I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban"

Átírás

1 I. z éő yg egotos szekezet tujoság és szeepük oóg ukók h j I. ε ε k e k I.5 h h λ I. p υ ε υ k ozgás I. M [ Z p Z ] M, Z pv k I.5 I.9 II. Sugázások és kösöhtásuk z éő ygg P M II. e P ~, ~ II. továk II.5 t µ II. e µ µ II. δ II. µ II. sα s β II. II.7 II. λ, etve λ II.6 ~ II.7 eeő II.8 ozgás h W k II.7 M λ λ j II.9 α M λ M α λ ekete j σ II. M σ test köyezet λ áó II. µ II.56 ω ~ p P szót ~ II.6 λ V κ V II.6 p Z ρ II.67 II.76 Z Z II.77 Z Z e ε ó h II.79 h λ II.8 e ó ó Ptg tg ZI η I II.8 ó ó ó

2 µ µ ρ ρ II.85 ε h kötés ozgás II.86 τ τ C oto λ Z II.87 ρ h h ' II.89 λ t e λ kötés ozgás λt II.95 λ II.96 τ e II.98 z o Λ II.99 t λt Λ Λ e II. µ τ σ κ e s s s ρ II. h II. ozgás Λt evegő II.5 γ X II.6 evegő X II.7 ~ µ, etve ~ s H w II.8 w H II. S II. III. szpotjeeségek éő eszeeke I V V t ν t III. υ u III.9 I V υ áó III. p ρυ ρgh áó III.5 υ τ III.5 υt τ III.6 υ η III.6 h I III.8 t I V π 8η p III. I ν ν III.9 t ső 8πη III. π η υkt e ρ III.7 6πηυ III.8 Iν ν III. ν III. υ uk III.

3 ν t t III.8 III.9 σ ~ t t III. ~ p ozózs III.5 ν L III.5, ν W V III.9, III.9 V W ν G H S III.9, III.96 G p W ν G, p III.99, V III. H S, p III. λ III.5 G µ ν µ ν III.5 B B LX et t yt X III.5 W III.56 W V W pv ϕ W µ ν III.58 t W et y III.59 Wν Wν W µ zϕ ν µ eν III.6 S III.6 y t III.6 et S III.67 S k Ω III.7 S pv µν III.8 H pv III.8 H III.87 p W ν H p, ν III.88 S III.89 ν µ µ III.9 p III. L v v µ e k k u L III.6 k k k k k III.8 k zk ϕ k k k III.9 pk k,ii k k pk k,i k k I II p p k k,i k k,ii III. II I ϕ ϕ III. z t C t t e III. t e III. t t C λ te III. III.9 WV W ν

4 IV. z ézékszevek ozkáj Ψ ~ Φ IV.5 Φ Φ Ψ ~ og IV.6 Φ Ψ Φ ~ IV.7 Ψ Φ g IV.5 P k k g g IV.6 Pe e eősítés spítás IV.7 Φ Ψ ~ Φ IV.8 IV. oktáv og H pho g IV.9, H so 6 IV. VI. oekuás és sejtgosztk zk ószee szög szög tg β tgα k VI.8 VI. s sα k kλ VI. λ δ,6 sω VI.8 δ k k t e VI.9 τ VI. k k k τ VI. p VV VH VI. VV VH g ε λ VI. VII. ektoos jeek és ószeek z ovos gykot e t C e VII. t C C X C VII. πc k e P P k P VII.6 Pe h k e VII.8 g P g VII. k e π LC X C h VII.5 πc VII. k v e e v vssz v VII. k

5 5 VIII. épkotó ószeek...g e g µ µ VIII. H g h µ VIII. ± υ ' VIII. ±υ ' υ ± VIII.5 víz víz µ µ µ H VIII. IX. eápás ószeek zk pj q τ küszö C q Sttsztk σ µ πσ e g s 6 y y y s s 8 h y ] [, 6 y * 7 y * * 8 y y 9 s t ] [ µ ] [ t ] [ t [] χ O χ / / z 6 s 5 / / 6

6 / / S 7 S O 9 / O / 8 Gykotok MIOSZÓP II. szög VI. SPCIÁLIS MIOSZÓPO s sα k kλ VI. λ δ,6 sω VI.8 p t t p ' átáséesség vsus % α' 6 6 ' α' 6 π 7 7 ' 8 eeptosű űség ' 9 OMÉ s β h 5 ' 7 ' 7 LÁIS MÉÉSCHI 7 ÉYMISSZIÓ λ áó II. h j I. ÉYBSZOPCIÓ % g ε λ 7VI. SZM OPIÁ ' II.8 t k j j z GMM BSZOPCIÓ µ e z /, 5 µ II. µ µ ρ ρ II.85 µ τ σ κ GMM GI ε ε 6

7 IZOÓPIGOSZI ŐSÍŐ e z o k e P k P VII.6 Pe ÖG C g g e µ j 6 OZIMI j, /kg q - X,6 C/kg evegő X II.7 Λt evegő γ 8 ~ X C X I ~ t t tg tg ó P ZI II.8 ó V-OZIMI P e II. H St e g g B 6 k SZISZOSZCILLÁO v v π LC VII. σ Vt Z Z ρ Z Z IMPLZSGÁO Z 5II.77 τ τ τ ktötés téyező % τ τ COL SZÁMLÁLÓ ét egott h BŐIMPCI e Z Ie * ρ H H t e 5 6 t OSZCILLOSZÓP 5 pp e C πz 5 * C γ 6 IOMI e η 7

8 sját g 5 SZZO Φ Ψ ~ Φ IV.8 G VII. k I II ϕ ϕ L e e ϕ ϕ π hρg η t 8 V p I sői V ső 8πη 6 eeő páhuzos 7 IÚZIÓ t t t t ν ν e t τ τ 5 III ϕ ϕ ÁMLÁS V I t L V π 8η p III., 8 σ Cˆ eektot koá tuáyokó setek vét összeüggések gh gsság ozgás koezáto ε h υákuu közeg t k k t υ C I ρ Z I e e X L πl X C πc C ε ε P I eektoos t 8

9 9 egészítés O hgtók száá 6 OH PO C 6 PO C ε σ ε s s π s π ső ugó ~ W ~ s W ~ s W egészítés GY hgtók száá k e υ υ υ k e B ε ε ε ogás ezgés eekto ozgás ξ ϕ ν µ q V p S

10 Sttsztk tááztok t-eoszás szságok p vószíűség, kétoú pó,5,,,5,,,,,,8 6,,7,8 6,7 8, 66,6,8,89,9, 6,96 9,9,,6,76,6,5,8,5 5,8,,9,7,5,,78,75,6 7,7 8,6 5,7,8,,57,7, 5,89 6,87 6,7,,9,5,,7 5, 5,96 7,7,,89,6,,5,79 5, 8,7,,86,,9,6,5 5, 9,7,8,8,6,8,5,,78,7,7,8,,76,7,,59,7,6,8,,7,,,,7,6,78,8,68,5,9,,69,5,77,6,65,,85,,69,5,76,,6,98,79, 5,69,,75,,6,95,7,7 6,69,,75,,58,9,69, 7,69,,7,,57,9,65,97 8,69,,7,,55,88,6,9 9,69,,7,9,5,86,58,88,69,,7,9,5,85,55,85,69,,7,8,5,8,5,8,69,,7,7,5,8,5,79,69,,7,7,5,8,9,77,68,,7,6,9,8,7,75 5,68,,7,6,9,79,5,7 6,68,,7,6,8,78,,7 7,68,,7,5,7,77,,69 8,68,,7,5,7,76,,67 9,68,,7,5,6,76,,66,68,,7,,6,75,9,65,68,,68,,,7,,55 6,68,,67,,9,66,,6,68,,66,98,6,6,6,7,68,9,6,96,,58,9,9

