧe= haladási irány, Ԧε=polarizáció] ԦeԦε = 0 polarizáció

Részletesebben

MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER

MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER 1. TULAJDONSÁGOK, FŐ FUNKCIÓK 1. A risztóberendezéshez 2 db ugrókódos (progrmozhtó) távirányító trtozik. 2. Fontos funkciój z utomtikus inditásgátlás, mely egy

Részletesebben

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása.

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása. VEL.4 Aszimmetrikus hiák számítási módszere, hálózti elemek sorrendi helyettesítő vázlti. Aszimmetrikus zárltok számítás. Szimmetrikus összetevők módszere Alpelve, hogy ármilyen tetszőleges szimmetrikus

Részletesebben

- 27 - (11,05 Miskolczi Ferenc megérkezett, a létszám: 21 fő)

- 27 - (11,05 Miskolczi Ferenc megérkezett, a létszám: 21 fő) 27 A ház hét minden npján progrmokkl telített. Kb. 900 fitl fordul meg hetente z állndó progrmokon. A próbák, z összejövetelek hosszú évek ót ugynzon helyen, ugynzon időpontbn vnnk. A megszokottság egyegy

Részletesebben

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016. Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

Cafitesse 60. Návod k obsluze Használati utasítás ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ Operator manual. Article no. 700.403.423-C. December 2009

Cafitesse 60. Návod k obsluze Használati utasítás ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ Operator manual. Article no. 700.403.423-C. December 2009 Cfitesse 60 Návod k osluze Hsználti utsítás ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ Opertor mnul Decemer 2009 Article no. 700.403.423-C B Gyári szám: _ Regisztrációs szám: Szerviz telefonszám: _ Szállító: C Trtlomjegyzék Bevezetés...........................................................................................................

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 7. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02

Részletesebben

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény

Részletesebben

Í í É Á ö ü Ó Ü ö ü Ü í őú Ü í Í ő í Ó ú í ú í ö í ő ö ö Í í í ú ú ö ő ö ő ö ö ö í í ö ö ö ő ö í ö ő ö í ő ö í ÍÍ ö ő ü í ő ö Ü Ü ö í ő ü ü Ü í Ü Ü ö Ü Ü Ü í ö ő ű ő Ú ő ő ö ő í ö ü ő ö í ű Í Ú ö Ú ü ö

Részletesebben

Í Ö í Í ú í Í ö ü í í í í ü í í ü ü í Ö í ü ü ü í í ü í í ő ü í í í ü ö í í í í ő í í í í í ű Ö í í Í í ö ő Í ő ü ü ő ő í í ü í Ö í Í ő Ü ö ö í ö í ö ü ü Ó ö ü ü ü ü ü í ü ü ü ö ü ö ü í Ü ü í í ú Ú ü ű

Részletesebben

ő ú ő ü Í Í ü ú ö ú ö ű ö ö Á ő ő Á ú ő ú Á ö ú ö ú ő Ö ö ú ü ő ü ü ő öú ö ö ö ö ü ő ő ő ö ű ő ő ö ő ö ő ű ő ö ö ü ő ő ő Ú ü Á ö ú ő ő ő ő ő ü ő ú ő ő ö ö ő ú ö ő ü ö ö ú ü ö ő ő ü ű ö ű ű ö ö ü ö ö ő

Részletesebben

í ő í ő ö ő í ö ö í ö ú í ú öű ő ű í ő ö í ü ő ő ő í ő ü ő ü ő ű ü ő ü ü ú ü ő ü ü ő ő ö ö ö ú ü ö í ö ö í ü ü ö ö ö í ü ü ő ő ö ő ő ő ö í ü ö ü ő ő ő ö í ö ő ö ő í É ö ü ö ö í í ő ö ú ü ö í í ő í í í