11 χ kh-égyzet-eoszás szságok p vószíűség,99,975,95,5,5,,,57,98,9,8 5, 6,6,8,,56, 5,99 7,88 9,,8,5,6,5 7,8 9,5, 6,7,97,8,7 9,9,,8 8,7 5,55,8,5,7,8 5,9,5 6,87,,6,59,5 6,8,6 7,,69,7,7 6, 8,7, 8,65,8,7 5,5 7,5,9 6, 9,9,7, 6,9 9,,67 7,88,56,5,9 8,,8, 9,59,5,6,57 9,68,9,7,6,57, 5,,, 6,,9, 5, 5,89,6,7 7,69,5,66 5,6 6,57,68 6, 9, 6, 5 5, 6,6 7,6 5, 7,9,58 7,7 6 5,8 6,9 7,96 6, 8,85, 9,5 7 6, 7,56 8,67 7,59,9,,79 8 7, 8, 9,9 8,87,5,8, 9 7,6 8,9,,,85 6,9,8 8,6 9,59,85,,7 7,57 5, 8,9,8,59,67 5,8 8,9 6,8 9,5,98,,9 6,78,9 8,7,,69,9 5,7 8,8,6 9,7,86,,85 6, 9,6,98 5,8 5,5,,6 7,65,65, 5,6 6,,8 5,8 8,89,9 5,6 5,5 7,88,57 6,5,,9 6,96 55,8 8,56 5, 6,9,,6 8,8 56,89 9,6 6,5 7,7,56 5,7 9,59 58,,95 6,79 8,9,77 6,98 5,89 59,7,6, 6,5 55,76 59, 6,69 7, 5 9,7,6,76 67,5 7, 76,5 86,66 6 7,8,8,9 79,8 8, 88,8 99,6 7,6 7, 77,9, 9,5 5,8 9,

12 Áók és tok egyetees gázáó 8, /o. vogo-szá 6. /o Botz-áó k,8. / y-áó 965 C/o Pk-áó h 6,6.. s éyseesség vákuu. 8 /s eekto tötése ee tötés e,6. 9 C eekto yug töege e 9,. kg poto yug töege p,67. 7 kg euto yug töege, kg Ste Botz-áó σ 5,7. 8 /.. s eyos-szá s ú sőveke e 6 tg, 9 V C oto 6 /g /C etív totöeg togé: ogé: 6 sűűség [kg/ ] uíu :,7. vs e 7,9. óo P:,. testszövet ágy:,. vé átgos:,5. evegő C, kp:,9 sot:,7. zsíszövet:,9. vszkoztás [P s] víz 7 C-o:,85 vé 7 C-o:,5 jhő [k/kg ] víz:,8 zo:,76 vé:,9 töö sot:, zsíszövet: testszövet átgos,5 jhő [k/kg ] ogé: v,65 ogé: p,9 ováshő [k/kg] jég:, páogáshő [k/kg] víz C, kp: 57 st ké poteá [k/o] gükóz: 9,5 töésuttó evegő: víz:, éusoj:,55 töeggyegítés együtthtó [ /g] µ, óo sz.: 5. hásküszö [W/ ] ee ü khz-e: hgseesség [/s] testszövet ágy: 6 sot: 6 jgos vezetőképesség [S/] zoszövet:,8

13 otos oktív zotópok jeező t: ké ee és eszá zotóp eezés ő oás ój ás észeske eegák MeV γ-eeg MeV γ ózskosts µgy ev GBq h hogé szé 6 togé 7 ogé 8 uo 9 átu oszo 5 ké 6 káu 9 ku kó vs 6 kot 7 éz 9 kpto 6 uíu 7 stou 8 ttu 9 tehéu u 9 jó 5 eo 5 ézu 55 y 79 hgy 8 o 86 áu 88 uá 9 H, év β,86 C, pe β,96 C 576 év β,55 pe β,9 5 O pe β,7 8 9,8 pe β,6 5, ó β, γ,9,75,69 P,8 p β,7 5 S 87, p β,67,8. 9 év β, %,,6 utá,6 ó β, γ,5 75%,99 5%,55 5 C 6 p β,57 5 C 7,7 p, e, γ,5 e, 5 e 8, ó β, γ,8,5 59 e,6 p β, γ,566,, 6 Co 5,7 év β, γ,8, 6 Cu,7 ó β 9% β 9% % γ %,575,656,7, 85,7 év β, γ,687,5 8,7 ó β, γ,99,9, ,65 p β, γ,78,78 9 S 9 év β,56 9 Y 6 ó β, γ,%,9, , ó γ, I,658 ó γ,9 I 5 I I, ó 59,7 p 8, p, γ, γ β, γ,66,5,8,6,55,6,8,7 Xe 5,9 p β, γ,6,8 7 Cs, év β, γ,5 9,6%,66 8,7 7,% 98 u,695 p β, γ,96, Hg 6,6 p β, γ,,79,8 p α 5, év α, γ 6%,78,86,6,598,69 8,7. 9 év α, γ,,

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban I. z élő ayag legfotosabb szekezet tuladosága és szeepük a bológa fukcókba hf E E (I.) ε ε 0 k 0e N k (I.5) h h λ (I.3) p υ 3 ε υ k ozgás (I.34) Δ M [ Z p + ( Z) ] M (, Z) pv Nk (I.35) E c (I.9) II. Sugázások

Részletesebben

KÉPLETTÁR BIOFIZIKA ÉS BIOSTATISZTIKA TÁRGYAKHOZ. Összeállította: A Biofizikai és Sugárbiológiai Intézet

KÉPLETTÁR BIOFIZIKA ÉS BIOSTATISZTIKA TÁRGYAKHOZ. Összeállította: A Biofizikai és Sugárbiológiai Intézet KÉPLEÁ BOFZK ÉS BOSSZK ÁGYKHOZ Összállíoa: Bozka és Sugábológa éz Budas 7 GYKOLOK.FÉLÉV MKOSZKÓP. EFKOME ( k K k N N össz N obj N ok λ υákuu közg sα s β s β h s d sα k kλ MKOSZKÓP. k MÉÉSECHNK λ δ,6 s

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Í é ö é ő é ő é ű é ó ó é é é ü ő ó é ó é ő ó ő ó ű é ó Í é ü ő ó é ó ü ö ö é ő é ő ó ú é óé ó ó ó é ö é é ó ó é é ó ó ó ó é ö é é ó ü ő ö ő é ő ó ű é ó ó é é ü ó ú ő ó ú é éó ó ú é é é ő ó ű é ó ó é ó

Részletesebben

AZ IFJ És uövréee A da é k o k az ifjú s g s zo c io gia i e I ernzé s é hez lr 1- < é é é é ü í ő é Á Á ö ő í ő é é ö í É é é é é ő é í é ű é ö é ő ő é é Á ö é ü é é ő é é é é í őé é é í é ö í ő é ő é

Részletesebben

É É É é é é é é í ű ó é É ö á ó é ő ő í ó á ö ő é ö ö é ó í í ú í é é í íú ó í ó é ő é ö é í é é ó é á á é á á ó ő ű é é ő ő ő í ó é é é í é é ó á Ű é

É É É é é é é é í ű ó é É ö á ó é ő ő í ó á ö ő é ö ö é ó í í ú í é é í íú ó í ó é ő é ö é í é é ó é á á é á á ó ő ű é é ő ő ő í ó é é é í é é ó á Ű é É É É ű É ö á ő ő á ö ő ö ö ú ú ő ö á á á á ő ű ő ő ő á Ű á á á ű ö á á á Ű Á á áú ű á ú ő ü á á ő á á ü ő á á ú ö Á ő á á ő ő á ö á á ű á ü á á ö á á ü ő ü á ö á ö ű á á á ő ű ü á ö á ő á ü á ö ő á ő

Részletesebben

é é é ó ű é ó ó é é ú ú ó ó ó é ó úá é é ó ű ú é é ű ó ú ö é ó ó é ű é ó é ó é é ü úá ó ó ű ú é ű ó ú ö ó ó é é É ű é é é ó é ö ó ó é é ú ú ó ó ó é ó úá é é ű ú é é ű ó ú é ó ó é ű é ó é ó é é ü úá Á ó

Részletesebben

Ú Á Ü É ő ö ó ó ő Ü ö Ó ő ú ó ö ő ú ű ű ö ú ö ó ü ö ő öü ő Ú ö Ü ű ó ü ű ő ö ő óü ó ó ő Á Á ó ó Ü ó ó ü Ü ö Á ő ő ó ö ó ü ő ö ó ö ő ó ú ú ó ő ó ó ú ü Ú Á Á É Ü É Ú ü Á É ő ü ÉÉ É Ü ó Ö ó ó ö ö ő óü ó ü

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MKOLC EGYETEM Gzáguoá K Üzl oácógzáloá é Móz éz Üzl z é Előlzé éz Tzé VZONYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ Vzozáo. V, V, V. l, b 3. l l... l l b Π 4. - b b 5. V : V : TTZTK KÉPLETGYŰJTEMÉNY É TÁLÁZTOK Nöélboá

Részletesebben

Typotex Kiadó. Jelölések

Typotex Kiadó. Jelölések Jelölések a = dolgozók fogyasztása (12. fejezet és A. függelék) a i = egyéni tőkeállomány i éves korban A = társadalmi (aggregált) tőkeállomány b j = egyéni nyugdíj j éves korban b k = k-adik nyugdíjosztály

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é

Részletesebben

ű Ú ű ű ű ű ű Ú ű Ö ű Ö Ú

ű Ú ű ű ű ű ű Ú ű Ö ű Ö Ú Ü Ú ű ű Ú ű ű ű ű ű Ú ű Ö ű Ö Ú ű Ö Ó Ó Ü ű ű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű Ö ű ű ű Ú Ö ű Ü Ö Ü ű ű ű ű Ü ű ű Ó Ó Ó Ú Ú Ó Ü ű ÓÓ Ó Ó ÓÓ Ó Ú Ö Ó Ó Ó ű ű ű Ó ű ű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű Ö

Részletesebben

Makromolekulák fizikája

Makromolekulák fizikája Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés

Részletesebben

á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí

á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí é é í á é é á é ő é ú ó ő é é í ő á é ő ő é ö á á ó í ú á á á é é á é é í é é é ő á á á é ö é é é á é é í é á á é á é á á í é é á á é á é ö é é é é é ü é á é é ö á á á é é é é ő é é á ú ű é á é ő é é ü

Részletesebben

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2 . Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =

Részletesebben

ε v ε c Sávszerkezet EMLÉKEZTETŐ Teljesen betöltött sáv: félvezető Hol van a kémiai potenciál? Fermi-Dirac statisztika exponenciális lecsengés

ε v ε c Sávszerkezet EMLÉKEZTETŐ Teljesen betöltött sáv: félvezető Hol van a kémiai potenciál? Fermi-Dirac statisztika exponenciális lecsengés Sászeezet iltott sáo a gejesztési setuba: MLÉKZŐ egatí eetí töeg: lyu t 3-iezió: eetí töeg tezo Cu t s egegeett eegiaállaoto π a eleto π a Si eljese betöltött sá: élezető állaotsűűség g iszeziós eláió

Részletesebben

ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö

ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ü É Ü Ú ö É ö ö É ö Ú ű ö Ö É ű É ö ö ö ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ó Ú É ö ű ö ű ű Ú ö ű ö ű Ú ö ö ű ö Ú ű ö

Részletesebben

r tr r r t s t s② t t ① t r ② tr s r

r tr r r t s t s② t t ① t r ② tr s r r tr r r t s t s② t t ① t r ② tr s r r ás③ r s r r r á s r ② s ss rt t s s tt r t r t r P s ② Pá③ á ② Pét r t rs t② t② r t ② s s ás t r s ② st s t t r t t r s t s t t t t s s s str t r r t r t ① r t r

Részletesebben

X Physique MP 2013 Énoncé 2/7

X Physique MP 2013 Énoncé 2/7 X Physique MP 2013 Énoncé 1/7 P P P P P ré r s t s t s tr s st s t r sé r tt é r s t t r r q r s t 1 rés t ts s t s ér q s q s s ts t r t t r t rô rt t s r 1 s2stè s 2s q s t q s t s q s s s s 3 é tr s

Részletesebben

Á Á Ó É Á Ó É É Á Á ó ó é á ú í á á é á Á ó ű á ó í ó á á á ú ö űú é é ö ö ű ö ő á é ö ö é é ú ő á ú ő á ü á á ú ü á é ö ú ú á á á ú í á é ő é ó é é é

Á Á Ó É Á Ó É É Á Á ó ó é á ú í á á é á Á ó ű á ó í ó á á á ú ö űú é é ö ö ű ö ő á é ö ö é é ú ő á ú ő á ü á á ú ü á é ö ú ú á á á ú í á é ő é ó é é é Á Á Ó É Á Ó É É Á Á ó ó á ú í á á á Á ó ű á ó í ó á á á ú ö űú ö ö ű ö ő á ö ö ú ő á ú ő á ü á á ú ü á ö ú ú á á á ú í á ő ó ő ü á á á á á ó á ó ű á ö ö ü á á á ő ü á ó á á á ö á á ó ö őí á á á áí á á

Részletesebben

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú é é ő ü é í ó é é ő Í Í é é é é óó ó é é Í Á é é í í é ő é é í é é é é é é ü é é ü é é é é ő é ő é é ő ü ü é é é é é é é í ő é é ű é é ü ü ő é é ő é é é ő é é ő ó ó é ő ü é Ú é ü é é ű é é í é í é é í

Részletesebben

Ó Ö Á É Á É Ő Ü É Í í ü ü é é ő ő ö í é ő í ő ü é őé ő ö é ő é é ő é ö é é ö é í í é é í ő ü é ö ö é é í ü é é é őé é ö é é í é é é í é é ő é é é é ö é é í é í é é ö é ü é é é É é éöí é ő Í ő é ö é ü é

Részletesebben

Az EM tér energiája és impulzusa kovariáns alakban. P t

Az EM tér energiája és impulzusa kovariáns alakban. P t LDIN 4- A té enegá és mpls ováns lbn β ε δ β BBβ β μ (, β,,) μ B ( g) P t t ( ε ) S A negtív előelne töténelm o vnn S μ B g S ε B ε μ B ésesé nnsene elen tében P ε g t S t Cs eletomágneses teet ttlm 4-es

Részletesebben

ű ü Á

ű ü Á ű ü Á ó é ó ö é é Á é ó í ú Á ő íö ü ö üó é ü ü ú ö ó ü ó ü ó ü ü é í ü Ó ú íí Ó é é Ó ü ó ó ü ó ü ü ü ö ó óü ó ó ó í ü ö ü í ó ü ü É ú ú ü É í É ó ü ó ó ü ü é Á ó Á ó ó é ü ó Á é ü í é ó ö üé ó ó ó ü

Részletesebben

Ö Ü ú ő ő Ö ő ő ő ő ő ő ő ő ő ő ű ő ő Ü Ü ő ő ő ő Ö ő ő ő ő ő Ü ő ő ú ő Ü Ö ő Ö ő ú ő ő