Részletesebben

É ü ü É ü É É Ú Ó ü ü ű Ü Ú ű ü Ü Ó ü Ü Ú Ü ü ü Ó Ú ü Ü ű Ü ü Ó Ú Ú ü ü ü Ú ü Ü Ü Ú ü Ó ü ü Ü Ö Ü Ó Ü ü Ü Ü Ú Ó ü Ü ü ü ü ű Ü ű Ó Ü Ü Ü ü Ü ű Ö Ö Ő Ó É Ö ü É Ó ü ű Ú ű Ó É Ú Ú É ü Ő Ó Ő ű É Ö ű ü ü

Részletesebben

ő ö ú ű ö ö Ö ö ő ö ö Ö ö ő ő ő ú Ó ö ő ő ú ő ő ö ő ő ö ö ö ő ő ő ö ö ő ö ü ű ő ű ő ö Á ö ő ö ő ő ű ö ő ú ö ö ű ö ő ő ő ő ő ö ö ú ű ő ü ő Ú ő ü Ű ü ö ö Ó ű ő ű ő ő ö ő ö ű ű ő ű ö ű ő ő ű ü ö ö ü ő Á ö

Részletesebben

ó Á ü Á Á ü ó ó Í ö ú ó ö ö ö ú ö ö ö ü ö ö ó ö ö ü ú óú óú ú Í ú ó ú ú ú ú ú óú ú Á Í ó ö ú óú ó óú ú ú ó ö ü ö ö ü ú ú ü ö ó ü ö ö ü ü ö ü ó ó ó ü ó ó ó ö Á É ü ö Í ü Í ó ó ó ó ú ö ó ü ú ó ű ú ó ö ú

Részletesebben

ó ó ú ú ő ó ő ú ú ó ű ű ú ő ű ó ó ő ő ó ó ó ú ó ó ó ő ú ó ő ő ő ó ő Ó Ó ő Ü ó ú ó Ö Ü ó ú ő ú ő ő ó ó ő ú ő ó ő ú ő ő ú ő ű Ö ú ú ó ó ő ő ó ó ó ő ú ő ó ő ő ő ó ó ú ó ő ő ó ó ő ő ő Ó ő ő ő ú ú ó ú ő ó ű

Részletesebben

ü ö ö ú ö ü ű ö ü ö ü ö É Á Á ö Á Á Ú Á Á Á ö ú Á ö ö ü É ö Á ü ö Á ö ö ö Á ú öú ü ö ü ú Á ü ű ú ú ü Á ú ú ű ű ú ü ü Á ü ö ö ú ö ö ö ö ú ú ü ö ö ü ü ű ö ú Á ű ü ö ú ö ö ö ö ö ö ö ö ü ö ö ö Á ö ű ö ö ö

Részletesebben

ő ű ő ő ő ő ő ő ő ő ő ő ű ő ű ű ű ő ő É ő ű ő ű ő ő Ú ű Ú ő Ú ű Ú ű ő ű ő ő ő Á Á Ú Á ő ő Ú ű ő ő Ó ő ű Ó ű ő Ü ő ő É ű ő ű ő Ú É ő ű Ú É ő Á É Á Ú ő ő É ő É Ü É É ű Ü ő Ú Ú Á É ő ő É ő ő Ó Ó ő ő É É Á

Részletesebben

Í Ü Ő Ó Á Ó Á Ó Ú Á Á ó Í ű Á Ö Á Á Í Í Ü Á Á Í Ő Ú Á ú ú Í ó ö ö ö ű ö ö Á Á Á Á ó ö ó ó Á ö ö ú Á Í ű Ü ó Í ö ú ö ö Á ó ó ó Í ó ó ó ü ó ó ö ó Á ű ó ö Í Á ó ó ü ö ö ö Í ó ó ö Í ö ö ö ö ü ú ö ü Í ú ó ö