Ö Ü ú ő ő Ö ő ő ő ő ő ő ő ő ő ő ű ő ő Ü Ü ő ő ő ő Ö ő ő ő ő ő Ü ő ő ú ő Ü Ö ő Ö ő ú ő ő Ö ő ú É ő ú ú Ö ő ő ú Ö Ü ú ő ő Ö ő ő ő ő ő ő ő ő ő ő ű ő ő Ü Ü ő ő ő ő Ö ő ő ő ő ő Ü ő ő ú ő Ü Ö ő Ö ő ú ő ő ű Ú ú ő ú ő ú ő ő ő ő ő ú ő ű ú ő ő ő ő ú ő ő ő ő ő ő Ú ú ő ő ú É Ú ú ú ő ú ő ú ő ú É ú ő ő

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA

Részletesebben

ő ö ő ü ö ő ú ö ö ö ő ú ö ö ö ö ö ő ö ö ú ö ö ö ö ú ö ő ő ö ű ö ő ö ö ö ő ő ö úő ö ö ő ö ü ö ö ő ö ő ö ü ö ö ö ü ö ö ö ő ü ő ö ü ö ő ú ű ö ü ü ö ü ő ő

ő ö ő ü ö ő ú ö ö ö ő ú ö ö ö ö ö ő ö ö ú ö ö ö ö ú ö ő ő ö ű ö ő ö ö ö ő ő ö úő ö ö ő ö ü ö ö ő ö ő ö ü ö ö ö ü ö ö ö ő ü ő ö ü ö ő ú ű ö ü ü ö ü ő ő Á Á Ó É ö ü ü ö ő őü ö ö ö ö ő ú ö ő ő Ü ő Ö ö ő ö ő ő ö ö Ö ú ü ü ű ö ö ö ő ö ö ú ú ú ö ö ú ő ő Á Á ö ő ö ö ő ú ö ő ű ö ö ő ő ö ö ö ü ö ö ö ú ö ö ö ö ö ú ö ö ö ő ö ü ö ö őü ő ő ö ö ö Ü ő ö ö ö Ü ö ö ü

Részletesebben

ö ő ő ú ő ó ű ő ő ó ö ű ú ü ó ő ú ő ő ő ű Ö ő Á Ö ő ő ő ő ó ü ő ő őő ö í ü Ó ö ő Ó Ö ü ö í ü ú Ö ő ú ó ő Ö Ó ő ő ő ő í ő í ó ő ő ú ó í ü ő ő ő ó ó í ő

ö ő ő ú ő ó ű ő ő ó ö ű ú ü ó ő ú ő ő ő ű Ö ő Á Ö ő ő ő ő ó ü ő ő őő ö í ü Ó ö ő Ó Ö ü ö í ü ú Ö ő ú ó ő Ö Ó ő ő ő ő í ő í ó ő ő ú ó í ü ő ő ő ó ó í ő ő ő ú ő ő ő í ú ö ü ü ú ö ú ő ő ú ő ő ő í ó ő ő í Ó ő ő ő ó ő ő ő ő ő ó ő ü í ú ő ő ő ó ú ó ö ó Á ő ő ó ú ő í ő ő ú ö ó ú ő ő ó ó Á ó ó Á ő ő ő ő ő ó ó ő í ü ő ö ő ö ö í ő ő ú í őő ó ő ő í Ó í ő ő ő ő

Részletesebben

í ű í Ü ő ö ö Á Á Á

í ű í Ü ő ö ö Á Á Á ő ő í ö ú í ű ő Í ő ö í ű í Ü ő ö ö Á Á Á ö Ö Á Á Á ű í ö ö í ő ő ő ő í ö Ö Á Ö Ö Ü ö Ö Ö ö Ö Ő Á Á ö ö Áö ö Ö Á Á Á ű í í ő ő ő ő í Ó Ó Ö Ö ö Á Ö Ú Á Ú Ö ö Á Ú ö Á Á Á Á ö ö Á Á Á í Á ö ö Á ő ő Á Á í

Részletesebben

ö Ą ě Ę ő ń ŕ ö ű ö Á ű ö ű ö ú ó ű ö ü ö úá Ö ű ö ú ń úá úá ü ö ö úá ę ö ú ö ü ó ó ó ű ö ú ö ő ó ű ö ú ö ü ó Ö ű ö ú ö ŕ ű ö ó ó ó ű ó ó ó ô ö ó ó ý ö ó ö ö ó ő ó ź ó ô ó ó ö ó Á ö ó ó ö ę Ĺ ę ę ó ű ö

Részletesebben

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat Tételjegyzék Áramlástan, MMF3A5G-N, 006 007-es tané, őszi félé, géészmérnöki szak, naali tagozat. A folyaékok és gázok jellemzése: nyomás, sűrűség, fajtérfogat. Az ieális folyaék.. A hirosztatikai nyomás.

Részletesebben

Í é ö ö ó ó ú Ö Ű é ú é ő ö é ő ő ü é ő é ö é é é ó é ú ő é é é é é ő ö ó ő é é ő Ó é ö ü ő ö ü é ú ő Ű ö ő é ő é ő é ő ő é é é é Ü é ő é ó ő ő é é ó

Í é ö ö ó ó ú Ö Ű é ú é ő ö é ő ő ü é ő é ö é é é ó é ú ő é é é é é ő ö ó ő é é ő Ó é ö ü ő ö ü é ú ő Ű ö ő é ő é ő é ő ő é é é é Ü é ő é ó ő ő é é ó ü É ö Á Á ő É ö ö é é ő é ő é ö ö é é é é ó ó ö ü ő ó ö ó é é ő é ő é ö ő ő ő é Ö ó Ó Ó ó é ö ö ő ó ő ü é ü é ő ő é ú ő ő ő ó é ö é ó é é é ö ö ő ő ö é é é ó ö ü ű ö ő é é ú ö ó ó ó é é é ó ö é ö ő ű Ü

Részletesebben

í Í ő í ú ú ő ö ő í í ö ö í ö ö Á í í í Ű Í Á ü ü í í Ú í í ö ö í Í Ö í ö Í Í ö ö Á ö Í Ö í Í Á ö ö Ö Ü Í É Í í í Í Ö Á Ö ő í í ú í í ő í í É É É É ö ö Ö É ö Á É í í Í Ú Á Ú Ö É Ú Í ö ö ö Á ö Í í í ő ő

Részletesebben

Ð ØÖÓÑ Ò Ø Ö ÎÁÁÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¼½ º ÒÓÚ Ñ Ö º ÍÐØÖ Ö Ú ¹ ÒÝ ÑÔÙÐÞÙ Ó Ð ÐÐ Ø Þ Ð Ð Þ Ö ÑÓÒ ØÖ Å Ñ Ò ÖÙ ÒÐ Þ Ö ½ ¼ ÁÑÔÙÐÞÙ Ó Þ ÒØ ¹ Ô Ò ½¼¼ Ò ½ Ò ½¼ µ ¹ ɹ Ô ÓÐ ½ ½¹ µ ½¼

Részletesebben

ű ú ü ü ü ü ü ü Á ü ú ü Á Á Á É Ö Ö Ö Á É É ü Á ú ű ú Í Á Í Á ű ü ű ü Ö ű ű É ú ű ú Á Á ű ü ú ű ú ü ú ú Ó ü ű ü ü Í ü Í Í Í Ó ú ú ú ú ú ú ü ú Í Ó ű ú ű Á Á ü ü ú É Í Ü ű ü ü Á ü ú Í É ú Ó Ö ú Ó Ó Ó Í ú

Részletesebben

ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó

ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó Ú Ü Ü Ü Ü Ü Ü Ú Ú Ú Ü É Ü Ü ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó Ö ű Ú É É Ö Ö ű Ó Ö ű Ü Ü Ü Ú É É ő ő ő Ó Ó Ó Ű Ű Ü Ü ő Ü Ö Ó Ö Ó ő Ó ő ő ő ő ű ő ő ű ű É ő ő ő ő ő ő ő ő ű ő Ö Ö Ö ő Ü Ö ő ő

Részletesebben

ö ő őö ő ö ö ő í ő í í í ú ő ő ű ö ű ö ö í ú ő Í ú ő

ö ő őö ő ö ö ő í ő í í í ú ő ő ű ö ű ö ö í ú ő Í ú ő ö ő í ő í ö ő íő ú ő ő ő ű ö ű ö ö í í ú ő í í ö ö ő őö ő ö ö ő í ő í í í ú ő ő ű ö ű ö ö í ú ő Í ú ő í ö ő ö ő ü í ü ü ő ű ö ö ö í ö ö ö ő í ö ö ö ű ö ö ő ú ö ú É ö É í ő ö ő í í í ő ú ö ö í ü ő ő ú ő

Részletesebben

É É ü É Ü É É Ú É Ü ü ő ü ü ö ű ö ü É Ő É Ü É É É ú í í ú í í ú í í ó ú í í ú í ú í í í ő É Ő Í É É Í É

É É ü É Ü É É Ú É Ü ü ő ü ü ö ű ö ü É Ő É Ü É É É ú í í ú í í ú í í ó ú í í ú í ú í í í ő É Ő Í É É Í É ó É Ü ó Ú É É ü É Ü É É Ú É Ü ü ő ü ü ö ű ö ü É Ő É Ü É É É ú í í ú í í ú í í ó ú í í ú í ú í í í ő É Ő Í É É Í É É í ó ó ö ü í ő ú í ő ő ó ó í ű ő í í ö ü ö ó ö ő ő í ó í í ü ö ű ő ó ú ó ü ó ü ö ő ó í

Részletesebben

Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú í űö ü Í ö Ö ü ö Ö ü ú ü ó ú ó

Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú í űö ü Í ö Ö ü ö Ö ü ú ü ó ú ó ö ü Ö ü ü ó í í ö ö í ü ú ü ó ü ó Ö ö í ú ü ó ó í ó ü ó ü ö Ö ü ö Ö ü ü ü ó Ö ö í ú ó ó ó ó ü ó Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú

Részletesebben

í í ó ö ö í é ű é é é é é é ó é ó ó ü ö í ő í ü ö í é ö ö é í é é ü ö í ü é í é í ó ö ö ö Ó í ó ó ö í ő óá Ü ü ö í ü ü é ő ű é é é é é ü í é é í é é ö

í í ó ö ö í é ű é é é é é é ó é ó ó ü ö í ő í ü ö í é ö ö é í é é ü ö í ü é í é í ó ö ö ö Ó í ó ó ö í ő óá Ü ü ö í ü ü é ő ű é é é é é ü í é é í é é ö ö É Á É É í ó Á Á É ó É í ű í é é é í é é ő ó é é ü é ó é í é é í É é é í í é ó ú í öó ó ó é ö ó ő é í ó öó é é é ü é í é ó é é é í é é í í í ó ö ö í é ű é é é é é é ó é ó ó ü ö í ő í ü ö í é ö ö é í é

Részletesebben

Á É ő é ü ö á á ö é á é ö á á é ő á á ő á á á ő á ő é á é ő ö ó é ő é é á ó á á á á ó á á ö ö é á é Ó É á á ő á á ú ü ö á á á á é á á á á é é ő á á á á é ü á á ő ú á é á á ü ö á á á á é é á á á á ő á ő

Részletesebben

ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú

ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú ú ő ű ő ú ő ő ő ú ő ő ő ű ú ú ő ő ú ő ő ő ő Ú ú ő ű ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú ú ű ő ő ő ő ő ő ű ú ő ő ú ő ú Ü ú ú ű ő ő ú ő ő ú É ő ő ú ő ő ő ő

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

ó Ö Ü ü ó ő ű ó Á ű ő ö ő í í í í ó í öú ó ó Á í ó ö ó ó ü í ü ó ó Á í ó ö ó É ó í Í ö ü í ó í ú íí Í í É É Í É ó ú Í ö í ü ó ö ó ó ó ü É í Í É ó ó í Í Í ó í ó ó Í ó Í í Í ó í ó ú ó Á ó ó ó Á í Á ó ó í

Részletesebben

ő ö ó ü ü ó ö é é ó é ü é é ő ö ö Ö ó é é ó ö ó ő ö é ő ö é ő ö é ő ö é ő ó ó ó í é é ü ő í ö ö ö í é ő ü é ö é ő ő é é ó é ó ü ó é ő é é íé í ő é é é

ő ö ó ü ü ó ö é é ó é ü é é ő ö ö Ö ó é é ó ö ó ő ö é ő ö é ő ö é ő ö é ő ó ó ó í é é ü ő í ö ö ö í é ő ü é ö é ő ő é é ó é ó ü ó é ő é é íé í ő é é é Á ö ö Á É ó ü É ó ö í ü é é ő ö é Ö é ö é é é ő ó ó ö ó ő ó é ó í ö ú ö é é ó é é ő ő ő í ó é ó ő ó é é é ó ó ő ó é ó é é í ő é ü ö Ó ö ü ő ő í é é ó é é ő é ő ő ó é ó ő ó ö ö ő ó é ó ó ő í é ű é í é é

Részletesebben

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m. Szakác enő Megyei Fizika Vereny, I. forduló, 00/004. Megoldáok /9. 00, v O 4,9 k/h 4,9, t L 9,86.,6 a)?, b)?, t t L t O a) A futók t L 9,86 ideig futnak, így fennáll: + t L v O. Az adott előny: 4,9 t L

Részletesebben

Ó É Á É Ü É Á Á Ú É Á ű ő ő Ú ő Ü Ü ő ő Á É Á Ú É Á ő ő ő ő Á ő Á É ő Á ő ő ő É ő Á Á ő Á É Á ő Ú ű ő ű ő Ú ő ő Ú Ú ő Ó Ú ő É Ú ő Á É ő Ú Ó É ő ő ő Ü ő ő ű Á Ú ő Ü Á É É Á Á ő É Ú ű Á Ü Ú Ü ű Ü ű Ú Ú Ú

Részletesebben

é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

Á Á Ö Ö Ö É É Á Á Á ö ő É É É ö Á ö É ö Ü Á Ó É Ü Á É Á Á Á É ö É É É Á Ó Á Á Á É Ó Á É ő Ü Á É Á Á Á É Á ö Á Á Á Ü Á Á É ö Á É Á Ü Á Á Á É É É ö Ó Ü Ü É É É ű É Á Á ő É É É É Á ő É ö É É Ü É É Á É Ü É

Részletesebben

ő ő ó ő ó ü Ü Ö ő ü ó ü ó ú ó ü ó ü ő ó ő ó ó ó ű Á Ö ó ü ó ő ó Ű Ö ő ó Ö ü ü ó ó ü ő Ö Ö ó Ö ű ó Í ó ó Ü ó ó ő ó ő ü ú ő ő ú ő ő ő ü ó ő ű ú ü ü ú ő ő ó ó ő ó ú ő ő ű É ú ő ú ő ő ü ő ü ú ő ó ó ő ő ú ü

Részletesebben

í ó ó í é é Ú ó ő é é ö ö ö é ó é ö ő ü é é é Ü ö ú ó é ő é é é é í é ő é ó í ó í é ó ó é őé ó ü éé é é ó í ű ó é é ű ö é é ű ü é é ü é é ö é ü ó Ü ö ö é é Ü í é ó é é é ü ö é ö é ó úé é í éú ó é ó ö é

Részletesebben

é ó é é é ő é é é é é ö í ó ó é í é é é é é é ö é í é é é í é ú é é é é é é ö é í í ó őí ü ü é é ó é ó é ü é é ó ő é é í é í ó í é ő ő ő ü ő é ó é í é

é ó é é é ő é é é é é ö í ó ó é í é é é é é é ö é í é é é í é ú é é é é é é ö é í í ó őí ü ü é é ó é ó é ü é é ó ő é é í é í ó í é ő ő ő ü ő é ó é í é ó ü É Í É Á ú Ü Ü é ó é ö ú óé ü é í é éü Á í é ű é í óé é ú ó ü ó é í é é ú ö é é í í ú ő é í ű ó ó é é í é é é í é ű é í é é é é ü ö ú ó ű é é ó é ö ö ő í őí é é ö ó é í é É é őí é í é ű ő é é í óé ű

Részletesebben

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é é é ö ő é é é ö é é é é ö ö ö Í Í é Í é ö é Í ö é é é é é ö é ü í é ű é é ö é ö é Í ö ö é é é ú ö ö Ú ö í é í é é í é ö é é é é é é ö í ű ű é é ű Í ö é é é éé é í é é í ö í é é Ü é ő é í é é é é ö í Ü

Részletesebben

ö É Á ó ó á é á ó ö á É É ö ó

ö É Á ó ó á é á ó ö á É É ö ó ö É Á ó ó é ó ö É É ö ó É Ó é í é É ü ó Á ó ö é ó é Á é é ó Á ó í é Á ó ö é ö ő é é É Á É Á ö é é ü ó é Á Ú é é ü ó ó É é é é ö ó é é é ó é é ó Ü É é é ú ö é ó é é ó ó Á ö é í é ü é é Á é ö ó é ő Á ü ü

Részletesebben

ó ö é ö ó ó ó é ú ó ú í ü é é ó ü ó í Í é í é é ó ú é ó í ó ú í ö ö ö é ó íü ó ú é é é í é ó í ö ó ü é ó ü é é é é é ó íü ü é é ó é ü ú ü ú ö é Ö ó ó

ó ö é ö ó ó ó é ú ó ú í ü é é ó ü ó í Í é í é é ó ú é ó í ó ú í ö ö ö é ó íü ó ú é é é í é ó í ö ó ü é ó ü é é é é é ó íü ü é é ó é ü ú ü ú ö é Ö ó ó Á Ó É Ó Á É Ó Ü É Ó Ö ú ü ü í ü é é ó úá ü é é é é é ó é ú ő É ó é ó ó í é ó ó ó óá ó ó ó ó ú ó ü ü óíí ö ú ú é éé ó ó ü ó ö é ö ó ó ó é ú ó ú í ü é é ó ü ó í Í é í é é ó ú é ó í ó ú í ö ö ö é ó íü ó ú

Részletesebben

ö ö ű ű ö Á ú Í ú ú ő ú ö Á Á Ü Á Á Á É Í Á Á É É Í É Á Á ő ö Á ő ö ő ő Í ü ő ü ö ö ő ő ő ü Á ö ú Í ő ü ö Á Á É Ö Í ö ű ű ö Á Á É É É Á É Ó É Á ö ö ö ö ő ö ü Á Á Á É É ő ö ő Í ő ú ú ü ő ö ő ü ő ő ö Á Ő

Részletesebben

Á Á É Á Á É ö ó ő ő ó ó ó é ö é ö ú ó ó ó é ö é é ő ö ú é ö ő é é ő é ó É ő ó é Ü ö é ó é é é é é ó óö é ő ő é ó é é é ó óö é é ö é é ő é ű ó é ö é ő ú ö é é ö ö é ő ö ö Í ö é ö ö é ü Í ö é é é ó é é ő

Részletesebben

ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü

ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü ö ü Ő Ö ü ö ü ó ü ü í ü ó ö ö ö ü ö ö ü í ü ü ü ö ó ü ö ü ú ö ö ö Ö ö ó í ó ü ö Ö ó ü ó ü ü ó ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü ü ö ö ö Ö ü í ü ö

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MIKOLCI EGYETEM Gazdaágtudoá Kar Üzlt Iorácógazdálodá é Módzrta Itézt Üzlt tatzta é Előrlzé Tazé TATIZTIKAI KÉPLETGYŰJTEMÉNY É TÁLÁZATOK (Dolgozatíráál, zgá ca gé bgzé élül hazálható!). VIZONYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ

Részletesebben

ű ö

ű ö ű ö ű ö ű ö ö ű ö ű Ö ö ö ö ö ö ö ö ö ö ö ö ö ö Í ö ö ö ö ö ö ű ö ö ű ö ö ö ö ö ö ö ö ö ö ö ű ö ö ö ö ö ö ö ö ű ö ö ű ű ö ö ű ö ű ö ö ö Í ö ű ű ű ű ű Í Í ö ö ű ö ö ű ö ö ö ö ö ö ű ö ö Ó ű ö Ö ö ö ö ű ö

Részletesebben

Ö í í í í É Öü Ö ö ö ó Ü ö ö ú ó ö í ö ő ú ó í ö ü ő ü í ú ü ő ó ü ö ú ú í ű ó ú ó ö ö ó ó ü ó ü ő ö ű í ó ó ó ú ú ó ő ö ő í ő Ü ű ó ó ü ű ú ó ó í Ú ü

Ö í í í í É Öü Ö ö ö ó Ü ö ö ú ó ö í ö ő ú ó í ö ü ő ü í ú ü ő ó ü ö ú ú í ű ó ú ó ö ö ó ó ü ó ü ő ö ű í ó ó ó ú ú ó ő ö ő í ő Ü ű ó ó ü ű ú ó ó í Ú ü É í ű í Ö Ü í Ü í í í É ö ö ó Ü ö ö ú ó í 6. ő ö ö ó ö ó ő ó ö ó ü ó ü ű ö ö í óő í ó ö ö ö ö ö ö ő ü ű ö ü ő í ó ó ő ö ű Ü ö ő ó ö ó ő í ú ó ü ö ö ó ó ü ő ü ű ö ö ü ő í ú ö ó í ü ő ö ú ő í ő ő ő ö ú ú

Részletesebben

É Á Á Á Ö Á Á Á É É Á Á É É Á Á Á ő ő É É Á Á ő ú ő ö ú Á ú ő ü ő ö ő ö É Á É É Ú ú É Á Á Á Á Ú Ü É É Ü Ú É É Ö ú ü ű Á É É É Á Ú É É É É öú É É Á É Á ÁÉ ú Ú ö ü Á ő ő ő Ú ö É Á Á ő Ü É É Á Á Ó É É Ú ú

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

ö ű é é é é é ü é é ú É ü é é é ö ú ú é é é é é ű é ü ö é ű é é é é é ö éü ő é ú ö é é ű é ú é é ő é Á é ű é ö ű é é ú é é é é é é é é é é ö é é Á ö é

ö ű é é é é é ü é é ú É ü é é é ö ú ú é é é é é ű é ü ö é ű é é é é é ö éü ő é ú ö é é ű é ú é é ő é Á é ű é ö ű é é ú é é é é é é é é é é ö é é Á ö é Á Á ö Á É Á É Ú Á Á Á é é ú ü Á é ü ú é ú ö ü Á é ú é é é ú é é é ü ö ő ö ő ő é é ö é é ő é é é é ú ú é é é ő ő ű é é é é Á ú ö ö ö ö é ú é ü é ö ű é é é é é ü é é ú É ü é é é ö ú ú é é é é é ű é ü ö é

Részletesebben

ó í ó Í ó í É ö ó í ó ü ö ö ő í ö í ü ő ö ö ő ő ö ö ó ö ö ő ö ú ü ő ó í ó í ó ü ü ó ü ő ú í í ő ú ó í ü ö ö ö ó ó ö ö ö ő ö ü í ő ó ő ó ű ö ó Á ó ö í ó ö í ó ü í ó ü ó ü ö ü ő ő ó ű ü ú ö í ó ó ő ő ó

Részletesebben

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ú ű ű ú ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ö Ó ú Ü Ü Ó Ő ű ú ú Ö Ö ú ű ú ú ú ű ű ű Ú ú ű ú ű Ö Ő ú ú ú Ü ú ű ű ű ű ű ű Ü ú ű Ú ú ű ú ű ú ú ű ú ú ű ű ú Ö ú ű Ó ú ú ú Ü ű ú ú ú ű Ü ű

Részletesebben

ű ű ű Ú ű ű Ó ű Ó Ö

ű ű ű Ú ű ű Ó ű Ó Ö Ö Ú ű ű Ü ű ű Ú ű ű ű Ú ű ű Ó ű Ó Ö ű Ú Ü ű Ú ű ű ű Ú ű ű Ú Ú Ó Ü ű ű Ú Ú Ú Ú ű Ű ű Ó ű Ó Ó ű Ú Ó Ú Ü Ú Ó Ú Ú Ű ű Ö ű ű Ú Ö Ú ű Ö Ú Ö Ú ű ű Ó ű Ú ű ű ű Ö ű ű ű Ó ű ű Ú ű ű Ö ű Ú ű Ó ű Ü Ú Ó ű ű ű Ú Ú Ó

Részletesebben

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű Ü Ü ű ű ű Ü ű Ú ű Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű Ö ű ű Ú ű ű ű ű Ö Ú Ü ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ú ű Ü Ú Ú ű Ü ű ű Ö ű ű ű ű ű ű ű ű ű ű Ü ű ű Ű

Részletesebben

ű ű Ó

ű ű Ó ű ű ű Ó Ü Ü Ú Ö Ö ű Ó ű ű ű ű Ú Ú Ó ű Ó ű ű ű ű Ó ű Ú Ü Ü ű Ú ű ű Ó Ú Ö ű Ó Ü Ú Ó ű ű ű ű Ú Ó ű ű Ö Ú ű ű Ó ű Ó Ü Ö Ú Ö Ö ű ű Ü Ó Ó Ú Ó Ü Ó Ü Ő ű ű Ú ű ű ű ű ű Ó Ó ű ű ű ű Ú ű ű ű Ó Ú ű Ö ű Ó Ö Ú ű Ó Ú

Részletesebben

Ó

Ó Ó Ó Ú Ú Ü Ü Ü Ü Ű Ü ű Ü Ü Ö Ü Ü Ú Ü Ö Ő Ü Ú Ő Ö ű ű ű Ú Ú Ü Ü Ú Ú Ü ű Ü Ő ű Ö Ü Ü ű ű Ü Ü ű Ő ű Ú Ú Ö Ö Ő Ü ű Ü ű ű ű Ü ű Ő Ü Ú ű Ő Ó Ú Ö Ü Ú Ú ű Ü Ü Ü ű Ü ű ű ű Ú Ó ű Ü Ö Ú Ö Ö Ü Ú ű Ú ű Ü Ü Ü Ő ű Ú Ü

Részletesebben

Ó Ó ü ú ú

Ó Ó ü ú ú ü Ü ű Ó Ó ü ú Ó Ó ü ú ú Ó Ó ü ú ú ü Ü ü Ó Ó ú ü ű ü Ó Ó ü ú Ü Ü ü ü Ű Ű ú Ó ü ú ú Ó Ó ú Ö Ó Ó ú Ó Ó ú ü ü ü ü ü Ü Ó Ó ü ü ü ü ü ü Ó Ó ü Ü ú ü Ó Ó Ó Ü ű Ü ü ű Ü Ő Ő ü Ő ú ú ú ü Ó Ó ú Ó Ó Ó ű Ő Ő Ő Ő Ü ú

Részletesebben

Ú ó Ó Ú É Á Á É Á É Ó Í É Ö Í Ú ő ó ű é ó ó é é ö ö ő Ú ő ó Ú É Á é é é é ő ó ű é ő é ű é ó ű é é ő ó ű é é ö ö é ó é é é é é é é ó ű é é ű é ó é é é é é ú ű é é é ü é é é é ü ó é é é ö é Í ö ú ü ö ö é

Részletesebben

Ú ú ú Á ü ű ú ö ü ü ö ü ö ú ú ö ö ö ú ü ö ö ű ö ö Ü ö ú ü ú ö ö ü ö ö Í ö ö ü ö ü ö ö ö ú ö ű ö ú ú ú ö ö ö ü ú ü ü ú ü ö ü ú Á ú ö ö ü ú ú ű ú ö ö ö ö ö ü ö ú ü ü Ú ü ö ö ö Á ú ü ö ö ü ö ö ú ö ú ö ö ö

Részletesebben

úö ő Á É É Ó É ö ö ö ő ő Á ú ö ö ü ö ő Ó ő ő ú ú ö

úö ő Á É É Ó É ö ö ö ő ő Á ú ö ö ü ö ő Ó ő ő ú ú ö ö É É É Ó Á É Ő Á Á Á É Á É É ö Á É ö ű ö ú Á É Ó É Ó Á Á ő ű ő ő É úö ő Á É É Ó É ö ö ö ő ő Á ú ö ö ü ö ő Ó ő ő ú ú ö ü ő ü ő ö ő ú ő ö ú Á ö ú ö ő ő ő ö ú ő ő ő ö É ú ö ö ü ö ő ü ő ö ö ö ü ő ő ő ü ő

Részletesebben

Együttműködési ajánlat Kulturális intézmények a köznevelés eredményességéért EFOP Véglegesített pályázat 3.0 (Forrás:

Együttműködési ajánlat Kulturális intézmények a köznevelés eredményességéért EFOP Véglegesített pályázat 3.0 (Forrás: E g y ü t t m z k ö d é s i a j á n l a t K u l t u r á l i s i n t é z m é n y e k a k ö z n e v e l é s e r e d m é n y e s s é g é é r t E F O P - 3. 3. 2-1 6 V é g l e g e s í t e t t p á l y á z a

Részletesebben

FONTOSABB MATEMATIKAI JELEK, JELÖLÉSEK

FONTOSABB MATEMATIKAI JELEK, JELÖLÉSEK FONTOSABB MATEMATIKAI JELEK, JELÖLÉSEK. táblázat Szimbólum Jeletése, eve Olvasása Példa N N + Z Q Q * R C 0, { } +, % " $ Œ Ã, Õ» «\ +,, * :,, / = π := < > ª @ ~ Természetes számok halmaza Pozitív egész

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

ó ó É ö ó ó é á á ö ü ű ó ö ö ő é é é ű ó á é é é ű ó é á á é ö é í é á ő é á íí ó é á á í á ő é ü á ó ő á é ó é á á á ó é é ü ő ú é é ő ó ó ő á é é ő

ó ó É ö ó ó é á á ö ü ű ó ö ö ő é é é ű ó á é é é ű ó é á á é ö é í é á ő é á íí ó é á á í á ő é ü á ó ő á é ó é á á á ó é é ü ő ú é é ő ó ó ő á é é ő ó ó É ö ó ó á á ö ü ű ó ö ö ő ű ó á ű ó á á ö í á ő á íí ó á á í á ő ü á ó ő á ó á á á ó ü ő ú ő ó ó ő á ő ó á í ó í á á á ó ö í ö ö ö ö ó á ö ú ö á í á á í í ó ő á í á á ö í ü ö ó ó í á á ő á ő ü ő ö

Részletesebben

ó ü Á Ú ü í Ó ó ö Ú ö ü Ó Ó ő Íó í ő ú ő í ó ö Ö ö ö í ó ó Í ü ő ó ó Ó Ó Ó í Ó Í Ú Ó Ó í í í Ó ő Ö ü Ó Ö ű Ö ű ö ü Ó ő ü Ö í Ö Í ó Ó ó ö ü ü ö ó Ö Ó Ó

ó ü Á Ú ü í Ó ó ö Ú ö ü Ó Ó ő Íó í ő ú ő í ó ö Ö ö ö í ó ó Í ü ő ó ó Ó Ó Ó í Ó Í Ú Ó Ó í í í Ó ő Ö ü Ó Ö ű Ö ű ö ü Ó ő ü Ö í Ö Í ó Ó ó ö ü ü ö ó Ö Ó Ó ó í ó ő Í ó í ó ő Ó ő Ö ö ó ü Á Ú ü í Ó ó ö Ú ö ü Ó Ó ő Íó í ő ú ő í ó ö Ö ö ö í ó ó Í ü ő ó ó Ó Ó Ó í Ó Í Ú Ó Ó í í í Ó ő Ö ü Ó Ö ű Ö ű ö ü Ó ő ü Ö í Ö Í ó Ó ó ö ü ü ö ó Ö Ó Ó ü ó í ó Ö ö Ö Ó Ő Ö ü ü

Részletesebben

ó Ü ó ü ü ó í ö í ó í ö í ó ö ó ű ö ü í ó í ú ó ü í ö ö ö ö ó í í ö ü ö í ó ö ü ö í ó

ó Ü ó ü ü ó í ö í ó í ö í ó ö ó ű ö ü í ó í ú ó ü í ö ö ö ö ó í í ö ü ö í ó ö ü ö í ó ö ü ó ö ü ö ü ó ó ó ü ó í ü ö ö ü ö ö ö í ü ü í ó ú ö ó ó ü Ü í ó ü ö í ó ü ö ó Ü ó ü ü ó í ö í ó í ö í ó ö ó ű ö ü í ó í ú ó ü í ö ö ö ö ó í í ö ü ö í ó ö ü ö í ó ü ö ö ü ö ö ü ü í ö ü ö ö ű ö ö ö í í

Részletesebben

Fényelnyelés (Abszorbció) I o = I R + I T + I S + I A (R- reflexió; T- transzmisszió; S - szórás; A - abszorbció)

Fényelnyelés (Abszorbció) I o = I R + I T + I S + I A (R- reflexió; T- transzmisszió; S - szórás; A - abszorbció) ELTE II. Fizikus 2005/2006 I. félév z I o I t I r I a d KISÉRLETI FIZIKA Optika 11. (X. 18) I s Fényelnyelés (Abszorbció) I o = I R + I T + I S + I A (R- reflexió; T- transzmisszió; S - szórás; A - abszorbció)

Részletesebben

ő ő ú ő ó ó ú ő ő ó ő ó ó ú ú ú ü ó Ó ó ó ó ő ő ő ú ű ó ó ő ü ő ó óó ó ó

ő ő ú ő ó ó ú ő ő ó ő ó ó ú ú ú ü ó Ó ó ó ó ő ő ő ú ű ó ó ő ü ő ó óó ó ó ú É É ő ő ő ú ő ó ó ú ő ő ó ő ó ó ú ú ú ü ó Ó ó ó ó ő ő ő ú ű ó ó ő ü ő ó óó ó ó ü ó ú ő ó ő ú ő ő ú ó ó ó ű ü ő ó ó ő ő ó ő ő ü ó ó ó ó ő ó ő ő ő ü ő ó ó ű ó ő ü ü ő ó ó ő ő ő ő ú ó ü ő ó ő ó ú ő ó ü

Részletesebben

É Ö É É Ú ü É Ü É ü Ü ü

É Ö É É Ú ü É Ü É ü Ü ü É Ö É É Ú ü É Ü É ü Ü ü ü É ü ü ü ü Ü ü Ü Ü ü Ü ü ü ü ü ü ű ű ü ü ű ü ü ü ü ü ü Ü ü ű Ö ü ü Ö ű ü Ö ü ü ü Ö ü ü Ö ü ü Ö ü Öü Ú Ö ü ü Ö Ö ű ü ü ű ü ü Ö ü É ü ü ü É ű ü ü ü ü ü Ö ü ű ü Ö ü ü Ö ű ű ü ü ü

Részletesebben

ü ő ö ü ő ü ő í ü ő ű ü ő ü ő ö ü ő ö ö ü ő ű ö ü ő ü ö í ü ő ü í ü ő ü í ü ő ü ő ö ü ő í ő ö í í Ü í ó

ü ő ö ü ő ü ő í ü ő ű ü ő ü ő ö ü ő ö ö ü ő ű ö ü ő ü ö í ü ő ü í ü ő ü í ü ő ü ő ö ü ő í ő ö í í Ü í ó ö Ü Ó Á Á Ü ó í ü ő ö ü ő ü ő í ü ő ű ü ő ü ő ö ü ő ö ö ü ő ű ö ü ő ü ö í ü ő ü í ü ő ü í ü ő ü ő ö ü ő í ő ö í í Ü í ó ü ő ö ü ő í ő í ü ö ö ű ö ö ő ű ö ö őí ü ő ö ő ő ö ö ű ö Ü ü ő ő ö ö ű ö őí ű ö ö

Részletesebben

í á á á í á á á ő í ő ö ö ó ó á á ü á á ö í ó á á ö ű á ú á ü á ö á ő ő ő á á ő ő á á ő ő á ő á í á ó á í ó ó á í ó ö á ö í á í ő ö í ó ö í űö ű ó ö ü

í á á á í á á á ő í ő ö ö ó ó á á ü á á ö í ó á á ö ű á ú á ü á ö á ő ő ő á á ő ő á á ő ő á ő á í á ó á í ó ó á í ó ö á ö í á í ő ö í ó ö í űö ű ó ö ü í á á ó á á ó á ő á ő á ó á ő á á á ú ó á á á ú ó á á ó á á á á á á á á ú á á á á á á ó í á á Á á á Í á ű ö ő á á í á ö í á á á ó Ú á á ö ű ö á á á á á ö ö ó ű ö á ő ó á ó ő á á á ö ó ó í á ü ö á á ű ö

Részletesebben

= φ+ (ψ φ), ψ φ. φ = ψ

= φ+ (ψ φ), ψ φ. φ = ψ ÐÑÒØ Ò ½ ÐÐ ÔÔÐÕÙ Ð ÅÀ ÖÙØ ÅÖ ÅÊÌÁÆ ÖØÙÖ Ø º ÆÓÒ ÄÓÖØÓÖ Â¹ ÙÓÒÒ Æ ÂÓÙÖÒ ÆÊ ÆÅÇË ¼¹ ½ ÒÚÖ ¾¼½ ½»½ ËÓÑÑÖ ½ ÅÓÐ ØÓÒ ÔÝ ÕÙ ÔÐ Ñ ÅÀ ¾ ÐÑÒØ Ò ½ ÈÖ ÒØØÓÒ ÐÑÒØ Ò ½ ÐÐ ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÓÖÑÙÐØÓÒ Ð Ê

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

é í ź ü ź é ę í é ő ő é ö ü ő é ü é í é é é ö ű ö é ő é ö ó ó é é é ę é ö é ę é ź é é Í ź ö ó Á ó ź é é Í é ö é ó ó ó ő ź ó ź ź é é ó é ű ü í ó í ő ź

é í ź ü ź é ę í é ő ő é ö ü ő é ü é í é é é ö ű ö é ő é ö ó ó é é é ę é ö é ę é ź é é Í ź ö ó Á ó ź é é Í é ö é ó ó ó ő ź ó ź ź é é ó é ű ü í ó í ő ź ő ü ó é Ę ü é é ü é é ü é é é é é ö é ú ö é é é éő é é é í ő é í ő é ó í ő ő é ö é é ü é é é í ő ö đ é é ü é é é é é đ ő ü ő ę é ő ü ű đö é é é é ö é é ő ó ó ö é ó í ö ö ö í ö ö é ź é éí é đ é é ó ö ü

Részletesebben