Részletesebben

Ö É É ü ú ú ú ö ü ű ű ö ű Ó Ö É É Ó É ú ü É Ö ü ű ű ö ö ü ö ű ö ö ű ű ú ü ű ö ű ű ú ű ö ű ú ú ü ű ö ú ü ö ú ö ű ű ö ö ű ü ö ö ö ú ú ö ö ű ö ű ö ű ű ö ű ű ö ú ö ű ö ű ű ö ö ű ö ö ö ö ö Ü öü ö ü Ö É ö ü

Részletesebben

Ú ő Ő É ó ó ő ó ú ö ó ó ó ó ö É ó ó ó ó ú ő ö ú ő ö Á ó ő ő ó ú ő ő ü ő ő ő ö ő ó ö ő ő ó ö ő ü ő ó ú ü ö ó ó ő ő ó ő ő ő ó ű ö ő ő ö ü ő ő ő ó ö ó ő ü ú ö ő ö ó ó ő ő ő ü ő ü ő ó ő ó ü ő ó ó ő ő ó ő ó

Részletesebben

Ü É É É ű ű ű Ú Ü Ö Ü Ü ű Ó ű ű ű É ű ű Ő ű ű ű Ü ű É ű ű ű ű ű Ú É É Í É É É É É É É ű É É Ó Ö Ö Ö É Ö É É Ó Ö É Ó Ó ű É ű ű É É ű Ú É É ű ű Í ű É Ú ű ű ű É Ó Ö Ö É Í Ő Ö É ű É ű Ú É É ű É É ÓÚ É Ő

Részletesebben

ö ő ü Ó Ö ü ö ő ü ó ő ü ü í ü ő ó ő ó ő ó ő ö ő ó ö ö ő ü ö ö ü í ő ü ü ü ő ö ó ő ó ő ü ő ö ő ü ú ő ö ő ó ő ö ö Ö ő ó ó ő ó ő ó ü ü ó ó ó ó í ő ó ő ü ö Ö ő ü ó ü ö ő ö Ö ő ü ú ü í ö Ö ő ó ó ő ü ö í É ö

Részletesebben

ő ű ő ő ö ü ö ő ü ő ű ú Á ö ű ü ő ő ú ú ő ű ö ö ú ú ő ú ú ü ú ú ő ő ő ő ő ö ö ö ü ö ö ö ü ő ő ü ő ú Á ő öü Á ö ö ő ö ö ü ö ü ö ö ő ű ö ú ö ő ö ü ö ö ö ő ú ü ö ő ű ö ö ö ő ő ő ő ü ü ő ö ü ő ő ö ü ü ő ö

Részletesebben

í í ö ő í í í Ö ö í ő í í í í í í Í Ó í ö ő ú ö ú í í ő ő í ö ő í ő í í í ö í í ő ü í ü ő ö í ü ö ö í ö ü ö ő ö ö í í í í ö ő ő ú ö í ő ö ö í ő ö í ő í ü ő í ü ö í í ö í í í ö í ő ö í ő ő ü ö í ő í ö ő

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 3. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 03

Részletesebben

A.Einstein, B. Podolsky, N. Rosen (EPR) 1935, bizonyítják(?), hogy a kvantummechanika nem teljes D. Bohm Fotonpár forrás Kalcit.

A.Einstein, B. Podolsky, N. Rosen (EPR) 1935, bizonyítják(?), hogy a kvantummechanika nem teljes D. Bohm Fotonpár forrás Kalcit. EPR paradoxon, Bell egyenlőtlenség Teljesnek tekinthető-e a fizikai valóság kvantummechanikai leírása, teszik föl a kérdést híres cikkükben A. Einstein, B. Podolsky és N. Rosen 1935-ben. Egzakt definíciót

Részletesebben

HATÁROZAT. zajkibocsátási határértékeket állapítok meg

HATÁROZAT. zajkibocsátási határértékeket állapítok meg Alsó-Tisz-vidéki Környezetvédelmi, Természetvédelmi és Vízügyi Felügyel ség Ikttószám: 80664-1-2/2011. Tárgy: Zjkibocsátási htárérték megállpítás kérelemre Ügyintéz : Csomor László Hiv. szám: Zjkibocsátási

Részletesebben

Egy látószög - feladat

Egy látószög - feladat Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 8. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 03

Részletesebben

ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK. 1. változat ISMERET

ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK. 1. változat ISMERET ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK ISMERET 1. változt KOGNITÍV KÖVETELMÉNYEK ISMERET MEGÉRTÉS ALKALMAZÁS MAGASABB RENDŐ MŐVELETEK TÉNYEK ÉS ELEMI INFORMÁCIÓK ISMERETE FOGALMAK,

Részletesebben

F a 1 u s s v Sándor: A Jogi és Ügyrendi Bizottság 6 igen szavazattal a rendelet-tervezet elfogadását javasolja.

F a 1 u s s v Sándor: A Jogi és Ügyrendi Bizottság 6 igen szavazattal a rendelet-tervezet elfogadását javasolja. - 11- F 1 u s s v Sándor: A Jogi és Ügyrendi Bizottság 6 igen szvttl rendelet-tervezet elfogdását jvsolj. T ó t h István: Várplot Pétfürdői Városrész Önkormányzt 7 igen szvttl, 1 nem szvttl rendelet-módosítás

Részletesebben

A fény és az igazi véletlen

A fény és az igazi véletlen A fény és az igazi véletlen Kiss Tamás Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont Kvantummérés Lendület csoport Fény A világ teremtése 1 Kezdetben teremtette Isten a mennyet és a földet. 2

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így

Részletesebben

Panel adatok elemzése

Panel adatok elemzése Pnel dtok elemzése Mkroökonometr, 4. hét Bíró Ankó A tnnyg Gzdság Versenyhvtl Versenykltúr Központj és dás-ökonóm Alpítvány támogtásávl készült z ELE ák Közgzdságtdomány nszékének közreműködésével Pnel

Részletesebben

Egészsége és jó közérzete

Egészsége és jó közérzete Egészsége és jó közérzete Kidney Disese nd Qulity of Life (KDQOL-SF ) Ez kérdőív zt méri fel, hogy Ön hogyn vélekedik z egészségéről. Az így kpott információ segíteni fog nyomon követni, hogy Ön hogy érzi

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

Fizika A2E, 10. feladatsor

Fizika A2E, 10. feladatsor Fizik AE, 10. feltsor Vi György József vigyorgy@gmil.com 1. felt: Niels ohr 1913-bn felállított moellje szerint hirogéntombn középpontbn lév proton ül egy elektron kering, ttól = 5,3 10 11 m távolságbn,

Részletesebben

ü ó ú ú ú ö ő ö ö ú ó ú ü ó ú ó ó Ü ó ó ö ó ó ő ő ó ö ó ö Ó ő ó ő í ő ő ú ó Ü ű ú ő ő ö ó í ü ű ö Ü ó ú ó ú ó ó ö ú ö ó ő ő ö Ü ő ű ö Ó ü í ű í í ó ü

ü ó ú ú ú ö ő ö ö ú ó ú ü ó ú ó ó Ü ó ó ö ó ó ő ő ó ö ó ö Ó ő ó ő í ő ő ú ó Ü ű ú ő ő ö ó í ü ű ö Ü ó ú ó ú ó ó ö ú ö ó ő ő ö Ü ő ű ö Ó ü í ű í í ó ü ö ü ü ó ú ú ú ö ő ö ö ú ó ú ü ó ú ó ó Ü ó ó ö ó ó ő ő ó ö ó ö Ó ő ó ő í ő ő ú ó Ü ű ú ő ő ö ó í ü ű ö Ü ó ú ó ú ó ó ö ú ö ó ő ő ö Ü ő ű ö Ó ü í ű í í ó ü ő ó í Ú Ü ű Ü Ü ű Ü ű Ü ű Ü ű ű ö ő Ó ö ö ű í ó

Részletesebben

Az integrálszámítás néhány alkalmazása

Az integrálszámítás néhány alkalmazása Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

TIMSS TERMÉSZETTUDOMÁNY. 8. évfolyam NYILVÁNOSSÁGRA HOZOTT FELADATOK

TIMSS TERMÉSZETTUDOMÁNY. 8. évfolyam NYILVÁNOSSÁGRA HOZOTT FELADATOK TIMSS NYILVÁNOSSÁGRA HOZOTT FELADATOK TERMÉSZETTUDOMÁNY 8. évfolym Az láik közül melyik közelíti meg legjon z édesvíz százlékos részrányát Földön tlálhtó víz összmennyiségéhez képest? S01_01 100% 90% c

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

A Szolgáltatás minőségével kapcsolatos viták

A Szolgáltatás minőségével kapcsolatos viták I. A Szolgálttó neve, címe DITEL 2000 Kereskedelmi és Szolgálttó Korlátolt Felelősségű Társság 1051. Budpest, Nádor u 26. Adószám:11905648-2- 41cégjegyzékszám: 01-09-682492 Ügyfélszolgált: Cím: 1163 Budpest,

Részletesebben

Közlemények 339 VARGA SÁNDOB

Közlemények 339 VARGA SÁNDOB Közlemények 339 A felszbdulás utáni első könyvkidvány. A gyr Könyvszemle 1970/4. számábn TISZAY Andor közleményében (gyr nyelvű orosz szótárkidásink első fecskéi két világháborúbn) fcsimiléjének közredásávl

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése.

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése. 26. HÁLÓZATI TÁPEGYSÉGEK Célkiűzés: A hálózi egyenirányíó és silizáló lpkpcsolások és jellemzőinek megismerése, illeőleg mérése. I. Elmélei áekinés Az elekronikus készülékek működeéséhez legöször egyenfeszülségre

Részletesebben

A szoba bejáratához közelebbi számítógépasztalon egy nagyméretű nyomtató és az ehhez. A villanyszerelési munka veszélyei

A szoba bejáratához közelebbi számítógépasztalon egy nagyméretű nyomtató és az ehhez. A villanyszerelési munka veszélyei villnyszereli munk veszélyei Írt: Ngy László Zoltán oltó őrngy, vizsgáló 2010. december 15. szerd, 09:33 Egy budpesti társsház I. emeleti lkásábn keletkezett 2009 utolsó tvszi hónpjábn. lkás 20 m2-es szobáj

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis

Részletesebben

Kezelési útmutató ECO és ECO Plus

Kezelési útmutató ECO és ECO Plus Kezelési útmuttó ECO és ECO Plus Kidás: 2012.12.15. Eredeti kezelési útmuttó Gép Clssic Plus Gép szám Clssic Plus Gép típus Clssic Plus Verzió Berendezés jellege Álltfj Ügyfél neve & Co. KG Ügyfél címe

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Bevezetés a programozásba. 4. Előadás Sorozatok, fájlok

Bevezetés a programozásba. 4. Előadás Sorozatok, fájlok Bevezetés progrmozásb 4. Elődás Soroztok, fájlok ISMÉTLÉS Specfkácó Előfeltétel: mlyen körülmények között követelünk helyes működést Utófeltétel: mt várunk kmenettől, m z összefüggés kmenet és bemenet

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kdogozt: r. Ngy Zotán egyetem djunktus 4. fedt: Mndkét végén efzott rúd ongtudnás rezgése (kontnuum mode) A, ρ, E Adott: mndkét

Részletesebben

FővárosiFóügyészség NF. 19043/2008/5-I. HATAROZAT bűntetteésmás bűncselekmények szbdságmegsértésónek Az egyesülésiés gyülekezési mitt BRFK Btinügyi Főosztály II. Gyermek- és IfjúságvédelmiosztáIyán 136.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben