= φ+ (ψ φ), ψ φ. φ = ψ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "= φ+ (ψ φ), ψ φ. φ = ψ"

Átírás

1 ÐÑÒØ Ò ½ ÐÐ ÔÔÐÕÙ Ð ÅÀ ÖÙØ ÅÖ ÅÊÌÁÆ ÖØÙÖ Ø º ÆÓÒ ÄÓÖØÓÖ Â¹ ÙÓÒÒ Æ ÂÓÙÖÒ ÆÊ ÆÅÇË ¼¹ ½ ÒÚÖ ¾¼½ ½»½

2 ËÓÑÑÖ ½ ÅÓÐ ØÓÒ ÔÝ ÕÙ ÔÐ Ñ ÅÀ ¾ ÐÑÒØ Ò ½ ÈÖ ÒØØÓÒ ÐÑÒØ Ò ½ ÐÐ ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÓÖÑÙÐØÓÒ Ð Ê ÙÐØØ ÒÙÑÖÕÙ ÓÒÐÙ ÓÒ Ø ÔÖ ÔØÚ ¾»½

3 ½ ÅÓÐ ØÓÒ ÔÝ ÕÙ ÔÐ Ñ ÅÀ ¾ ÐÑÒØ Ò ½ ÈÖ ÒØØÓÒ ÐÑÒØ Ò ½ ÐÐ ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÓÖÑÙÐØÓÒ Ð Ê ÙÐØØ ÒÙÑÖÕÙ ÓÒÐÙ ÓÒ Ø ÔÖ ÔØÚ ¾»½

4 Ä ÅÀ ÅÒØÓÝÖÓÝÒÑÕÙ ÅÀ ÅÒØÓÝÖÓÝÒÑÕÙµ Ý ØÑ ³ÕÙØÓÒ ÓÒ ÖÒØ Ð ÔÐ Ñ ÓÑÑ ÙÒ Ù Ó ÒØ ÙÜ ÐÓ ÓÒ ÖÚØÓÒ Ø ÐÓ ÅÜÛÐÐ Øρ+ (ρú) =¼, ØρÚ + (ρú Ú) =Â Ô π, ρ Ø + (ρú + ÔÚ) =( ) Ú Ú ( π)+ηâ ¾  =¼, (π : Ú +π : Ú + É), Ô γ ½ =ρ ½ ¾ ρú ¾, = Ø =µ ¼Â, =¼, + Ú =ηâ + ½ Ò (Â Ô π ). ½µ»½

5 Ä ÅÀ ÊÙØ ÝÔÓØ Ð ÅÀ ÖÙØ ÑÔ ÑÒØÕÙ ÔÙ ÒØ ÔÖÒÔÐÑÒØ ØÓÖÓÐ = φ+ (ψ φ), Ú =Ú Ò + Ú, =Ú Ò + Ê ¾ φ ϕ, ÓÙÖÒØ Â ÔÖÒÔÐÑÒØ ØÓÖÓÐ Â = ½ µ ¼ ψ φ φ = ψ µ ¼ ÝÔÓØ ÙÔÔÐÑÒØÖ ÔÓÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ Ð ÚØ ÔÖÐÐÐ Ø Ð ÔÖ ÓÒ ÓÒØ ÒÐ Ú Ò =¼, Ô =¼, Ð Ò Ø Ù ÔÐ Ñ ρ Ø ÓÑÓÒ»½

6 Ä ÅÀ ÊÙØ Ä ÙÖÖÒØ ÀÓÐ Ò Ð ÑÔÐ Ù ÝÐÒÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ³ÖØ ψ Ø = [ψ,ϕ]+η( φ ), ω Ø = [ω,ϕ]+[ψ, φ ]+ν ω, φ = ½ µ ¼ ψ, ω = ϕ, ¾µ Ú [.,.] ÖØÖ Ð ÖÓØ ÈÓ ÓÒ Ò ÔÖ [,] = ( ) φ = [,]. µ Ý ØÑ ÔÓÙÖÖØ ÖÖÖ Ú ¾ ÕÙØÓÒ ψ Ø = [ψ,ϕ]+η( ψ ψ ), ( ϕ) = [ ϕ,ϕ]+[ψ, ψ]+ν ( ϕ), Ø µ»½

7 ½ ÅÓÐ ØÓÒ ÔÝ ÕÙ ÔÐ Ñ ÅÀ ¾ ÐÑÒØ Ò ½ ÈÖ ÒØØÓÒ ÐÑÒØ Ò ½ ÐÐ ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÓÖÑÙÐØÓÒ Ð Ê ÙÐØØ ÒÙÑÖÕÙ ÓÒÐÙ ÓÒ Ø ÔÖ ÔØÚ»½

8 ÐÑÒØ Ò ½ ÐÐ ÇÒ Ö ÙÒ ÓÐÙØÓÒ Ò ÙÒ Ô ÑÒ ÓÒ Ò ØÐ ÕÙ ØØ ÓÐÙØÓÒ ÓØ ½ º ÈÓÙÖ Ö ÓÙÖ Ý ØÑ ÓÒ ÙØÐ Ð ÑØÓ ÐÑÒØ Ò Ú ÐÑÒØ Ò ½ ÐÐ ½ ¾ º Ä ÓÑÒ ³ØÙ Ω Ø ÖØ ÔÖ ÙÒ ÑÐÐ ØÖÒÙÐÖ ÖÙÐÖ τ Ü ½ Ü Ü +½ ÙÖ ÐÑÒØ τ ½º ú ÄÄ ÖÒ ØÖÒÙÐÖ ÔÐØ ÒÒ ÒØ ÐÑÒØ ÁÒØÖÒØÓÒÐ ÂÓÙÖÒÐ Ó ÒÙÑÖÐ ÑØÓ Ò ÒÒÖÒ ½ ¾º ź ÖÒÓÙ Ø Âº¹Åº Ó Ö ÙÖÚ ÒØ ÐÑÒØ Ó Ð ½ ÑÔÐÑÒØØÓÒ Ò ÒÙÑÖÐ ÜÔÖÑÒØ ÁÆÊÁ ÊÔÔÓÖØ ÖÖ ÒÖ¹¼¼¼ ½¾»½

9 ÐÑÒØ Ò ½ ÐÐ ÙÒ ÐÑÒØ τ Ø Ò ÔÖ ÔÓÒØ (Ü ½, Ü, Ü +½) Ü (Ü) = Ü λ (Ü) =½ P ω(ü) = ω ˇB ¼ (Ü)+ =½ =½ + + =½ =½ =½ ( D (Ü +½ Ü ) ( ) D (Ü ½ Ü ) ˇB, ½ ½ (Ü) ) ˇB,+½ ½ (Ü) ( H : ( ) ( ) Ü +½ Ü ½ Ü +½ Ü ½) ˇB ¾ (Ü), Ú ÔÓÙÖ ÒÓÒÒÙ ( ) Öω ω, D Üω Þω ( ¾ ÖÖ Ø H ω ¾ ω ) ÖÞ ÖÞω ¾ ÞÞω ¾ ¾ ω ÖÖ ¾ ω ÖÞ ÞÞω ¾»½

10 ÐÑÒØ Ò ½ ÐÐ Ð ÓÒØÓÒ ÓÒØ ˇB ¼ (Ü) [ =λ¾ λ ½λ ¾ + ½¼λ + ½(½+η +½)λ ¾ ½ λ +½ + ½(½ η ] ½)λ ½ λ¾ +½ [ ˇB, ½ ½ (Ü) =λ ½λ ¾ λ ¾ + λ + λ ¾ +½ + +½η ] +½ λ λ ½ +½ ¾ [ ˇB,+½ ½ (Ü) =λ¾λ +½ λ ¾ + λ + λ ¾ ½ + ½η ] ½ λ λ ½ +½ ¾ ˇB, ½ ¾ (Ü) = ½ [ ¾ λ¾λ +½ λ ¾ +λ +λ ¾ ½ + ½η ] ½ λ λ ½ +½ ˇB,+½ ¾ (Ü) = ½ [ λ ½λ ¾ λ ¾ +λ +λ ¾ +½ + +½η ] +½ λ λ ½ +½ ¾ ˇB ¾, (Ü) = ½ ¾ λ ½ λ¾ λ +½ Ä ÓÓÖÓÒÒ ÖÝÒØÖÕÙ λ Ø гÜÒØÖØ η ÓÒØ Ò ÔÖ λ (Ü) = (Ü Ü +½) (Ü ½ Ü +½) Þ (Ü Ü +½) (Ü ½ Ü +½) Þ Ò η = Ü +½ Ü ¾ Ü ½ Ü ¾ Ü ½ Ü +½ ¾»½

11 ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÑØ ÔÓÙÖ ÓÒØÓÒ ÒØÐ { ϕ(¼, Ü) = ω(¼, Ü) = ¼, Ü Ω. ψ(¼, Ü) = Â(¼, Ü) = Â (Ü), µ Ø ÔÓÙÖ ÓÒØÓÒ ÓÖ ψ(ø, Ü) =¼ Ò ψ(ø, Ü) =¼ ¾ Ò Ò ψ(ø, Ü) =¼, Ü Ω, Ø [¼, Ì ], µ Ó Ò Ø Ð ÒÓÖÑÐ ØÒÒØÐÐ Ù ÓÖ Ù ÓÑÒ Ω Ø Ð ÓÖ Ù ÓÑÒ Ω Ø Ì Ø Ð ØÑÔ ÒÐ ÑÙÐØÓÒ»½

12 ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÈÓÙÖ Ö ÓÙÖ Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÓÒ ÔÓ Ð ÚØÙÖ Ï ÓÒØÒÒØ Ð ÚÖÐ Ï Ò = (ψ Ò,ϕ Ò, Â Ò,ω Ò ) Ø ÔÖ ÜØÒ ÓÒ Ï Ò+½ Ï Ò = (δψ,δϕ,δâ,δω) ØÐ ÕÙ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÖÖØ δψ δø = +αδψ,ϕ Ò +βδϕ]+η(â Ò +γδâ Â ), [ψò δω δø = +λδω,ϕ Ò +βδϕ]+[ψ Ò +αδψ, Â Ò +γδâ]+ν (ω Ò +λδω), [ωò δâ = (δψ), δω = (δϕ), µ ½¼»½

13 ÓÖÑÙÐØÓÒ Ð Ù Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÇÒ ÑÙÐØÔÐ ÙÒ ÕÙØÓÒ Ý ØÑ ÔÖ ÙÒ ÓÒØÓÒ Ø Ø B Î Ø ÓÒ ÒØÖ ÙÖ Ð ÓÑÒ Ω δψ,δψ]b β[ψ Ò,δϕ]B γηδâbω = [ψ Ò,ϕ Ò ]B+η(Â Ò Â )BΩ. Ω Ø B+α[ϕÒ Ω µ Ë ÓÒ ÓÒ Ö Ð ÚÖÐ Ý ØÑ Ò Ð ÑÑ Ô ³ÔÔÖÓÜÑØÓÒ Î ψ =ψ B, ψ Ò =ψ B Ò, µ ( ψ B ) ( B Ò Ñ = B Ñ B ) ψ. Ò ØØ ÕÙØÓÒ µ Ö ÙÑ ÓÒ (B δψ B ) δψ [B,B Ω Ø +αϕò ]B βψδϕ Ò [B,B ]B γη(b B )δâ Ω = ψϕ Ò Ò [B,B ]B +η(b B )(Â Ò Â ) Ω. Ω ½¼µ ½½»½

14 ½ ÅÓÐ ØÓÒ ÔÝ ÕÙ ÔÐ Ñ ÅÀ ¾ ÐÑÒØ Ò ½ ÈÖ ÒØØÓÒ ÐÑÒØ Ò ½ ÐÐ ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÓÖÑÙÐØÓÒ Ð Ê ÙÐØØ ÒÙÑÖÕÙ ÓÒÐÙ ÓÒ Ø ÔÖ ÔØÚ ½½»½

15 Ø Ø Ù ÙÖÖÒØ ÓÐ Ä ÙÖÖÒØ ÓÐ Ø ÙÒ ÕÙÐÖ Ò ØÐ ÓØÒÙ ÔÖØÖ ÕÙØÓÒ Ð ÅÀ ÖÙØ Ö ØÚ ÔÒÒØ Ù ØÑÔ º ÈÓÙÖ Ø Ø ÓÒ ÔÖ Ð Ú Ó Ø ν = ½¼ Ø Ð Ö ØÚØ η = ½¼ º Ä ÓÙÖÒØ ³ÒØÖ Â Ø ØÐ ÕÙ Â = ½(½ Ö ) ¾(½ Ö ¾ ) Ú ½ = ¼.¾ Ø ¾ = ¼.¾. ½½µ ÙÖ ÓÙÖÒØ ³ÒØÖ Â Ä ÓÑÒ Ø Ø Ω Ø ÙÒ ÖÐ ÒØÖ (¼, ¼) Ø ÖÝÓÒ ½º ½¾»½

16 Ø Ø Ù ÙÖÖÒØ ÓÐ ÙÖ Ò Ø ÓÙÖÒØ Â ½»½

17 Ø Ø Ù ÙÖÖÒØ ÓÐ ÙÖ ÈÓØÒØÐ ÚØ ϕ ½»½

18 Ø Ø Ù ÙÖÖÒØ ÓÐ Ç ÖÚØÓÒ Ò ØÐØ Ò ÒØ ÙÖ Ð ÖÔÕÙ ÔÖ ÒØÒØ гÒÖ ÒØÕÙº ÙÖ ÒÖ ÒØÕÙ Ò ÓÒØÓÒ Ù ØÑÔ Ú Ð ÐÑÒØ ÐÐ ½»½

19 ½ ÅÓÐ ØÓÒ ÔÝ ÕÙ ÔÐ Ñ ÅÀ ¾ ÐÑÒØ Ò ½ ÈÖ ÒØØÓÒ ÐÑÒØ Ò ½ ÐÐ ÔÔÐØÓÒ ÙÖ Ð Ý ØÑ Ù ÙÖÖÒØ ÀÓÐ ÓÖÑÙÐØÓÒ Ð Ê ÙÐØØ ÒÙÑÖÕÙ ÓÒÐÙ ÓÒ Ø ÔÖ ÔØÚ ½»½

20 ÓÒÐÙ ÓÒ Ø ÔÖ ÔØÚ ÈÖ ÔØÚ ÍØÐ ØÓÒ ÐÑÒØ Ò ÐÐ ÔÓÙÖ ÑÓÐ ÔÐÙ ÓÑÔÐØ Ù ÕÙ³Ù ÑÓÐ ÙÐйÅÀºººº ÍØÐ ØÓÒ ÐÑÒØ ½ ÈÓÛÐйËÒ ½»½

21 ÅÖ ÚÓØÖ ØØÒØÓÒ ½»½

X 1 (x i ) º. X 1 (], b]) º. ], a 1 ], ]a 1, a 2 ],...,]a p 1, a p ], ]a p, + ], j=1. i i

X 1 (x i ) º. X 1 (], b]) º. ], a 1 ], ]a 1, a 2 ],...,]a p 1, a p ], ]a p, + ], j=1. i i ÈÖÓ Ð Ø Ô ØÖ Ð Ñ ÒØ Ø Ø Ø ÕÙ ÙØ ü Ô ÖØ Ö ÓÒÒ ÖÙØ ÕÙ Ð Ø Ø Ú ÒÓÒ Ö µ ÓÙ ÕÙ ÒØ Ø Ø Ú Ö µ Ò Ö Ô Ö Ñ ØÖ Ô ÖÑ ØØ ÒØ ÖÒ Ö Ù ÔÖ Ñ Ö ÓÙÔ ³ Ð Ð Ø Ò Ò Ò Ö Ð Ð ÔÓÔÙÐ Ø ÓÒ ØÙ Ö ÔÖ ÒØ Ø ÓÒ Ö Ô ÕÙ ÓÖ Ö Ö Ò ÙÖ ÑÓÝ ÒÒ

Részletesebben

À Ì ÒØ Ö ÖÓÑ ØÖ ÞÒ Ð Ø Ò Þ ÓÒ Þ Ò Ã Ö Å Ò Þ Ù ÅË ½º Ú ÓÐÝ Ñ ¾¼½½º Ó Ø Ö ½ º

À Ì ÒØ Ö ÖÓÑ ØÖ ÞÒ Ð Ø Ò Þ ÓÒ Þ Ò Ã Ö Å Ò Þ Ù ÅË ½º Ú ÓÐÝ Ñ ¾¼½½º Ó Ø Ö ½ º À Ì ÒØ Ö ÖÓÑ ØÖ ÞÒ Ð Ø Ò Þ ÓÒ Þ Ò Ã Ö Å Ò Þ Ù ÅË ½º Ú ÓÐÝ Ñ ¾¼½½º Ó Ø Ö ½ º ÞØÖÓ Þ Ö Ø ½ º ÊÓ ÖØ À Ò ÙÖÝ ÖÓÛÒ Ê Ö Éº ÌÛ Ø Ø Ó Ò Û ØÝÔ Ó Ø ÐÐ Ö ÒØ Ö ÖÓÑ Ø Ö ÓÒ Ë Ö Ù Ã Ø ÓØÓ Ð ØÖÓÒ¹ Ó ÞÓÖÓÞ Ø ØÓÖ ÝÑ Ø Ð

Részletesebben

Ð ØÖÓÑ Ò Ø Ö ÎÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º Ð Ù º

Ð ØÖÓÑ Ò Ø Ö ÎÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º Ð Ù º Ð ØÖÓÑ Ò Ø Ö ÎÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º Ð Ù º ÓÒØ ØÔÓØ Ò Ð ÓÒØ عÔÓØ Ò Ð Ð Ò Ú Ø Þ ÔÔ Ò Ø ÖÓÞ Ø Ñ Í ½ ¾ = Ï ¾ Ï ½ Å Ú Ð Þ Þ ÐØ Ñ Ð Ð Ø Þ Ð Ò Ð Ú Ð ØÖÓÒÓ Ö ÚÓÒ Ø ÓÞ ÞØ ÎÓÐØ ¹

Részletesebben

ØÔ ÐÙ ØÔ ÐÙ Ø Ú Þ Ø Ð Ö Ò Ð Þ Ð Þ ØÖ Þ ¾¹¾½º Ö µº Ä Ø Ý ØÐ Ò Ð Ñ Ôк ÐÐ Ò ÐÐ Ú Ý Ø Ð Ô Ø ºµ Ð Ø Ó Ð Ñ Ð Ð Ô Ð Ô ÓÐ º Þ Ð Ø Ð Ñ Þ ÙØ Ø Þ Ø ØØ ØÔ ÐÙ Ò Ò

ØÔ ÐÙ ØÔ ÐÙ Ø Ú Þ Ø Ð Ö Ò Ð Þ Ð Þ ØÖ Þ ¾¹¾½º Ö µº Ä Ø Ý ØÐ Ò Ð Ñ Ôк ÐÐ Ò ÐÐ Ú Ý Ø Ð Ô Ø ºµ Ð Ø Ó Ð Ñ Ð Ð Ô Ð Ô ÓÐ º Þ Ð Ø Ð Ñ Þ ÙØ Ø Þ Ø ØØ ØÔ ÐÙ Ò Ò Ä ÃÌÊÇ ÁÆ ÅÁÃ Ý Ò Ö Ñ Ð Þ ØÓ º ØÔ ÐÙ ØÔ ÐÙ Ø Ú Þ Ø Ð Ö Ò Ð Þ Ð Þ ØÖ Þ ¾¹¾½º Ö µº Ä Ø Ý ØÐ Ò Ð Ñ Ôк ÐÐ Ò ÐÐ Ú Ý Ø Ð Ô Ø ºµ Ð Ø Ó Ð Ñ Ð Ð Ô Ð Ô ÓÐ º Þ Ð Ø Ð Ñ Þ ÙØ Ø Þ Ø ØØ ØÔ ÐÙ Ò Ò Ú ÞÞ º Ø Ú ØÔ ÐÙ Ú

Részletesebben

Ð ØÖÓÑ Ò Ø Ö ÎÁÁÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¼½ º ÒÓÚ Ñ Ö º ÍÐØÖ Ö Ú ¹ ÒÝ ÑÔÙÐÞÙ Ó Ð ÐÐ Ø Þ Ð Ð Þ Ö ÑÓÒ ØÖ Å Ñ Ò ÖÙ ÒÐ Þ Ö ½ ¼ ÁÑÔÙÐÞÙ Ó Þ ÒØ ¹ Ô Ò ½¼¼ Ò ½ Ò ½¼ µ ¹ ɹ Ô ÓÐ ½ ½¹ µ ½¼

Részletesebben

ËÔ ÑÊ Ò À ÓÒÐ Ö ÆÝ ÐÚÑÓ ÐÐ Ã Ö ÐÑ ËÙÑÑ ÖÝ Ï Ô Ñ ÞòÖ Ñ Þ Ö ÐÓ ÒÝ Ã ÖÓÐÝ ÄÌ ÁÃ ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÅÌ Ë Ì ÃÁ ÁÒ ÓÖÑ Ø ÃÙØ Ø Ð ÓÖ Ø Ö ÙÑ Ì Ñ Ú Þ Ø º ÒÞ Ö

ËÔ ÑÊ Ò À ÓÒÐ Ö ÆÝ ÐÚÑÓ ÐÐ Ã Ö ÐÑ ËÙÑÑ ÖÝ Ï Ô Ñ ÞòÖ Ñ Þ Ö ÐÓ ÒÝ Ã ÖÓÐÝ ÄÌ Áà ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÅÌ Ë Ì ÃÁ ÁÒ ÓÖÑ Ø ÃÙØ Ø Ð ÓÖ Ø Ö ÙÑ Ì Ñ Ú Þ Ø º ÒÞ Ö ÐÓ ÒÝ Ã ÖÓÐÝ ÄÌ Áà ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÅÌ Ë Ì ÃÁ ÁÒ ÓÖÑ Ø ÃÙØ Ø Ð ÓÖ Ø Ö ÙÑ Ì Ñ Ú Þ Ø º ÒÞ Ö Ò Ö ¾¼½¼º Ò Ù º Ì ÖØ ÐÓÑ ÝÞ Ú Þ Ø Ä Ò Ô Ñ Ð Ñ Ö ËÔ ÑÊ Ò Ð Ö Ð À Ú Ø ÓÞ Ð Ô ÓÒÐ Ö Ð Ô Ð Þ ØÓÖ¹ ÓÑ Ò ÆÝ ÐÚÑÓ ÐÐ

Részletesebben

Å ÖÓ ÓÒÓÑ Ø Ð ØÝ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ º Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ ÂÙÒ ½¾ ¾¼¼ ½

Å ÖÓ ÓÒÓÑ Ø Ð ØÝ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ º Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ ÂÙÒ ½¾ ¾¼¼ ½ Å ÖÓ ÓÒÓÑ Ø Ð ØÝ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ º Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ ÂÙÒ ½¾ ¾¼¼ ½ Ì Ú Û ÜÔÖ ÓÒ Ø Ø Ö ÑÝ ÓÛÒ Ò Ó ÒÓØ Ò Ö ÐÝ Ö ÔÖ ÒØ Ø

Részletesebben

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ ÆÝ ØÖ Ý Ö ÐÝ È µ ÈÌ ÈÅÅÁÃ ¾¼½ º ÒÙ Ö º Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ Ø Ö Ý ÐÓ ÞØ Ð Þ Ù Þ Å Ò Ì ÖÑÓ Ò Ñ Ð ØÖÓ Ò Ñ ÇÔØ

Részletesebben

½º Å rot H = 0, H t2 H t1 = 0 H t2 = H t1, ¾º Å div D = ρ D n2 D n1 = η. º Å rot E = 0 E t2 E t1 = 0, º Å div B = 0 B n2 B n1 = 0.

½º Å rot H = 0, H t2 H t1 = 0 H t2 = H t1, ¾º Å div D = ρ D n2 D n1 = η. º Å rot E = 0 E t2 E t1 = 0, º Å div B = 0 B n2 B n1 = 0. Ä ÃÌÊÇ ÁÆ ÅÁà º Ð µ Ð ØÖÓ ÞØ Ø ÆÝÙ Ú Ø ÐØ Ò ÐÐ Ò Ð ØÖÓÑÓ Ø Ö º ½º Å Ò Ò Þ Ñ ÒÒÝ ÐÐ Ò Þ Òº ¾º Ø ÐØ Ò Ñ ÑÓÞÓ Ò Ø Ø v = 0 ØÓÚ Ò Ò Ö Ñ J = 0º Å ÜÛ ÐÐ Þ ÒÝ Ý ÒÐ Ø Ú Ø Þ ÓÖÑ Ø ÐØ ½º Å rot H = 0, H t2 H t1 =

Részletesebben

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ ÆÝ ØÖ Ý Ö ÐÝ È µ ÈÌ ÈÅÅÁÃ ¾¼½ º ÒÙ Ö ½ º Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ Ø Ö Ý ÐÓ ÞØ Ð Þ Ù Þ Å Ò Ì ÖÑÓ Ò Ñ Ð ØÖÓ Ò Ñ ÇÔØ

Részletesebben

Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Ð ÓÒØÓ ÐÐ ÑÞ Ó Ý Ð Þ Ó Ú Ò¹ Ò Þ Ö Ñ Ö Òº Èк Ý ØÐ Ò Ø Ð ÔÖ Ø ÞÞ Ð ÑÔ Ø Ô ÓÐÙÒ ¾¹½½º Ö µ Ú Ý Ï Ø ØÓÒ ¹ ¾¹

Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Ð ÓÒØÓ ÐÐ ÑÞ Ó Ý Ð Þ Ó Ú Ò¹ Ò Þ Ö Ñ Ö Òº Èк Ý ØÐ Ò Ø Ð ÔÖ Ø ÞÞ Ð ÑÔ Ø Ô ÓÐÙÒ ¾¹½½º Ö µ Ú Ý Ï Ø ØÓÒ ¹ ¾¹ Ä ÃÌÊÇ ÁÆ ÅÁÃ Ý Ò Ö Ñ Ð Þ ØÓ ¾º Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Ð ÓÒØÓ ÐÐ ÑÞ Ó Ý Ð Þ Ó Ú Ò¹ Ò Þ Ö Ñ Ö Òº Èк Ý ØÐ Ò Ø Ð ÔÖ Ø ÞÞ Ð ÑÔ Ø Ô ÓÐÙÒ ¾¹½½º Ö µ Ú Ý Ï Ø ØÓÒ ¹ ¾¹½¾º Ö µº Þ ÙØ Ø ÐÐ

Részletesebben

f ij = f i. f.j Ö f 11 = 49 f 12 = 64 f 13 = 84 f 1. = 197

f ij = f i. f.j Ö f 11 = 49 f 12 = 64 f 13 = 84 f 1. = 197 Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾ ¾º ÞÓ ¾ º Ê Ò ÓÖÖ Ð º Î Ý Ô ÓÐ Ø º ÃÓÖÖ Ð Þ Ñ Ø º Ê Ö Þ Þ Ñ Ø º½º ÝÚ ÐØÓÞ Ö Ö Þ º º º º º º º º º º º º º º º º º º º º º º º º º½º½º Ð Ò ÝÞ Ø Ñ Þ Ö º º º º º º º º º º º º º º º½º¾º

Részletesebben

rot H = j, 1. div D = ρ, 2. rot E = 0, 3. div B = 0. 4.

rot H = j, 1. div D = ρ, 2. rot E = 0, 3. div B = 0. 4. Ä ÃÌÊÇ ÁÆ ÅÁà º Ð µ ËØ ÓÒ Ö Ù Ö ÑÓ I = j df. F, Ò Ö Þ Ò Ú Þ Ø Ö ÑÑ Ð Ó Ð Ð ÓÞÙÒ ÓÒ Ù Ø Ú Ö Ñµº Å ÜÛ Ðй Ý ÒÐ Ø Þ Ð Ð Ò ÖÚ ÒÝ rot H = j, 1. div D = ρ, 2. rot E = 0, 3. div B = 0. 4. à РØÒ Ó Ù Ó Ý Þ ½º

Részletesebben

Ψ = α 0 > +β 1 > ØÓÚ α 2 + β 2 = 1. Ψ = cos θ 2 0 > +eiϕ sin θ 2 1 >

Ψ = α 0 > +β 1 > ØÓÚ α 2 + β 2 = 1. Ψ = cos θ 2 0 > +eiϕ sin θ 2 1 > ÃÚ ÒØÙÑ Ò ÓÖÑ Ø Ð Ô Ó ÐÑ ØØÔ»» ØÔº ØÓÑ º Ù»ÀÇÅ ¹È»Ð ØÙÖ» Ú Ò ºÔ Ø Ù Ø ÙÐÐ Ñ Ú ÒÝ Þ ÓÑÐ ýðð ÔÓØÓ Þ ÓÒ ÃÚ ÒØÙÑÐÓ ÔÙ ÃÚ ÒØÙÑØ Ð ÔÓÖØ Ë Ö ÓÐ ÃÚ ÒØÙÑ Ö ÔØÓ Ö ÃÚ ÒØÙÑ Þ Ñ Ø Ô ½ Ø ÃÙ Ø Ø Ø ÐÐ ÔÓØ Ð Þ Ù Ö Ò Þ

Részletesebben

ÍÅÄ Ð ØÓ

ÍÅÄ Ð ØÓ ÍÅÄ Ð ØÓ ÄÌ Áà ÈÓÖ Ö ÑÓÞ ÐÑ Ð Ø ÞÓ ØÚ ÖØ ÒÓÐ Ì Ò Þ Ç Ø Ø ÒÝ ½º Ú Þ Ø ½º½º Ð Ø ý Ö ÞÓÐ Ù Ý Ö Ñ Ò Þ Ð ÓÖÓ Ú Ö Ø ÙØ Ò Ð ØÖ Ú Ó ¹ ØÙÑÓ Ø ØØ Ð Ý ØØ Ø ÒØ Ð Þ Ó ØÙÑÓ Þ ØØ Ô¹ ÓÐ ØÓ Ø ØÓÐÓ Ö Ø Ö Ø ½¼¼ µ ØÓÐÓ Ú

Részletesebben

(rot. j n df. Hd s = F. H) n df = F. j n df = n j n df, Hd s = ni.

(rot. j n df. Hd s = F. H) n df = F. j n df = n j n df, Hd s = ni. Ä ÃÌÊÇ ÁÆ ÅÁà ½¼º Ð µ Ø Ö Ñ Ò Ø Ö Î Ý Ò Ý Ó Þ Ö ÞØÑ Ø Þ Øò Ø Ö Øº I Ñ Ò Ø Ö Ø ÒØ Ö ÑÙØ Ø º Ñ Ò Ø Ö Ø Ö Ò Ú Ð Ý Ò Ø Ö Ð Ò Ô Þ Ð Ø Ð ÐÐ Ò ÓÑÓ ÒÒ Ø ÒØ¹ Ø º À Ø ÖÓÞÞÙ Ñ Ø Ö Ö Ø Ø Ö Ð Òº ÁÒØ Ö Ð Ù rot H = j,

Részletesebben

t = 0 R i L i s i s + u v 3R + u v u u v = 3u 4 + 3R 4 i s R = 0 u Li L R u = 4R 3 i L +R i s = i L i L + u 2R + u u v dt = 7R 3L i L + R L i s

t = 0 R i L i s i s + u v 3R + u v u u v = 3u 4 + 3R 4 i s R = 0 u Li L R u = 4R 3 i L +R i s = i L i L + u 2R + u u v dt = 7R 3L i L + R L i s ÒÐÓØØ Ð ØÓ º Ø Ý ÓÖÐ Ø Ö ýðð ÔÓØÚ ÐØÓÞ Ð Ö Ñ ÓÐ Þ Ø Ú Ö ÓÒØ Ð ½º Þ Ö Ò Ð Ø Ø Ð Þ Ø Ò Ô ÓÐ Ø ¼ Ô ÐÐ Ò Ø ÒÝ ØÚ Ú Òº Ô ÓÐ Ø Ø ¼¹ Ò Þ Ö Ù º Ú Ð Þ Ð ÐØ Ù Þ ÐØ º º À Ø ÖÓÞÞÙ Ñ Ô ÓÐ Þ ÖØ ÐÐ Ò Ð Ð Þ Ø ÐÐ ÔÓØÚ

Részletesebben

Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ ÒÝ Ú ÒÝ Þ Ù Þ ÈÖÓ Ö ÑÓ Þ Ó Ð Ð

Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ ÒÝ Ú ÒÝ Þ Ù Þ ÈÖÓ Ö ÑÓ Þ Ó Ð Ð ÃÓÑÔÐ Ü Ú ÒÝ Þ Ò Ö ÞÓÐ Ä Ä Ú ÒØ ÄÌ ÁÃ Å ÓÐ ¾¼¼ º ÔÖ Ð ¾ º ÇÌ Ã ÃÓÒ Ö Ò Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ ÒÝ Ú ÒÝ Þ Ù Þ ÈÖÓ Ö ÑÓ Þ Ó Ð Ð Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ

Részletesebben

D = ǫ0 ǫ r. ½º Å rot H = j + ρ v + D. rot H = j + ρ v + ǫ 0 ǫ r. Erot H = E j Eρ v Eǫ 0 ǫ r. ρ( v, E) = Erot H Hrot E ( j, E) ǫ 0 ǫ r

D = ǫ0 ǫ r. ½º Å rot H = j + ρ v + D. rot H = j + ρ v + ǫ 0 ǫ r. Erot H = E j Eρ v Eǫ 0 ǫ r. ρ( v, E) = Erot H Hrot E ( j, E) ǫ 0 ǫ r Ä ÃÌÊÇ ÁÆ ÅÁà º Ð µ Þ Ð ØÖÓÑ Ò Ø Ö Ò Ö Î Þ Ð Ù Þ Ð ØÖÓÑ Ò Ø Ö Ø ÓÑÓ Ò ÞÓØÖ Ô Þ Ø Ð Òº ǫ, µ, σ ÐÐ Ò º ÓÖ ½º Å rot H = j + ρ v + D t, ½³º Å rot H = j + ρ v + ǫ 0 ǫ r E t. º Å rot E = B t ³º Å rot E = µ 0

Részletesebben

Ú Þ Ø Þ Ô Ð Ò Þ Ú Ñ Ò ÞÔÓÒØ Þ ¹ Ö Ô Ø Ø ÞÓØØ Þ Ð Ö Ú Þ Ð ØÓ Òº ËÞ ÑÐ Ð Ø Ò Þ ÐÚ Þ Ú ÐØÓÞ Ð ÑòÚ Ð Ø Ð Ð Ð Ô Ø ØØ ÓÐÝ Ò Ð¹ ÓÖÓÞ ØÓ Ñ ÐÝ ÓØØ Ø ÔÙ Ð Ö Ø Ò

Ú Þ Ø Þ Ô Ð Ò Þ Ú Ñ Ò ÞÔÓÒØ Þ ¹ Ö Ô Ø Ø ÞÓØØ Þ Ð Ö Ú Þ Ð ØÓ Òº ËÞ ÑÐ Ð Ø Ò Þ ÐÚ Þ Ú ÐØÓÞ Ð ÑòÚ Ð Ø Ð Ð Ð Ô Ø ØØ ÓÐÝ Ò Ð¹ ÓÖÓÞ ØÓ Ñ ÐÝ ÓØØ Ø ÔÙ Ð Ö Ø Ò Ó ØÓÖ ÖØ Þ Ø Þ ÃÓÑ Ò ØÓÖ Ù Ø Ð Ò 0¹ Ý Þ Öò Ð ÓÔÓÖØÓ Þ Ô ØÖÙÑ Ã Ø ¹ÍÖ Ò Ã Ñ ÐÐ Ì Ñ Ú Þ Ø Öº Å Ý Ä ÞÐ Ý Ø Ñ Ó Ò Öº ËÞ Ý Ø Ñ Ó Ò Å Ø Ñ Ø ¹ ËÞ Ñ Ø ØÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÓÐÝ ÁÒØ Þ Ø ¾¼¼ Ú Þ

Részletesebben

E0 sin ωt, D = ǫ. σ ν2πǫ, ǫ 1, σ ( ) 1 s.

E0 sin ωt, D = ǫ. σ ν2πǫ, ǫ 1, σ ( ) 1 s. Ä ÃÌÊÇ ÁÆ ÅÁà ½½º Ð µ E = E0 sin ωt, D = ǫ E, D t = ωǫ E 0 cosωt = ν2πǫ E 0 cosωt, j = σe = σe0 sin ωt, j D t max = max σ ν2πǫ, ǫ 1, σ (10 16 10 17 ) 1 s. Þ Ð ØÖÓØ Ò Ò Ð ÓÖ ÙÐ Þ Ö Ú Ò Ö ÒØ ÒÝ Ó σ 1 νπǫ

Részletesebben

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Á Ñ Ö ØÐ Ò ÒÝ Ó Ò Ð Þ ½º Ð Ú Þ Ð ØÓ ¾º Þ ÒÝ Ó ÓÐ ÐØ Ö ÖÓÒ ÓÐ µ º Ý Þ Öò ÒÝ Ó ÞÓÒÓ Ø º Þ Ø ØØ Ò Ð Þ Ö ÞÐ ÐÚ Ð ÞØ Ó º Þ Ø ØØ Ò Ð Þ ÓÔÓÖØÖ Ø Ú Ð Ôº ¾ Ð Ú Þ Ð ØÓ

Részletesebben

¹ÐÓ Ó ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¾¼¼ º½¾º½½º ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø

¹ÐÓ Ó ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¾¼¼ º½¾º½½º ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø ¾¼¼ º½¾º½½º Ì ÖØ ÐÓÑ Æ ÒÝ Ó ÐÓÑ Ð Ð Ô Ö ÓÐ Ñ Ú Ð Ø Ð¹ Ô Ö ÓÐ Ô ÓÐ Ø Þ Ö Ø Ù Ú Ð Þ Òò Þ ØØ Æ ÒÝ Ó ÐÓÑ Ð Ð º = (Î, ) Ö ÓÐ Î Ó Ñ Þ Ð ÐÑ Þ Ø Ð Ð º È Ð ÙÐ L = (Z,E ) Ü,Ý Z Ó = Ü,Ý E Þ Ü¹ Ø Ý ¹Ø Þ Ø Ðº ÐÔ Ö

Részletesebben

ÓÑ Ã Ø Ð ÔÚØ Ó ÐÓÑ Þ Ð Ü Ò Ö ÔÓÐ ÒÓÑ ÐÓ Ö ÓÑÓÐ ÃÓÑ Ò ØÓÖ Ù Ñ Þ Ö Ð ÓÑ ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò ØÓÖ ËØ Ô Þ Ò Ö Ê ÒÝ Ð Ö Å Ø Ñ Ø ÃÙØ Ø ÒØ Þ Ø ¾¼¼

ÓÑ Ã Ø Ð ÔÚØ Ó ÐÓÑ Þ Ð Ü Ò Ö ÔÓÐ ÒÓÑ ÐÓ Ö ÓÑÓÐ ÃÓÑ Ò ØÓÖ Ù Ñ Þ Ö Ð ÓÑ ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò ØÓÖ ËØ Ô Þ Ò Ö Ê ÒÝ Ð Ö Å Ø Ñ Ø ÃÙØ Ø ÒØ Þ Ø ¾¼¼ ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò ØÓÖ Ê ÒÝ Ð Ö Å Ø Ñ Ø ÃÙØ Ø ÒØ Þ Ø ¾¼¼ º ÒÓÚ Ñ Ö ¾ º ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò Ê Ñ Ø Ö ÑÓÞ Ó Þ Ë ½ ÖÚÓÒ Ð Ê Ú Ð Ö Ò Ð Ø Ý Þ Ø Ò Ú ÞÞ ÓÑ Ò º Ã ½ Ã ¾ ÓÑ ÞÓÒÓ ÝÑ ÑÓÞ Ø Ø

Részletesebben

e = ρ( r )dv. N = D n df.

e = ρ( r )dv. N = D n df. Ä ÃÌÊÇ ÁÆ ÅÁà ŠÜÛ Ðй Ý ÒÐ Ø ¾º Ð µ Å ÜÛ Ðй Ý ÒÐ Ø Þ Ð ØÖÓÑ Ò Ø Ö Ø Ò Ý Ú ØÓÖØ ÖÖ Ð ÐÐ Ñ ÞÞ E, D, H Bº ÐÝÒ Þ Ò Ú ÒÝ º Ø Ö Þ Ð Ú ÐØÓÞ Ù Ø Ñ Ø ÖÓÞÓØØ Þ Ø ÖÚ ÒÝ Þ ÐÝÓÞÞ º Þ Ø ÖÚ ÒÝ Ø Ñ Ø Ñ Ø Ý ÒÐ Ø Ð Ò

Részletesebben

) ξi (t i t i j i

) ξi (t i t i j i Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ ÁÒ ÓÖÑ Ø Ã Ö Å Ø Ñ Ø ¹ ËÞ Ñ Ø ØÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ ËÞ Ñ Ø Ô Ð ÓÖ ØÑÙ Ó Å Ø Ö ÁÒØ ÐÐ Ò Ì Ò Þ ËÔ Ð ÙØÓÑ Ø Ó ÞØ ÐÝÓ ÐÐ ÑÞ Ó ØÓÖ ÖØ Þ Ø Þ ÝÙÖ Þ Ý Ö Ý Ì Ñ Ú Þ Ø Öº Ö Ò ËÞ ¾¼½¼

Részletesebben

x = 10±0.1 y = 5±0.02 z = 20±0.4

x = 10±0.1 y = 5±0.02 z = 20±0.4 ÆÙÑ Ö Ù Ñ Þ Ö ¹ ÆÙÑ Ö Ù Ò Ð Þ Ý ÓÖÐ Ð ØÓ Å Ã ½ ¹ Å Ã ½ ½ ĵ ¹ Å Ã ½ ĵ Æ ÑÓ Ö Ñ Ø ÓÖ ÙÒ ¹Ñ Óк Ù Å ÓÐ Ý Ø Ñ Ô ÞÑ ÖÒ ÁÒ ÓÖÑ Ø Ã Ö Ð ÐÑ ÞÓØØ Å Ø Ñ Ø ÁÒØ Þ Ø Ì Ò Þ ¾¼½ ¾ Ì ÖØ ÐÓÑ ÝÞ ½º ÃÐ Þ Ù Þ Ñ Ø ¾º Å ØÖ

Részletesebben

Ú Þ Ø ÐÐ Þ Ð ÐØ Ð Ø Ñ Ú ÞØ Ø ÒÙÐÑ ÒÝÓÞ ÙÐ ÓÒØÓ ÐÐ ¹ Ð ÓÐÝ Ñ Ø Ò Ñ ÖØ Þº Ø Ñ Ú ÞØ Ñ ÖØ ÐРРй Ð ÔÓØ Ø Ð Ú Ö Ö ÐÐ Ó Ø Ò Ø Ò Ý Ö Ò Ð Ñ Ð ÓÖÓÞ Ø ÐÐ Ó Ò Ð

Ú Þ Ø ÐÐ Þ Ð ÐØ Ð Ø Ñ Ú ÞØ Ø ÒÙÐÑ ÒÝÓÞ ÙÐ ÓÒØÓ ÐÐ ¹ Ð ÓÐÝ Ñ Ø Ò Ñ ÖØ Þº Ø Ñ Ú ÞØ Ñ ÖØ ÐРРй Ð ÔÓØ Ø Ð Ú Ö Ö ÐÐ Ó Ø Ò Ø Ò Ý Ö Ò Ð Ñ Ð ÓÖÓÞ Ø ÐÐ Ó Ò Ð ÇÔØ ÃÚ ÒØÙÑ Ð ØÖÓÒ Ì Ò Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ Î Ö Ö ÐÐ Ó Ø Ñ Ú ÞØ Ñ ÐÑ ÞÓ Ò Ó ØÓÖ È µ ÖØ Þ Ø Þ Å Þ ÖÓ ËÞ ÓÐ Ì Ñ Ú Þ Ø Öº Ò Ö Ãº ÙÔÖ À ÖÚ Ö ¹ËÑ Ø ÓÒ Ò ÒØ Ö ÓÖ ØÖÓÔ Ý Ñ Ö ÍË Ð ÓÒÞÙÐ Ò Öº Î Ò Â Þ ÇÔØ ÃÚ ÒØÙÑ

Részletesebben

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Ò ÓÒÓ Ð Ñ Ð ØÖÓÒ ÓÒ ÙÖ ÇÜ Þ ÑÓ ÁÓÒÓ +3 ÀÈÇ 2 3 È 2 Ô 3 +1 ÈÀ 2 Ç 2 +5 ÈÇ 3 4 +5 È 2 Ç 4 7 +5 ÈÇ 3 µ n 2 Ô 3 +3 Ç 3 3 +5 Ç 3 4 Ôº ¾ Ò ÓÒÓ Ð ØÖÓÒ ÓÒ ÙÖ ÇÜ Þ ÑÓ

Részletesebben

2 Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ØÖ ÒÞ Ø Ú Þ ÑÑ ØÖ Ù ÐÐ ØÚ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ÒØ Þ ÑÑ ØÖ Ù ÐÐ ØÚ ØÖ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å

2 Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ØÖ ÒÞ Ø Ú Þ ÑÑ ØÖ Ù ÐÐ ØÚ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ÒØ Þ ÑÑ ØÖ Ù ÐÐ ØÚ ØÖ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å ÎÁ Ë Æ Ã Ö ½¹½ ÔÓÒØµ Å Ð Ø ÔÖ ØÙÑÓ ÖØ ÀÓ Ý Ò ÐäÐ ÅÓÒ ÓÒ Ð Ð ÖÓÑ Ô Ð Ø ÔÖ ØÙÑÖ º ËÓÖÓÐ Ð ÐÓ Ð Øº Å ÐÝ Ò Ú ÒØÓÖÓ Ø Ñ Ö Å Ð ÀÓ Ý Ò Ô Ù ÐÓ ÓÖÑÙÐ Ø Å ÓÖ Ú Ò Ý Ú ÐØÓÞ Ý Ú ÒØÓÖ Ø äö Ò Å ÒÝ ØÓØØ Ñ Þ ÖØ ÓÖÑÙÐ ÅÓÒ

Részletesebben

¾µ x j x + t v j, 0 j J,

¾µ x j x + t v j, 0 j J, ÇÒ Ð ØØ ÓÐØÞÑ ÒÒ Ñ Ò Ø ÚÓÐÙÑ Ò ÓÙÒ ÖÝ ÓÒ Ø ÓÒ Ö ÒÓ Ù Ó 2 Ò È ÖÖ Ä ÐÐ Ñ Ò 3 ÓÒ ÖÚ ØÓ Ö Æ Ø ÓÒ Ð ÖØ Ø Å Ø Ö È Ö Ö Ò º 2 ÆÙÑ Ö Ð Ò ÐÝ Ò È ÖØ Ð Ö ÒØ Ð ÕÙ Ø ÓÒ Ô ÖØÑ ÒØ Ó Å Ø Ñ Ø È Ö ËÙ ÍÒ Ú Ö ØÝ ÇÖ Ý Ö Ò º

Részletesebben

x R x < 2 x N x ] ;2] [4;+ [ x R x 2 < x n N p N p 2n n N p N n(n+1) 2p x R y R y 2 x

x R x < 2 x N x ] ;2] [4;+ [ x R x 2 < x n N p N p 2n n N p N n(n+1) 2p x R y R y 2 x ÙÐÐ ³ÜÖ Ò ½ ÓÖÖ ÈÌËÁ ÄÝ Ð ÔØÑÖ ¾¼½ ÜÖ ½ µ f(x) = 0 Ò³ÙÖ Ô ÓÐÙØÓÒ x R f(x) 0º f Ø ÓÒ ØÒØ ØÖÙØ ÔÖ ÜÑÔÐ ÔÖ (x,y) R f(x) = f(y) ÓÙ ÔÖ a R x R f(x) = aº ÆÓØÞ ÕÙ x R y R f(x) = f(y) ÑÖ Ù ÐÓÖ ÕÙ ÑÐ ÑÓÒ ÓÖØ ÕÙ

Részletesebben

ÜÜÜ ÝÝÝ ÚÖ ÓÒ ¼º ÔÖÐ ¾¼½¼ ÐÓÖÑØÖ ÂØ Ò ÒÖÝ ÓÛ ÛØ ¾¼¼ ÄÀ Ø ÙÖÐÓ Ý ½ ÄÓÖØÓÖÝ ÓÖ À ÒÖÝ ÈÝ ÓÐ ÈÓÐÝØÒÕÙ ÖÐ ÄÙ ÒÒ ØÖØ ÖÔØÓÒ Ó Ø ØÙ ÓÒ ÐÓÖÑØÖ Ñ ÙÖÑÒØ ÔÖÓÖÑ ÓÒ Ø Ø ÓÐÐØ Ò ¾¼¼ Ø ¼ Ò ½½¼ Î ÄÀ Ñ ÒÖ º ½ ¹ÑÐÙÖÐÓºÝÔк

Részletesebben

dc_869_14 ÅÌ Ó ØÓÖ ÖØ Þ Ø Þ Æ Ñ¹ Ý Ò ÐÝ Ò Ñ Ð ÓÒÝ Ñ ÒÞ Ú ÒØÙÑ Ö Ò Þ Ö Ò Ö Ð Þ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ¾¼½

dc_869_14 ÅÌ Ó ØÓÖ ÖØ Þ Ø Þ Æ Ñ¹ Ý Ò ÐÝ Ò Ñ Ð ÓÒÝ Ñ ÒÞ Ú ÒØÙÑ Ö Ò Þ Ö Ò Ö Ð Þ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ¾¼½ ÅÌ Ó ØÓÖ ÖØ Þ Ø Þ Æ Ñ¹ Ý Ò ÐÝ Ò Ñ Ð ÓÒÝ Ñ ÒÞ Ú ÒØÙÑ Ö Ò Þ Ö Ò Ö Ð Þ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ¾¼½ ½ ½º Ú Þ Ø Þ Ð ÓÒÝ Ñ ÒÞ Ö Ò Þ Ö Ð ÒÐ Ú Ð ¹ Ö Ø Ó Ð Ð ÓÞØ Ø Þ Ù Ó Øº Ú ÒØÙÑ Ù ØÙ Ð Ò Ò Ð Ö Ò Ð ÒØ Ø Ö

Részletesebben

U = I R U = RI. I = [V ]

U = I R U = RI. I = [V ] Ä ÃÌÊÇ ÁÆ ÅÁÃ Ý Ò Ö Ñ Ð Þ ØÓ ½º Þ Ý Þ Öò Ö ÒØ Ý Ô ÓÐ Ð Ô Ð ÐºÁÐÝ Ò Þ Ð Ö Ñ Ö ÝØ Ð Ô Ð Ý Ó Ý ÞØ Ð Ú Þ Ø Ð Ö Ò Þ ¹ ÑÔ Ö Ñ Ö ¾¹½ µº Ó Ý ÞØ ÐÝ ØØ ÞÓ ÖØ Ð ÐÐ Ò ÐРغ Þ ÐÚ Ö ÞÓ Ú Þ Ø Ý ÐÐ Ò ÐÐ Ø ÐØ ÒØ ØÒ Ñ ÐÝÑ

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ Áº Ú Þ Ø ÐØ Ð ÒÓ Þ ÐÝÓ ½º Þ ÐÝ ÒÝÚ Þ Ñ ÐÝ Ø ÐÝ ¾º Ö ¾º½º Ö Ø Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾º Ö Ó ÐØ Ð ÒÓ Ð

Ì ÖØ ÐÓÑ ÝÞ Áº Ú Þ Ø ÐØ Ð ÒÓ Þ ÐÝÓ ½º Þ ÐÝ ÒÝÚ Þ Ñ ÐÝ Ø ÐÝ ¾º Ö ¾º½º Ö Ø Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾º Ö Ó ÐØ Ð ÒÓ Ð Æ ÓÒ Ã ÑÔÓ Â Ø Ù Þ ÐÝ ÒÝÚ ¾¼½ º ÖÙ Ö ¾¾º Þ ÐÐ ØÓØØ Å ØÞ Ö ÒØ Ð È ÖÓ Ð ËÞ Ö ÞØ ØØ Ì Ñ Ö ÓÖ ÒÝ Ô ÞØ ÃÖ Ø Ò Ö Ä ØÓÖ ÐØ Ï Þ Ò ÖÙ Ö Â ÒÓ ËÞ Ý Ê ÖØ ½ Ì ÖØ ÐÓÑ ÝÞ Áº Ú Þ Ø ÐØ Ð ÒÓ Þ ÐÝÓ ½º Þ ÐÝ ÒÝÚ Þ Ñ ÐÝ Ø ÐÝ

Részletesebben

x 2 a b c d a b c d e x 1 O R O L O C ϕ(a d f) O R ϕ(b c) O L ϕ(b c e) O L ϕ(l R) (R 2 \ E) ϕ(l M R) (R 2 \ E)

x 2 a b c d a b c d e x 1 O R O L O C ϕ(a d f) O R ϕ(b c) O L ϕ(b c e) O L ϕ(l R) (R 2 \ E) ϕ(l M R) (R 2 \ E) Ò Ñ Ö Ò Þ Ö ÓØ Ù Ò Ø Ð Ø Ò Ú Þ Ð Ø Ñ Þ Ø Þ Ñ Ø Ô Ñ Þ Ö Ð Ó ØÓÖ ÖØ Þ Ø Þ Ò ÐÝ Ð Þ Ì Ñ Ú Þ Ø Öº Ò Ì ÓÖ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ËÞ ¾¼¼ ½º Ú Þ Ø Ò Ñ Ö Ò Þ Ö Ú Þ Ð Ø ÓÖ Ò Ó Ø Ò Ö Ö Ð Ø Ó Ý Ú Ð Ò Ö Ò Ð ÞÒ ¹ Ñ ÓÐ Ó

Részletesebben

½ ¾ À Ú Ø ÓÞ Ó ÓÐ ÓÞ ØÓ Ò Ú ÓÖ Þ Ö ÒØ Þ Ð Â ÒÓ ËÓÑ ÙÒ ÓÐÚ ÔÖÓ Ð Ñ Ò Ø Ø ÓÖÝ Ó ÙÒØ ÓÒ Ð ÕÙ Ø ÓÒ ÁÁº ÕÙ Ø ÓÒ Å Ø º ¾ ½ µ ¾ ß¾ ¼º Þ Ð Â ÒÓ Ö Ø Ö Þ Ò Ò ÓÖ

½ ¾ À Ú Ø ÓÞ Ó ÓÐ ÓÞ ØÓ Ò Ú ÓÖ Þ Ö ÒØ Þ Ð Â ÒÓ ËÓÑ ÙÒ ÓÐÚ ÔÖÓ Ð Ñ Ò Ø Ø ÓÖÝ Ó ÙÒØ ÓÒ Ð ÕÙ Ø ÓÒ ÁÁº ÕÙ Ø ÓÒ Å Ø º ¾ ½ µ ¾ ß¾ ¼º Þ Ð Â ÒÓ Ö Ø Ö Þ Ò Ò ÓÖ ½ ¾ À Ú Ø ÓÞ Ó ÓÐ ÓÞ ØÓ Ò Ú ÓÖ Þ Ö ÒØ Þ Ð Â ÒÓ ËÓÑ ÙÒ ÓÐÚ ÔÖÓ Ð Ñ Ò Ø Ø ÓÖÝ Ó ÙÒØ ÓÒ Ð ÕÙ Ø ÓÒ ÁÁº ÕÙ Ø ÓÒ Å Ø º ¾ ½ µ ¾ ß¾ ¼º Þ Ð Â ÒÓ Ö Ø Ö Þ Ò Ò ÓÖÑ Ø ÓÒ Ñ ÙÖ ÔÔÖÓ Ò Ø Ò Ó Ò Ö º ÁÒ Ä ØÙÖ ÆÓØ Ò ÓÑÔÙØ

Részletesebben

È ÖÑÙØ ÓÖ ÓÐ Ó Ð ÐÑ Þ ÅÌ Ó ØÓÖ ÖØ Þ ÒØ Ý È Ø Ö

È ÖÑÙØ ÓÖ ÓÐ Ó Ð ÐÑ Þ ÅÌ Ó ØÓÖ ÖØ Þ ÒØ Ý È Ø Ö È ÖÑÙØ ÓÖ ÓÐ Ó Ð ÐÑ Þ ÅÌ Ó ØÓÖ ÖØ Þ ÒØ Ý È Ø Ö ¾ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾º ÇÖ ÓÐ Ó ½ ¾º½º Å ÖØ Þ ÑÑ ØÖ º º º º º º º º º º º º º º º º º º º º º º º º ½ ¾º¾º ÇÖ ÓÐ Ó Ö Ð ÐØ Ð Ò º º º º º º º º º º º º º

Részletesebben

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ ÓÒÓ Ø ÔÙ È Ö ÓÒ Ð Ó ÞØ ÐÝÓÞ Ú Þ Ø Ö Ø ÔÙ Ó µ ÓÐ Ó ÓÐ Ø Ò Þ Ñ Ø ÔÀ ÊÓ ÞÙÐ Ø µ ÓÑÔÐ Ü ÔÞ Ì Ñ Ø Ë Ú¹ Þ ÓÑÔÐ Ü Ý Ò ÐÝÓ Þ Ñ Ø Ê ÓÜ ÔÓØ Ò Ð Ã Ø ÓÒÓ Ö ÐÚ Ð ÞØ Ù ÑÙØ

Részletesebben

Ö ÒÝ Ô Ö Ñ Ø Ö Ò Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ì Ø Ì Ñ Ö Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ

Ö ÒÝ Ô Ö Ñ Ø Ö Ò Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ì Ø Ì Ñ Ö Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ Ö ÒÝ Ô Ö Ñ Ø Ö Ò Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ì Ø Ì Ñ Ö Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ Ì Ò Þ ËÞ ¾¼¼ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ ØØ ÒØ

Részletesebben

¾

¾ º Þ Ø Þ Ð Ð ØÖÓ ÞØ Ø ÙÐÐ ÑØ Ò Ú ÒØÙÑÑ Ò ÓÐ Ù ÐÐ Ø Ò ËÞ Ð Ý Ò Ö Ù Ô Ø ¾¼¼ ¾ Ì ÖØ ÐÓÑ ÝÞ ½º Ð ØÖÓ ÞØ Ø ½º½º Ð Ô Ó ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º Þ Ð ØÖÓÑÓ

Részletesebben

¾¼½ ¹½ Þ Ð Ú Ð ½º Ð ½¹ ¾ Þ ÔØ Ñ Ö ½ ºµ ¾º Ð ¹ Þ ÔØ Ñ Ö ¾ ºµ º Ð ¹½¼ Ó Ø Ö ºµ º Ð ½¼ ¹½¾ Ó Ø Ö ½½ºµ º Ð ½¾ ¹½ ½ Ó Ø Ö ½ ºµ º Ð ½ ¾¹½ Ó Ø Ö ¾ ºµ º Ð ½ ¹

¾¼½ ¹½ Þ Ð Ú Ð ½º Ð ½¹ ¾ Þ ÔØ Ñ Ö ½ ºµ ¾º Ð ¹ Þ ÔØ Ñ Ö ¾ ºµ º Ð ¹½¼ Ó Ø Ö ºµ º Ð ½¼ ¹½¾ Ó Ø Ö ½½ºµ º Ð ½¾ ¹½ ½ Ó Ø Ö ½ ºµ º Ð ½ ¾¹½ Ó Ø Ö ¾ ºµ º Ð ½ ¹ Þ Ö Ø Ñ Ø Ñ Ø ¾º Ð Ô ý Ò ÄÌ Áà ÃÓÑÔÙØ Ö Ð Ö Ì Ò Þ ¾¼½ º Ñ Ö º ¾¼½ ¹½ Þ Ð Ú Ð ½º Ð ½¹ ¾ Þ ÔØ Ñ Ö ½ ºµ ¾º Ð ¹ Þ ÔØ Ñ Ö ¾ ºµ º Ð ¹½¼ Ó Ø Ö ºµ º Ð ½¼ ¹½¾ Ó Ø Ö ½½ºµ º Ð ½¾ ¹½ ½ Ó Ø Ö ½ ºµ º Ð ½ ¾¹½ Ó Ø Ö ¾

Részletesebben

Ì ÓÑÔÙØ Ø ÓÒ Ð ÓÑÔÐ Ü ØÝ ÓÐÙÑÒ Ý Â Ó Ó ÌÓÖ Ò ÔØº Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØØ ÍÐÑ Ç Ö Ö Ð Ö ¼ ÍÐÑ ÖÑ ÒÝ ØÓÖ Ò Ò ÓÖÑ Ø ºÙÒ ¹ÙÐѺ ØØÔ»»Ø ÓÖ º Ò ÓÖÑ Ø ºÙÒ ¹

Ì ÓÑÔÙØ Ø ÓÒ Ð ÓÑÔÐ Ü ØÝ ÓÐÙÑÒ Ý Â Ó Ó ÌÓÖ Ò ÔØº Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØØ ÍÐÑ Ç Ö Ö Ð Ö ¼ ÍÐÑ ÖÑ ÒÝ ØÓÖ Ò Ò ÓÖÑ Ø ºÙÒ ¹ÙÐѺ ØØÔ»»Ø ÓÖ º Ò ÓÖÑ Ø ºÙÒ ¹ Ì ÓÑÔÙØ Ø ÓÒ Ð ÓÑÔÐ Ü ØÝ ÓÐÙÑÒ Ý Â Ó Ó ÌÓÖ Ò ÔØº Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØØ ÍÐÑ Ç Ö Ö Ð Ö ¼ ÍÐÑ ÖÑ ÒÝ ØÓÖ Ò Ò ÓÖÑ Ø ºÙÒ ¹ÙÐѺ ØØÔ»»Ø ÓÖ º Ò ÓÖÑ Ø ºÙÒ ¹ÙÐѺ»È Ö ÓÒ Ò» غ ØÑÐ Á ÓÑÓÖÔ Ñ Ì Ø Ò È Ö Ô Ø Ú Ò ÇÔ

Részletesebben

ËÞ ÓÐ ÓÞ Ø ÞòÖ Ð Ö Ó Ð ÐÑ Þ Ö Ú Ø ÙÐРѹ Ð Ð Ó Ú Þ Ð Ø Ò Þ Ö Ð Þ Þ Ëº Þ Ù Þ Ö ÒÝ ÁÁÁº Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Öº Ê Þ Á ØÚ Ò Ï Ò Ö ÊÅÃÁ Ð ÓÒÞÙÐ Ò Öº È ÐÐ Ä Þ

ËÞ ÓÐ ÓÞ Ø ÞòÖ Ð Ö Ó Ð ÐÑ Þ Ö Ú Ø ÙÐРѹ Ð Ð Ó Ú Þ Ð Ø Ò Þ Ö Ð Þ Þ Ëº Þ Ù Þ Ö ÒÝ ÁÁÁº Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Öº Ê Þ Á ØÚ Ò Ï Ò Ö ÊÅÃÁ Ð ÓÒÞÙÐ Ò Öº È ÐÐ Ä Þ ËÞ ÓÐ ÓÞ Ø ÞòÖ Ð Ö Ó Ð ÐÑ Þ Ö Ú Ø ÙÐРѹ Ð Ð Ó Ú Þ Ð Ø Ò Þ Ö Ð Þ Þ Ëº Þ Ù Þ Ö ÒÝ ÁÁÁº Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Öº Ê Þ Á ØÚ Ò Ï Ò Ö ÊÅÃÁ Ð ÓÒÞÙÐ Ò Öº È ÐÐ Ä ÞÐ ÄÌ ÌÌà ¾¼½ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾º Ö Ú Ø ÙÐÐ ÑÓ

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ ØØ ÒØ º à ÖÐ Ø Ö Þ ½ º½º Ö Ø Ò Ð Ý Þ Ø Ø Ð º º º º º º º º º º º º º º º º º º º º º º º º º ½ º½º½º Ò ØÖ Ùѹ ÐÓÖ Ø Ø

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ ØØ ÒØ º à ÖÐ Ø Ö Þ ½ º½º Ö Ø Ò Ð Ý Þ Ø Ø Ð º º º º º º º º º º º º º º º º º º º º º º º º º ½ º½º½º Ò ØÖ Ùѹ ÐÓÖ Ø Ø ÈÓÐ Ñ ÖÓÐ ØÓ Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ê Ì Ñ Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ ÒÝ ØÙ ÓÑ ÒÝ Ì Ò Þ ËÞ ¾¼½½ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ

Részletesebben

ÓÑÔÐ Ü ØÝ Å ÙÖ Ò Ä ÒÚ ÖÓÒÑ ÒØ Æ Ý 1 Ä ÞÐ Î 2 ÊÙ ÓÐ Ö Ò 1 Ì ÓÖ Ý Ñ Ø Ý 1 Ö Ò ÃÓ 3 Ò Á ØÚ Ò ÃÓÚ 3 1 Ô ÖØÑ ÒØ Ó ËÓ ØÛ Ö Ò Ò Ö Ò ÍÒ Ú Ö ØÝ Ó ËÞ 2 Ê Ö ÖÓÙÔ

ÓÑÔÐ Ü ØÝ Å ÙÖ Ò Ä ÒÚ ÖÓÒÑ ÒØ Æ Ý 1 Ä ÞÐ Î 2 ÊÙ ÓÐ Ö Ò 1 Ì ÓÖ Ý Ñ Ø Ý 1 Ö Ò ÃÓ 3 Ò Á ØÚ Ò ÃÓÚ 3 1 Ô ÖØÑ ÒØ Ó ËÓ ØÛ Ö Ò Ò Ö Ò ÍÒ Ú Ö ØÝ Ó ËÞ 2 Ê Ö ÖÓÙÔ ÓÑÔÐ Ü ØÝ Å ÙÖ Ò Ä ÒÚ ÖÓÒÑ ÒØ Æ Ý 1 Ä ÞÐ Î 2 ÊÙ ÓÐ Ö Ò 1 Ì ÓÖ Ý Ñ Ø Ý 1 Ö Ò ÃÓ 3 Ò Á ØÚ Ò ÃÓÚ 3 1 Ô ÖØÑ ÒØ Ó ËÓ ØÛ Ö Ò Ò Ö Ò ÍÒ Ú Ö ØÝ Ó ËÞ 2 Ê Ö ÖÓÙÔ ÓÒ ÖØ Ð ÁÒØ ÐÐ Ò ÍÒ Ú Ö ØÝ Ó ËÞ ² À Ë 3 Ë ËÓ ØÛ Ö

Részletesebben

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö Ø Ø Þ ÒÝ ØÙ ÓÑ ÒÝ ÔÖÓ Ö Ñ Ö Ø Ò ÈÖ Ô Ö Ø Ø ÍÒ Ú Ö ØÝ Ó Ö Ò È Ë ÓÓÐ Ò È Ý

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö Ø Ø Þ ÒÝ ØÙ ÓÑ ÒÝ ÔÖÓ Ö Ñ Ö Ø Ò ÈÖ Ô Ö Ø Ø ÍÒ Ú Ö ØÝ Ó Ö Ò È Ë ÓÓÐ Ò È Ý Ý Ø Ñ Ó ØÓÖ È µ ÖØ Þ Ø Þ ØÖ Ø Ó È Ì Ê Ò Þ ØÐ Ò ÒÝ Ó Ø Ö ÖÓ Ó Ö ØÙÖ Ò Ñ Ó Ø ÖÓ Ò ÓÙ Ñ Ø Ö Ð À Ð Þ ÓÐØ Ò Ì Ñ Ú Þ Ø» ËÙÔ ÖÚ ÓÖ Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ ÍÒ Ú Ö ØÝ Ó Ö Ò È Ë ÓÓÐ Ò È Ý Ö Ò

Részletesebben

È Ö ÙÞ ÑÓ ØÓØØ Ú Ð Ñ¹Ñ Þ Ö ØÓÐØ Ð ØÖÓ Ò Ñ ÔÖÓ Ð Ñ Ñ ÓÐ Ò ÖØ Å Ö Ò Ð Ç Ð Ú Ð Ñ ØÖÓÒ Ñ ÖÒ ÃÓÒÞÙÐ Ò ÈÖÓ º Öº ÃÙÞÑ ÒÒ Å Ð ºËº Ý Ø Ñ Ø Ò Ö ËÞ ÒÝ Á ØÚ Ò Ý Ø

È Ö ÙÞ ÑÓ ØÓØØ Ú Ð Ñ¹Ñ Þ Ö ØÓÐØ Ð ØÖÓ Ò Ñ ÔÖÓ Ð Ñ Ñ ÓÐ Ò ÖØ Å Ö Ò Ð Ç Ð Ú Ð Ñ ØÖÓÒ Ñ ÖÒ ÃÓÒÞÙÐ Ò ÈÖÓ º Öº ÃÙÞÑ ÒÒ Å Ð ºËº Ý Ø Ñ Ø Ò Ö ËÞ ÒÝ Á ØÚ Ò Ý Ø È Ö ÙÞ ÑÓ ØÓØØ Ú Ð Ñ¹Ñ Þ Ö ØÓÐØ Ð ØÖÓ Ò Ñ ÔÖÓ Ð Ñ Ñ ÓÐ Ò ÖØ Å Ö Ò Ð Ç Ð Ú Ð Ñ ØÖÓÒ Ñ ÖÒ ÃÓÒÞÙÐ Ò ÈÖÓ º Öº ÃÙÞÑ ÒÒ Å Ð ºËº Ý Ø Ñ Ø Ò Ö ËÞ ÒÝ Á ØÚ Ò Ý Ø Ñ ÙØÓÑ Ø Þ Ð Ì Ò Þ È º º Ó ØÓÖ ÖØ Þ ËÞ ÒÝ Á ØÚ Ò Ý

Részletesebben

dc_1387_17 Powered by TCPDF (

dc_1387_17 Powered by TCPDF ( ÃÇÆÎ ÁÌýË Ë Æ Å¹ ÍÃÄÁ Ë Á ÇÅ ÌÊÁýà ÅÌ Ó ØÓÖ ÖØ Þ Ø Þ ºÀÓÖÚ Ø ý Ó ¾¼½ Ú Þ Ø Þ ÖÞ Ò ØÙ Ó ÓÞ Ø ½ µ Ñ Þ ÖÞ Ø Ø Ñ Ø Ñ Ø Ø Ñ Ú Ð Ó Ð Ð¹ ÓÞÓØØ Þ Ø ½ ÝÞ Ø Ø ¾ ÒÝÚ Ø Ø Þ ÐØ Å Ò ÓÛ ÓÑ ØÖ Ø Ñ Ö Ð ½¾ Ð ÒØ Ñ Ö ÓÑ

Részletesebben

1 + e β(x d). 0, x a δ/2 x (a δ/2), a δ/2 < x < a + δ/2 1, a + δ/2 x. σ ( β)

1 + e β(x d). 0, x a δ/2 x (a δ/2), a δ/2 < x < a + δ/2 1, a + δ/2 x. σ ( β) ÙÞÞÝ Ú Ø ÞØ Ø ÑÓ ÐÐ ÙÞÞÝ Þ ÖØ Ò Ð ÔÙÐ ÐÓ Ó ØÓÖ ÖØ Þ Ø Þ Ö ÓÐØ Ì Ñ Ú Þ Ø Öº ÓÑ Â Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ËÞ ¾¼¼ ½º Ú Þ Ø Þ ÖØ Þ Ö Ñ ÒÝ Þ Ð ÖÓÑ ÔÓÒØ Ò Ó Ð Ð Ø Þ º Ð Þ Ö ÑÙØ Ø Ý ÓÐÝ Ò Ö ÙÞÞÝ Þ ÐÝØ ÒÙÐ ÑÓ ÐÐØ

Részletesebben

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0)

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0) Å Ò ÒÝ Ð Ú Ð Þ ÐÐ Ø Ò Þ Ñ ÒÒÝ Ñ ÖØ Ý Þ Þ Ð ÒØ Ø ÖÑ Þ ØØ Ò Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý º Þ Ø Ö Ý Ø Ô Þ Ø ÖÑ Þ Ø¹ Ò Ð ÓÖ ÙÐ Ñ Ö Ø Ö ÔÖÓ Ù Ð Ø Ð Ò Ý Ö Þ º ýðø Ð Ò Ò Ñ Ñ Ò Þ ÓÐÝ Ò Ð Ò Ð Ó Ð Ð ÓÞ Ñ ÐÝ ÓÖ Ò Ò Ñ Ú ÐØÓÞ

Részletesebben

Ë Ø ÙØÓÑ Ø ÞÓ Ó Ò Ñ Ð ÐÑ Þ Ó ØÓÖ È º ºµ ÖØ Þ ÃÓ Ö ÐÝ Ì Ñ Ú Þ Ø Öº ËÞØÖ Â ÒÓ Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á

Ë Ø ÙØÓÑ Ø ÞÓ Ó Ò Ñ Ð ÐÑ Þ Ó ØÓÖ È º ºµ ÖØ Þ ÃÓ Ö ÐÝ Ì Ñ Ú Þ Ø Öº ËÞØÖ Â ÒÓ Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á Ë Ø ÙØÓÑ Ø ÞÓ Ó Ò Ñ Ð ÐÑ Þ Ó ØÓÖ È º ºµ ÖØ Þ ÃÓ Ö ÐÝ Ì Ñ Ú Þ Ø Öº ËÞØÖ Â ÒÓ Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½¾ Þ Ò ÖØ Þ Ø Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ

Részletesebben

Ø Ð ÐÐ Ó Ø Ö Ò Ò Ó ØÓÖ ÖØ Þ ËÞ ¹ Ð ÐÞ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö Þ Ó ØÓÖ ÓÐ Ê Þ Þ ÐÐ Þ Ø ÔÖÓ Ö Ñ Ó ØÓÖ ÓÐ Ú Þ Ø Öº È ÐÐ Ä ÞÐ Ó ØÓÖ Ô

Ø Ð ÐÐ Ó Ø Ö Ò Ò Ó ØÓÖ ÖØ Þ ËÞ ¹ Ð ÐÞ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö Þ Ó ØÓÖ ÓÐ Ê Þ Þ ÐÐ Þ Ø ÔÖÓ Ö Ñ Ó ØÓÖ ÓÐ Ú Þ Ø Öº È ÐÐ Ä ÞÐ Ó ØÓÖ Ô Ø Ð ÐÐ Ó Ø Ö Ò Ò Ó ØÓÖ ÖØ Þ ËÞ ¹ Ð ÐÞ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö Þ Ó ØÓÖ ÓÐ Ê Þ Þ ÐÐ Þ Ø ÔÖÓ Ö Ñ Ó ØÓÖ ÓÐ Ú Þ Ø Öº È ÐÐ Ä ÞÐ Ó ØÓÖ ÔÖÓ Ö Ñ Ú Þ Ø Öº ÓÖ Ö Ò Ì Ñ Ú Þ Ø Öº ÃÙÒ Å Ö ØÙ ÓÑ ÒÝÓ

Részletesebben

Szupernóvák. van H. nincs H. I nincs Si. van Si. nincs He. van He IIL IIP. IIn

Szupernóvák. van H. nincs H. I nincs Si. van Si. nincs He. van He IIL IIP. IIn ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÌÌÁÃ ÇÔØ ÃÚ ÒØÙÑ Ð ØÖÓÒ Ì Ò Þ ÁÈÄÇÅ ÅÍÆÃ ËÞÙÔ ÖÒ Ú ÐØ ØØ Ð ÙÐÐ ÑÓ Ð Ò Ø òöò ÐÐ Ö Ð ÒÝ Ð Ã Þ Ø ØØ Æ Ý Ò Ö Þ Ù ÅË Þ Ó ÐÐ Ø Ì Ñ Ú Þ Ø Öº Î Ò Â Þ Ý Ø Ñ Ó Ò ËÞ ¾¼½¾ Ì ÖØ ÐÑ Þ Ó Ð Ð ÞÙÔ ÖÒ

Részletesebben

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0)

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0) Å Ò ÒÝ Ð Ú Ð Þ ÐÐ Ø Ò Þ Ñ ÒÒÝ Ñ ÖØ Ý Þ Þ Ð ÒØ Ø ÖÑ Þ ØØ Ò Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý º Þ Ø Ö Ý Ø Ô Þ Ø ÖÑ Þ Ø¹ Ò Ð ÓÖ ÙÐ Ñ Ö Ø Ö ÔÖÓ Ù Ð Ø Ð Ò Ý Ö Þ º ýðø Ð Ò Ò Ñ Ñ Ò Þ ÓÐÝ Ò Ð Ò Ð Ó Ð Ð ÓÞ Ñ ÐÝ ÓÖ Ò Ò Ñ Ú ÐØÓÞ

Részletesebben

t = c U, t0 = x 0 t = c (1+U/c), c (1 U/c) U x δt B = 1 2

t = c U, t0 = x 0 t = c (1+U/c), c (1 U/c) U x δt B = 1 2 Þ Ö Ô Ö ÓÜÓÒÖ Ð ÀÖ È Ø Ö ÈÌ ÐÑ Ð Ø Þ Ì Ò Þ Þ Ö Ô Ö ÓÜÓÒ Ú Ý Ñ Ò Ú Ò Þ ÖÔ Ö ÓÜÓÒµ Ó ÐÑ Þ ÑÔÓÒØ Ð Ö Ð Ø Ú Ø ÐÑ Ð Ø Ý Ð ÓÒØÓ Ú Ø ÞÑ ÒÝ º Ð Ò ÓÐ ÓÞ Ø Ô Ö ¹ ÓÜÓÒÒ Ý ØÙÐ ÓÒ ÔÔ Ò Ø Ò ÐÐ ò Ñ Þ Ú Ö Ø Ô ØÙ Ú Ð Ó

Részletesebben

Í é ö ö ó ó ú Ö Ű é ú é ő ö é ő ő ü é ő é ö é é é ó é ú ő é é é é é ő ö ó ő é é ő Ó é ö ü ő ö ü é ú ő Ű ö ő é ő é ő é ő ő é é é é Ü é ő é ó ő ő é é ó

Í é ö ö ó ó ú Ö Ű é ú é ő ö é ő ő ü é ő é ö é é é ó é ú ő é é é é é ő ö ó ő é é ő Ó é ö ü ő ö ü é ú ő Ű ö ő é ő é ő é ő ő é é é é Ü é ő é ó ő ő é é ó ü É ö Á Á ő É ö ö é é ő é ő é ö ö é é é é ó ó ö ü ő ó ö ó é é ő é ő é ö ő ő ő é Ö ó Ó Ó ó é ö ö ő ó ő ü é ü é ő ő é ú ő ő ő ó é ö é ó é é é ö ö ő ő ö é é é ó ö ü ű ö ő é é ú ö ó ó ó é é é ó ö é ö ő ű Ü

Részletesebben

Ð Ô Ø Ø Ù ÔÖÓ Ö Ñ Þ Ð Ø Ð Þ Ð Ø Â Þ ÂÙ Ø ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ËÞÓ ØÚ Ö Ð ÞØ Ì Ò Þ Ì Ñ Ú Þ Ø Öº Ý Ñ Ø Ý Ì ÓÖ ËÞ ¾¼¼ º Ñ Ù ÖØ Þ Ó ØÓÖ Ó ÓÞ Ø Ñ Þ ÖÞ Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ Ð Þ ÔÖÓ Ö Ñ Þ Ð Ø

Részletesebben

À Ö¹ÒÙÐÐ ÐÑ ÞÓ Ñ Ó Ø Ö ÓÒÞ ÞØ Ò Ø Ö Þ ÒØÓÖ ÐÑ ÞÓ ÓÒ ÔÐÓÑ ÑÙÒ Ã Þ Ø ØØ ËÞÐ ÓÐØ Ò Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø Ð Å ÖØÓÒ Ý Ø Ñ ÙÒ ØÙ Ò Ð Þ Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ

À Ö¹ÒÙÐÐ ÐÑ ÞÓ Ñ Ó Ø Ö ÓÒÞ ÞØ Ò Ø Ö Þ ÒØÓÖ ÐÑ ÞÓ ÓÒ ÔÐÓÑ ÑÙÒ Ã Þ Ø ØØ ËÞÐ ÓÐØ Ò Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø Ð Å ÖØÓÒ Ý Ø Ñ ÙÒ ØÙ Ò Ð Þ Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ À Ö¹ÒÙÐÐ ÐÑ ÞÓ Ñ Ó Ø Ö ÓÒÞ ÞØ Ò Ø Ö Þ ÒØÓÖ ÐÑ ÞÓ ÓÒ ÔÐÓÑ ÑÙÒ Ã Þ Ø ØØ ËÞÐ ÓÐØ Ò Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø Ð Å ÖØÓÒ Ý Ø Ñ ÙÒ ØÙ Ò Ð Þ Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø

Részletesebben

ÄÓ Þ Ñ Ø ÐÑ Ð Ø Þ Ñ Ø ÐÑ Ð Ø Ö Þ Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º Ñ Ö ¼º

ÄÓ Þ Ñ Ø ÐÑ Ð Ø Þ Ñ Ø ÐÑ Ð Ø Ö Þ Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º Ñ Ö ¼º ÄÓ Þ Ñ Ø ÐÑ Ð Ø Þ Ñ Ø ÐÑ Ð Ø Ö Þ Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º Ñ Ö ¼º ¾ ½º Þ Ø Ð Þ Þ ÓÐÝ Ñ ØÓ Ò Ú Ð Ö ÝÞ Ø Þ ÄÌ ÁÒ ÓÖÑ Ø Ã Ö Ò ¾¼¼ ¹ ¾¼¼ ¹ Þ Þ Ñ ÞØ Ö Ò Ø ÖØÓØØ ÄÓ Þ Ñ Ø ÐÑ Ð Ø Ñò ÙÖÞÙ Þ ¹ Ñ Ø ÐÑ Ð

Részletesebben

ő ö ő ü ö ő ú ö ö ö ő ú ö ö ö ö ö ő ö ö ú ö ö ö ö ú ö ő ő ö ű ö ő ö ö ö ő ő ö úő ö ö ő ö ü ö ö ő ö ő ö ü ö ö ö ü ö ö ö ő ü ő ö ü ö ő ú ű ö ü ü ö ü ő ő

ő ö ő ü ö ő ú ö ö ö ő ú ö ö ö ö ö ő ö ö ú ö ö ö ö ú ö ő ő ö ű ö ő ö ö ö ő ő ö úő ö ö ő ö ü ö ö ő ö ő ö ü ö ö ö ü ö ö ö ő ü ő ö ü ö ő ú ű ö ü ü ö ü ő ő Á Á Ó É ö ü ü ö ő őü ö ö ö ö ő ú ö ő ő Ü ő Ö ö ő ö ő ő ö ö Ö ú ü ü ű ö ö ö ő ö ö ú ú ú ö ö ú ő ő Á Á ö ő ö ö ő ú ö ő ű ö ö ő ő ö ö ö ü ö ö ö ú ö ö ö ö ö ú ö ö ö ő ö ü ö ö őü ő ő ö ö ö Ü ő ö ö ö Ü ö ö ü

Részletesebben

ËÞ Ñ Ø ÐÑ Ð Ø Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º ÒÙ Ö ¾ º

ËÞ Ñ Ø ÐÑ Ð Ø Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º ÒÙ Ö ¾ º ËÞ Ñ Ø ÐÑ Ð Ø Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º ÒÙ Ö ¾ º ¾ Ð Þ Þ ÓÐÝ Ñ ØÓ Ò Ú Ð Ö ÝÞ Ø Þ ÄÌ ÁÒ ÓÖÑ Ø Ã Ö Ò ¾¼¼ ¹ ¾¼¼ ¹ Þ Þ Ñ ÞØ Ö Ò Ø ÖØÓØØ ËÞ Ñ Ø ÐÑ Ð Ø Ñò ÙÖÞÙ ÒÝ Ø Ø Ö¹ Ø ÐÑ ÞÞ º Þ ÐØ Ð Ø Ø ÒÝ Ø Ø

Részletesebben

ÝÞ Ø Ô Ø Ñ ÖÒ ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò ¾¼¼¾º½¾º¾¾º Ú ÐØÓÞ Ø Ë ÑÓÒ Ã ÖÓÐÝ ¾¼¼¾º½¾º¾¾

ÝÞ Ø Ô Ø Ñ ÖÒ ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò ¾¼¼¾º½¾º¾¾º Ú ÐØÓÞ Ø Ë ÑÓÒ Ã ÖÓÐÝ ¾¼¼¾º½¾º¾¾ ÝÞ Ø Ô Ø Ñ ÖÒ ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò ¾¼¼¾º½¾º¾¾º Ú ÐØÓÞ Ø Ë ÑÓÒ Ã ÖÓÐÝ ¾¼¼¾º½¾º¾¾ ¾ Ä ØÓÖ ÐØ Öº Ë Ò ÓÖ Ý Ø Ñ ÙÒ ØÙ Ð Þ Þ ÝÞ Ø Öº Ë ÑÓÒ Ã ÖÓÐÝÒ Å Ô Ø Ñ ÖÒ Ã ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò Ø ÖØÓØØ Ð ÒÝ Ø Ø ÖØ ÐÑ ÞÞ º

Részletesebben

¾

¾ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ Î ÐÐ ÑÓ Ñ ÖÒ ÁÒ ÓÖÑ Ø Ã Ö ËÞ Ð Ú À Ö ÞÐ Î ÐÐ ÑÓ Ø Ò Ì Ò Þ Å¹ Ð Ð Ø Ø ÐØ òöò Ñ Ö Ò Þ ÑÙÐ Ì Ã ÓÐ ÓÞ Ø Ã Þ Ø ØØ ÃÓÒÞÙÐ Ò Ö Æ Ý Á ØÚ Ò Ê Ö Ø Ò Ö ¾¼½ º Ó Ø Ö ¾¾º ¾ Ì ÖØ ÐÓÑ ÝÞ Ã

Részletesebben

ó í ó Í ó í É ö ó í ó ü ö ö ő í ö í ü ő ö ö ő ő ö ö ó ö ö ő ö ú ü ő ó í ó í ó ü ü ó ü ő ú í í ő ú ó í ü ö ö ö ó ó ö ö ö ő ö ü í ő ó ő ó ű ö ó Á ó ö í ó ö í ó ü í ó ü ó ü ö ü ő ő ó ű ü ú ö í ó ó ő ő ó

Részletesebben

NEMZETKÖZI EGYÜTTMŰKÖDÉS A FENNTARTHATÓ FEJLŐDÉS JEGYÉBEN ÉS AZ EURÓPAI UNIÓ FENNTARTHATÓ FEJLŐDÉSI STRATÉGIÁJA

NEMZETKÖZI EGYÜTTMŰKÖDÉS A FENNTARTHATÓ FEJLŐDÉS JEGYÉBEN ÉS AZ EURÓPAI UNIÓ FENNTARTHATÓ FEJLŐDÉSI STRATÉGIÁJA Ő Ű Ő Ő őő ő ő ő ő Ő ő ő 111ő ő ŐŰ Ű Ő Ő ő ő ő ő ő ŐŰ ŐŰ 1 Ő Ő Ő Ő Ő 1 ő ő ő 11 őőő 1 ő 1 őű ő Ő 1 ő ő ŐŰ ŐŰ 1Ő Ő Ő 11 ő őő 1 1 ő ő ő ő őő ő 1 ő ő ő ő ő ő ő őű őő ő ű ő ő ő őő ő ő ŐŰ ő őőő ő őő ő ő őű

Részletesebben

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö Ø Ø Þ ÒÝ ØÙ ÓÑ ÒÝ ÔÖÓ Ö Ñ Ö Ø Ò Þ ÖØ Ð Þ Ø Ø ÌýÅÇȹ º¾º¾» ¹½¼»½¹¾¼½¼¹¼¼¾ Þ Ñ ÔÖÓ Ø Ø ÑÓ ØØ º ÔÖÓ Ø Þ

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö Ø Ø Þ ÒÝ ØÙ ÓÑ ÒÝ ÔÖÓ Ö Ñ Ö Ø Ò Þ ÖØ Ð Þ Ø Ø ÌýÅÇȹ º¾º¾» ¹½¼»½¹¾¼½¼¹¼¼¾ Þ Ñ ÔÖÓ Ø Ø ÑÓ ØØ º ÔÖÓ Ø Þ ÌÌà ½ À Ø ÖÓ Ò ÒÝ Ó ÖÓ Ó Ø Ö Ý Ø Ñ Ó ØÓÖ È µ ÖØ Þ À Ð Þ ÓÐØ Ò Ì Ñ Ú Þ Ø Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½¾ Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö

Részletesebben

Ë ÓÐÝ Ñ ØØ Ò Áº ÅÓ ÐÐ Þ Öº Ê Ú Ò Ö Ý Ø Ñ Ó Ò Å ¾¼½

Ë ÓÐÝ Ñ ØØ Ò Áº ÅÓ ÐÐ Þ Öº Ê Ú Ò Ö Ý Ø Ñ Ó Ò Å ¾¼½ Ë ÓÐÝ Ñ ØØ Ò Áº ÅÓ ÐÐ Þ Öº Ê Ú Ò Ö Ý Ø Ñ Ó Ò Å ¾¼½ ½ Å Î Åà ÃÃ Ì Þ Ö Ø Þ ÖÞ Þ Ø ØØ ÈÓ ØËÖ ÔØ Ê ÓÖÖ ÒÝ ÐÚ Òº Þ Ø Þ ÖÞ Ú ÞØ Ä Ì ÓÖÖ ÒÝ ÐÚ Òº Ì ÖØ ÐÓÑ ÝÞ ½º ÐÓÛ Ø Ò Þ Ø ØØ ÓÐÝ Ñ ØÓ Þ Ñ Ø ½º½º ÐÓÛ Ø Ò º º

Részletesebben

rot H = J + D div D = ρ, w = 1 2 E D H B,

rot H = J + D div D = ρ, w = 1 2 E D H B, Ë Ð Ø Þ Ð ØÖÓÑ Ò Ø Ö Ø ÒØ Ö Ý ÒÝ Ò ÐÑ ÐÝ Ø Þ È Ú Â Þ ¾¼½ º ÒÙ Ö ½º Ì ÖØ ÐÓÑ ÝÞ ½º Þ Ð ØÖÓ Ò Ñ Ø Ñ Ö Ø ÖØÓÞ Ð Ò ÓÔÓÖØÓ Ø ¾ ½º½º Þ Ð ØÖÓÑ Ò Ø Ö Ð Ø Ö Ð Ú ÐØÓÞ Ò Ô ÓÐ Ø ¾ ½º¾º ËØ Ø Ù Ø Ö d λ Ú Ý d δ º º º

Részletesebben

x = r sin θ cosϕ y = r sinθ sinϕ z = r cosθ. ¾µ x = f(t) y = g(t) z = h(t) x = pt + a y = qt + b z = st + c

x = r sin θ cosϕ y = r sinθ sinϕ z = r cosθ. ¾µ x = f(t) y = g(t) z = h(t) x = pt + a y = qt + b z = st + c ÐÑ Ð Ø Þ Áº ÐÑ Ð Ø Ñ Ò ÀÖ È Ø Ö È ¾¼¼¾º Ì ÖØ ÐÓÑ ÝÞ ½º½º ÑÓÞ Ð Ö ÖØ ¹ ÓÓÖ Ò Ø Ðº º º º º º º º º º º º º º º º ¾ ½º¾º Æ ÛØÓÒ¹ Ý ÒÐ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º º Æ ÛØÓÒ¹

Részletesebben

dc_603_12 E N = (e 1,e 2,...,e N ) e a+jb. e a+jb, W(E N ) a,b,t N 1 a a+(t 1)b Nº V(E N,M,D) e n+d1 e n+d2,...e n+dl t 1 j=0 N,t,a,b) = max n=1

dc_603_12 E N = (e 1,e 2,...,e N ) e a+jb. e a+jb, W(E N ) a,b,t N 1 a a+(t 1)b Nº V(E N,M,D) e n+d1 e n+d2,...e n+dl t 1 j=0 N,t,a,b) = max n=1 Î Ò Ö ÓÖÓÞ ØÓ Ö Ó Ô Þ Ù ÓÚ Ð ØÐ Ò Ó ØÓÖ ÖØ Þ Ø Þ Ý ÖÑ Ø Ã Ø Ð Ò ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ù Ô Ø ¾¼½ ½º Ú Þ Ø Þ ÐÑ ÐØ Þ Þ Ú Ò Ö ÔØÓ Ö ÝÖ Ò ÝÓ Þ Ö Ô Ø ÔÓØØ Ñ Ø Ñ Ø Ò ÓÖÑ Ø ÙØ Ø Ó Òº Ø Ö Ð ØÒ Þ ÑÓ ÓÒØÓ Ý ÓÖÐ

Részletesebben

Ì Ò Ö Þ ÓÐ ÓÞ Ø Ì ÒÙÐÑ ÒÝ Ú Ð Þ Òò Þ Ñ Ø Ø Ò Ø Ï ÒØ Ö ÐÝ Ñ Ø Ñ Ø Ø Ò Ö Å Ð Ú Ð Þ ÄÌ ÈÈÃ Ì Ñ Ú Þ Ø Î Ö ÐÝ Ú ¾¼½

Ì Ò Ö Þ ÓÐ ÓÞ Ø Ì ÒÙÐÑ ÒÝ Ú Ð Þ Òò Þ Ñ Ø Ø Ò Ø Ï ÒØ Ö ÐÝ Ñ Ø Ñ Ø Ø Ò Ö Å Ð Ú Ð Þ ÄÌ ÈÈÃ Ì Ñ Ú Þ Ø Î Ö ÐÝ Ú ¾¼½ Ì ÆýÊÁ Ë Ã ÇÄ Ç Ì Ï ÒØ Ö ÐÝ Í È ËÌ ¾¼½ Ì Ò Ö Þ ÓÐ ÓÞ Ø Ì ÒÙÐÑ ÒÝ Ú Ð Þ Òò Þ Ñ Ø Ø Ò Ø Ï ÒØ Ö ÐÝ Ñ Ø Ñ Ø Ø Ò Ö Å Ð Ú Ð Þ ÄÌ ÈÈÃ Ì Ñ Ú Þ Ø Î Ö ÐÝ Ú ¾¼½ Ì ÖØ ÐÓÑ ÝÞ Ú Þ Ø ¾ ½º Ñ Ø Ñ Ø ÞÓÒ Ð Ð Ú Ð Þ Òò Þ Ñ

Részletesebben

ÅÇ ÊÆ ÃÇ ÅÇÄ Á Ë ý Á Ë ÆÌÊÇÈÁÃÍË ÄÎ Ã Ó ØÓÖ ÖØ Þ ÖØ À Ø ÓÐØ Ì Ñ Ú Þ Ø Öº Ð Þ Ð Ý Ø Ñ Ø Ò Ö ÄÌ ÌÌÃ ÐÐ Þ Ø Ì Ò Þ Þ Ó ØÓÖ ÓÐ Á ÓÐ Ú Þ Ø Öº ÀÓÖÚ Ø Ð Ò Ý Ø

ÅÇ ÊÆ ÃÇ ÅÇÄ Á Ë ý Á Ë ÆÌÊÇÈÁÃÍË ÄÎ Ã Ó ØÓÖ ÖØ Þ ÖØ À Ø ÓÐØ Ì Ñ Ú Þ Ø Öº Ð Þ Ð Ý Ø Ñ Ø Ò Ö ÄÌ ÌÌà ÐÐ Þ Ø Ì Ò Þ Þ Ó ØÓÖ ÓÐ Á ÓÐ Ú Þ Ø Öº ÀÓÖÚ Ø Ð Ò Ý Ø ÅÙÒ Ñ Ø Þ Ö Ø ØØ Ô ÖÓÑÒ Þ Ð ÑÒ ÒÐÓѺ Þ Ö Ø Á Ø Ò Ø ÓÐØ ½ ¾µ ÅÇ ÊÆ ÃÇ ÅÇÄ Á Ë ý Á Ë ÆÌÊÇÈÁÃÍË ÄÎ Ã Ó ØÓÖ ÖØ Þ ÖØ À Ø ÓÐØ Ì Ñ Ú Þ Ø Öº Ð Þ Ð Ý Ø Ñ Ø Ò Ö ÄÌ ÌÌà ÐÐ Þ Ø Ì Ò Þ Þ Ó ØÓÖ ÓÐ Á ÓÐ Ú Þ Ø Öº ÀÓÖÚ

Részletesebben

a 11 a a 1n a n1 a n2... a nm b 2, x :=

a 11 a a 1n a n1 a n2... a nm b 2, x := ËÞ ÓÐ ÓÞ Ø Ä Ò Ö Ð Ö Ý ÒÐ ØÖ Ò Þ Ö Ø Ö Ñ ÓÐ ØÒ Ö Å Ø Ñ Ø Ð ÑÞ Þ Ö ÒÝ Ì Ñ Ú Þ Ø Ö Á ØÚ Ò Ø Ò Þ Ú Þ Ø Ý Ø Ñ Ó Ò Ð ÐÑ ÞÓØØ Ò Ð Þ ËÞ Ñ Ø Ñ Ø Ñ Ø Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö ØÚ ÄÓÖ Ò

Részletesebben

Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ ÁÒ ÓÖÑ Ø Ã Ö Ã Ô Ð ÓÐ ÓÞ ËÞ Ñ Ø Ô Ö Ì Ò Þ ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÌÓÔÓÐ ¹Ñ ÖÞ Ú ÓÒÝ Ø Ð ÓÖ ØÑÙ Ó Ø ÖÚ Þ Ú Þ Þ Ð Ø Ú ÒØ Ø Ø Ú Þ ÓÒÐ Ø Ó ØÓÖ ÖØ Þ Æ Ñ Ø ÓÖ Ì Ñ Ú Þ Ø Öº È Ð Ý

Részletesebben

Ð Þ Þ ØÓÒ Þ Ö ØÒ Ñ Ñ Þ ÒÒ Ø Ñ Ú Þ Ø ÑÒ ÓÒ Â ÒÓ Ò Þ ÑÓÑÖ Þ Ò Ú Ø Ñ ÐÚ Ø Ø Ô Ø ÞÖ Ú Ø Ð Ø Þ ÑÙÒ Ò ÓÖ Òº À Ð Ú Ð Þ Ò ØØ Ð Ø ÖØÓÞÓÑ Ñ Ð ÓÑÒ ÓÐ ÓÞ Ø Ñ Ö ÓÞ

Ð Þ Þ ØÓÒ Þ Ö ØÒ Ñ Ñ Þ ÒÒ Ø Ñ Ú Þ Ø ÑÒ ÓÒ Â ÒÓ Ò Þ ÑÓÑÖ Þ Ò Ú Ø Ñ ÐÚ Ø Ø Ô Ø ÞÖ Ú Ø Ð Ø Þ ÑÙÒ Ò ÓÖ Òº À Ð Ú Ð Þ Ò ØØ Ð Ø ÖØÓÞÓÑ Ñ Ð ÓÑÒ ÓÐ ÓÞ Ø Ñ Ö ÓÞ Ã ÖØÝ Ø Ó Ö ÔØÓ Ö Ò Ú Þ Ð Ø Ý ÖØÝ Ø Ö ÔØÓ Ö Ñ Ú Ð Ø ÔÐÓÑ ÑÙÒ ÖØ Ì Ö Ë Ò ÓÖ Ð ÐÑ ÞÓØØ Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø ÓÒ Â ÒÓ Ý Ø Ñ Ó Ò ÃÓÑÔÙØ Ö Ð Ö Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ã Ö ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý

Részletesebben

½»½¼ ËÞ Þ Þ Ö ÓÐÐ ÖÓ ÔÖ Ñ Þ ÑÓ ¾¼½ º ÒÙ Ö ¾ º Ö Ù Ê ÖØ

½»½¼ ËÞ Þ Þ Ö ÓÐÐ ÖÓ ÔÖ Ñ Þ ÑÓ ¾¼½ º ÒÙ Ö ¾ º Ö Ù Ê ÖØ ½»½¼ ËÞ ÞÞÖ ÓÐÐ ÖÓ ÔÖÑ Þ ÑÓ ¾¼½º ÒÙ Ö ¾º ÖÙ ÊÖØ ¾»½¼ ÓØÖ ¾¾ ýøø Þ ÐØÖÓÒ ÖÓÒØÖ ÓÙÒØÓÒ ¾¼¼º ÓÐÐ ÖÓ Ø Ý ½¼¼¼¼¼ ¾»½¼ ÓØÖ ¾¾ ýøø Þ ÐØÖÓÒ ÖÓÒØÖ ÓÙÒØÓÒ ¾¼¼º ÓÐÐ ÖÓ Ø Ý ½¼¼¼¼¼ ÔÖÑ Þ ÑÖØ ¾»½¼ ÓØÖ ¾¾ ýøø Þ ÐØÖÓÒ

Részletesebben

ÐÙÐ ÖÓØØ ÀÓÐÞ Ö Ì Ñ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ÐÐ Ø Ð ÒØ Ñ Ó Ý ÞØ ÔÐÓÑ Ø ÖÚ Ø Ñ Ò Ñ Ò ØØ Ø Ò Ð Ð Ø Ñ Ñ Þ Ø ØØ Ñ ÔÐÓÑ Ø ÖÚ Ò Ñ ¹ ÓØØ ÓÖÖ Ó Ø ÞÒ ÐØ Ñ Ð

ÐÙÐ ÖÓØØ ÀÓÐÞ Ö Ì Ñ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ÐÐ Ø Ð ÒØ Ñ Ó Ý ÞØ ÔÐÓÑ Ø ÖÚ Ø Ñ Ò Ñ Ò ØØ Ø Ò Ð Ð Ø Ñ Ñ Þ Ø ØØ Ñ ÔÐÓÑ Ø ÖÚ Ò Ñ ¹ ÓØØ ÓÖÖ Ó Ø ÞÒ ÐØ Ñ Ð Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ À Ö Ø Ò Ì Ò Þ ÖÝËÝË Ä ÓÖ Ø Ö ÙÑ ËÔÓÒØ Ò ÓÓÔ Ö Ð ÙÐ Ð Ò Þ ÒÒ Ø Ð Ø ÖØÓÞ Þ ÒÞÓÖ Ð Þ ØÓ Þ ØØ Ë Ø Þ ÐÐÓÑ Ó Ø ÀÓÐÞ Ö Ì Ñ ÃÓÒÞÙÐ Ò Ö ÙØØÝ Ò Ä Ú ÒØ ÐÙÐ ÖÓØØ ÀÓÐÞ Ö Ì Ñ Ù Ô Ø Åò Þ Þ

Részletesebben

ö ö ö ő ö ő ö ő ü ö ü ö ő ö ő ő ő ú ö ö

ö ö ö ő ö ő ö ő ü ö ü ö ő ö ő ő ő ú ö ö Ó Ú Á É ö ő ő ő ő ö ú ú ö ú ő ö ú ö ö ö ő ö ő ö ő ü ö ü ö ő ö ő ő ő ú ö ö ő ú ü ö ú ü ő ö ő ö ö ő ö ú ő ő Á Á ö ő ö ő ű ö őö ő ü ő ö ú Ö É É Á Á Á Á Á Á Á Ö ö ö ú ő ő ö ö ö ö ö ö ő ü ő ö ö ö ö É ö É Á

Részletesebben

az elektron trajektóriája ion F = m a

az elektron trajektóriája ion F = m a Î ÐÐ ÑÓ Ô Ö ÒÝ Ñ Ö Ø Þ Ó ÙÑ ÒØÙÑ Þ Ö Ð ÈÓÐÐ Å ÐÝ Åò Þ Ã Ö Ð Ú Ð Þ Ú ÐÐ ÑÓ Ñ ÖÒ ÐÐ Ø Þ Ñ Ö Þ ÐØº Ý Ð ÞÒ Ð Þ ÓÖ Ò Ø ÐÓ Þ ÒÝ Ñ Ö Ø Ø Ö ÝÒ Ý Ð Ö Ð Ø ÖÓÐ Ø Þ Þ Þ Ú ÞÓÒÝ ØÚ Ö Þ Ú Ð Ú Þ Ø Ð Ò Ð Þ ÒÝ Ó Ð ØÖÓÑÓ

Részletesebben

Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÊÅ Ë ÌÌÍ ÇÅýÆ Á Ë ÁÆ ÇÊÅ ÌÁà Á Ã Ê ËÞÙÔ ÖÒ Ú ¹ÖÓ Ò Ó ÓÞ Ô ÓÐ ÔÓÖ ÔÞ Ú Þ Ð Ø Ì Ã¹ ÓÐ ÓÞ Ø ÖÓ ËÞ ÒÒ ÁÁÁº Ú Þ Ë Þ Ó ÐÐ Ø Ë Ì ÌÌÁÃ Ì Ñ Ú

Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÊÅ Ë ÌÌÍ ÇÅýÆ Á Ë ÁÆ ÇÊÅ ÌÁà Á Ã Ê ËÞÙÔ ÖÒ Ú ¹ÖÓ Ò Ó ÓÞ Ô ÓÐ ÔÓÖ ÔÞ Ú Þ Ð Ø Ì Ã¹ ÓÐ ÓÞ Ø ÖÓ ËÞ ÒÒ ÁÁÁº Ú Þ Ë Þ Ó ÐÐ Ø Ë Ì ÌÌÁÃ Ì Ñ Ú Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÊÅ Ë ÌÌÍ ÇÅýÆ Á Ë ÁÆ ÇÊÅ ÌÁà Á Ã Ê ËÞÙÔ ÖÒ Ú ¹ÖÓ Ò Ó ÓÞ Ô ÓÐ ÔÓÖ ÔÞ Ú Þ Ð Ø Ì Ã¹ ÓÐ ÓÞ Ø ÖÓ ËÞ ÒÒ ÁÁÁº Ú Þ Ë Þ Ó ÐÐ Ø Ë Ì ÌÌÁÃ Ì Ñ Ú Þ Ø Öº ËÞ Ð Ì Ñ ØÙ ÓÑ ÒÝÓ ÑÙÒ Ø Ö Ë Ì ÇÔØ ÃÚ ÒØÙÑ

Részletesebben

σ m α η e m η m η N η ) α m η m η T cond

σ m α η e m η m η N η ) α m η m η T cond Þ η Ñ ÞÓÒÓ ÓÑÐ Ø ÖÑ Ò ÞÓÒÓ Ø ÙÐØÖ ¹Ö Ð Ø Ú ÞØ Ù Ø Þ Ò Ã Ö Å Ò Þ Ë º Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Ò Å Ø ÄÌ ÌÌà ØÓÑ Þ Ì Ò Þ ¾¼½¼º Ñ Ö ¾ º à ÚÓÒ Ø Á Ñ ÖØ Ó Ý Ø Ö ÐÑ Ð Ø Þ ÑÑ ØÖ Ò Ö Ð Ð Ð Ö Þ Ø Ñ ÖØº ÐØ Ø Ð Þ ¹ Þ Ö ÒØ

Részletesebben

ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü

ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü ű ő ő ü ű ő ő ő Ő ő őű ü ő Ü ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü ő Ú ő ő ő ő ő ő Ö ő ü ő ő Ő ő ő ő ő ő ő ő ő Ő ő ő ő ü ő ő ü Ó Ő ő ű ű ő ő ő ő Ó ü ő ű ő ő ü ü Ü Ó ő Ó ő ő ő Ő Ő ő ő Ü ő Ü

Részletesebben

ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő ő Ö ő ü űő Ö ú ő ü ú ö ő ö ü ő ü ö ő ö ő Ő ő ü ő ö ü ő ü ö ő ő ű ö ő ö ö ö ü ö ú

ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő ő Ö ő ü űő Ö ú ő ü ú ö ő ö ü ő ü ö ő ö ő Ő ő ü ő ö ü ő ü ö ő ő ű ö ő ö ö ö ü ö ú ő ö ü ő ő Ó ő ü ü ő Ü ő ő ő ő ő ö ő É ö ő ő ö ö ü ő ü ü ő ő ő ü ü ő ő ü ő ü ö ő ő ő ö ö Ö ő ő ö ő ő Ó ö ö ü ű ő ő ü ő ő ő ő ü ő ő ü ü ö ő ő ü Ó ő ő ü ú ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő

Részletesebben

ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü

ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü ü ö ü ü ü ö ö ö ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü ö Ö ö ü ü ű ü ö ö ö Ü ű Ü ű Í Í ü ú ü ö ú ö ö ö Á ö ű ö Ö ö ö Ö ö ü ö ö ü ö ü ü ö Í ű ü ü ö ö ö ö ö ö ö ű ö ö ö Ö ö ü ö ö ö ú

Részletesebben

Á Ö Ú Ü Á ő ü ű ö ő ő ö ü ö Á ö Ü ö ü ő ő ő ő ő ő ő ő ü ö ü ő ö ő ö ő ő ő ö ő ő

Á Ö Ú Ü Á ő ü ű ö ő ő ö ü ö Á ö Ü ö ü ő ő ő ő ő ő ő ő ü ö ü ő ö ő ö ő ő ő ö ő ő ő ö ű Á Ö Ú Ü Á ő ü ű ö ő ő ö ü ö Á ö Ü ö ü ő ő ő ő ő ő ő ő ü ö ü ő ö ő ö ő ő ő ö ő ő ö ő ő ő ü ü ő ö ő ö ü ő ő ö ö ö ü ő ö ü Ö ő ö Ü ű ö ö ö ő ö ü ö ö ö ö ü ő ő ö ü ö ő Á Ö Ű Á ö ö ü Á Ö Ú ő ő ö üő Ö

Részletesebben

ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú

ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú ú ő ű ő ú ő ő ő ú ő ő ő ű ú ú ő ő ú ő ő ő ő Ú ú ő ű ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú ú ű ő ő ő ő ő ő ű ú ő ő ú ő ú Ü ú ú ű ő ő ú ő ő ú É ő ő ú ő ő ő ő

Részletesebben

ü ö ü ú í ü ö ü ö ö Ö ó ö ö ö ö ö ó ö ö ö í ü ü ö ü í ü ü í ű ú ö Ö ú ü ü É í ö ó ó ű í ö ó ü í ö ú

ü ö ü ú í ü ö ü ö ö Ö ó ö ö ö ö ö ó ö ö ö í ü ü ö ü í ü ü í ű ú ö Ö ú ü ü É í ö ó ó ű í ö ó ü í ö ú Á ö ö Á ü É Ő Ö ú í ü É í ö ó ó ű í ö ó í ö ü ö ü ú í ü ö ü ö ö Ö ó ö ö ö ö ö ó ö ö ö í ü ü ö ü í ü ü í ű ú ö Ö ú ü ü É í ö ó ó ű í ö ó ü í ö ú ó ü ö ó í í ü ö ü ó ó ö ö ó ó ö ö ö Ó ó ö í í ű ö ö ű ó ó

Részletesebben

ö Ú ö Í ö ö ú ö Í ö ö ö ö ö ö ö ö ö ö ú ö Í ö ö ö ú ö ö ö ö ö Ó ö É ö ö Ö ö

ö Ú ö Í ö ö ú ö Í ö ö ö ö ö ö ö ö ö ö ú ö Í ö ö ö ú ö ö ö ö ö Ó ö É ö ö Ö ö ű Ü É ú ö ű ö ö ö ö ö ö ú ú ú Ö ö É É ö Ú ö Í ö ö ú ö Í ö ö ö ö ö ö ö ö ö ö ú ö Í ö ö ö ú ö ö ö ö ö Ó ö É ö ö Ö ö Ö ö ú ö ö ö ö ö ö ö ú ö ö ö Í ö ú Í ú ö ú ú ú ö ö ö ö ö ö ö ú ú ö ö Ö É É ö ö ö ö ö ö ö

Részletesebben

É É ü É Ü É É Ú É Ü ü ő ü ü ö ű ö ü É Ő É Ü É É É ú í í ú í í ú í í ó ú í í ú í ú í í í ő É Ő Í É É Í É

É É ü É Ü É É Ú É Ü ü ő ü ü ö ű ö ü É Ő É Ü É É É ú í í ú í í ú í í ó ú í í ú í ú í í í ő É Ő Í É É Í É ó É Ü ó Ú É É ü É Ü É É Ú É Ü ü ő ü ü ö ű ö ü É Ő É Ü É É É ú í í ú í í ú í í ó ú í í ú í ú í í í ő É Ő Í É É Í É É í ó ó ö ü í ő ú í ő ő ó ó í ű ő í í ö ü ö ó ö ő ő í ó í í ü ö ű ő ó ú ó ü ó ü ö ő ó í

Részletesebben

σ m α η e m η m η N η ) α m η m η T cond

σ m α η e m η m η N η ) α m η m η T cond Ö Ð Þ ÑÑ ØÖ ÐÝÖ ÐÐ ÓÖÖ Ú Ö ÒÝ Ò Ã Ö Å Ò Þ Ë Ì Ñ Ú Þ Ø Ò Å Ø ÄÌ ÌÌà ØÓÑ Þ Ì Ò Þ ¾¼½½º Ò Ù º à ÚÓÒ Ø Á Ñ ÖØ Ó Ý Ø Ö ÐÑ Ð Ø Þ ÑÑ ØÖ Ò Ö Ð Ð Ð Ö Þ Ø Ñ ÖØº ÐØ Ø Ð Þ ¹ Þ Ö ÒØ Þ ÑÑ ØÖ Ò ÝÓÒ Ñ Ñ Ö Ð Øò Þ Ò ÐÝÖ

Részletesebben

Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú í űö ü Í ö Ö ü ö Ö ü ú ü ó ú ó

Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú í űö ü Í ö Ö ü ö Ö ü ú ü ó ú ó ö ü Ö ü ü ó í í ö ö í ü ú ü ó ü ó Ö ö í ú ü ó ó í ó ü ó ü ö Ö ü ö Ö ü ü ü ó Ö ö í ú ó ó ó ó ü ó Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú

Részletesebben

ÊýÊÎýÄÄ ÄÃÇ ýëçã ÁÆÆÇÎý Á Ê Ã Æ Ë Ä¹ Ä Ä Á Ê Á Æ ÃÙØ Ø Ð ÒØ ÊÇËË Ä Å ¼ Å Ã ÁÆÆÇ Öº Ò ¹Ã ýöô Öº Ó Ò Ö Ã ÖÓÐÝ Ã ÃÖ ÞØ Ò Öº ÀÓÖÚ Ø Â Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ

ÊýÊÎýÄÄ ÄÃÇ ýëçã ÁÆÆÇÎý Á Ê Ã Æ Ë Ä¹ Ä Ä Á Ê Á Æ ÃÙØ Ø Ð ÒØ ÊÇËË Ä Å ¼ Å Ã ÁÆÆÇ Öº Ò ¹Ã ýöô Öº Ó Ò Ö Ã ÖÓÐÝ Ã ÃÖ ÞØ Ò Öº ÀÓÖÚ Ø Â Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÊýÊÎýÄÄ ÄÃÇ ýëçã ÁÆÆÇÎý Á Ê Ã Æ Ë Ä¹ Ä Ä Á Ê Á Æ ÃÙØ Ø Ð ÒØ ÊÇËË Ä Å ¼ Å Ã ÁÆÆÇ Öº Ò ¹Ã ýöô Öº Ó Ò Ö Ã ÖÓÐÝ Ã ÃÖ ÞØ Ò Öº ÀÓÖÚ Ø Â Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ Å Þ Þ Ã Ö À Ñ Þ Ú Ö ÐÝ ¾¼½¼ ÁË Æ ¹ ¹ ¼ ¹¼ ¹ Ì ÖØ ÐÓÑ

Részletesebben

Szőts Zoltán Oszkár Témaválasztások az első világháború alatti magyar nyelvű könyvkiadásban Abstract

Szőts Zoltán Oszkár Témaválasztások az első világháború alatti magyar nyelvű könyvkiadásban Abstract ő1őő őő1 ő őű 1111 1111 őű ő őű ű őűű 1 ő 11 ő ű ő ű ű ű ű ű 11 űű ő őű 11 ű 1 Őőű 1Ő1 őőű űű ő őűő ű ő ű 11 ő ű ő ű ő űőő 111 ő ő 11 1 ő ő ű ű ű ő 11őű 11ű 11 11 11 11 11 111 ő1őő őő1 ű ű őőő őő ő ő 111

Részletesebben

170 XIII. Magyar Számítógépes Nyelvészeti Konferencia

170 XIII. Magyar Számítógépes Nyelvészeti Konferencia 170 XIII. Magyar Számítógépes Nyelvészeti Konferencia Å ÐÝ Ò ÙÖÓÒ Ð Þ Ð Ñ Ö ÅÅ¹Ñ ÒØ Ø Ò Ø Ö Þ Ì Ñ 1 Ó ÞØÓÐÝ ÓÖ 1,2 Ì Ø Ä ÞÐ 2 1 ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø ÁÒØ Þ Ø 2 ÅÌ ¹Ë Ì Å Ø Ö ÁÒØ ÐÐ Ò ÃÙØ Ø ÓÔÓÖØ ¹Ñ

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½º½º Þ Ó Ø Ø ØÖÙ Ø Ö ÐØ º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º Ø Ø ÓÒ ÓÞ Ð Ø º º º º º º º º º º º º º º º º º º º

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½º½º Þ Ó Ø Ø ØÖÙ Ø Ö ÐØ º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º Ø Ø ÓÒ ÓÞ Ð Ø º º º º º º º º º º º º º º º º º º º ÞØ Ö ÞÝ Ã ÖÓÐÝ ÓÐ Å Ø Ñ Ø ÁÒ ÓÖÑ Ø ÁÒØ Þ Ø ËÞ Ñ Ø Ø Ò Ú Ö ÒÝ ÃÓÚ ÞÒ Ö ÐÝ ÓÚ Þ Ö º Ø º Ù À ÖÒÝ ÓÐØ Ò ØØÔ»»Û º Ø º Ù»Û»ÀÞ Þ Ö º Ø º Ù Ö ¾¼½¼ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½º½º Þ Ó Ø Ø ØÖÙ Ø Ö ÐØ º º º º º º º º º

Részletesebben

g IJ (G) = η IJ, Γ I JK(G) = 0 ½º½µ

g IJ (G) = η IJ, Γ I JK(G) = 0 ½º½µ ȹ ÖÐ Ø ÐÚ Ð Ô ÀÖ È Ø Ö ½º ÓÖ Ñ ÒØ Ó ÐÑ º Þ ÐØ Ð ÒÓ Ö Ð Ø Ú Ø ÐÑ Ð Ø ÑòÚ Ð Þ ØØ Ý Ø ÖØ Ú Ò Ò Ó Ý ÓÖ Ñ ÒØ Ø Ö ÐØ Ø Ö Ò ÓÖ ÔÖ Ø Ø Ñ Ö Øò Ñ Þ ÑÑ ØÖ Ù ÖÓ Þ ÔÓ µ Ô Ò Ò Þ Ö ÒÝ Ø ÖÓÞÞ Ñ ½ º Þ ¹ Ö ÒØ Ý òö ÐÓ Ð

Részletesebben

Ô ØÖ Ð Ø Ö Ð Ð Ñ ÒÞ Ô ÓÐ Ø Ò Ú Þ Ð Ø Ð ÞÒ Ð Ø Ð òö ÐÚ Ø Ð Ó ÞØ ÐÝÓÞ Ò Ó ØÓÖ Þ ÖØ Ä ÞÐ Á ØÚ Ò Ì Ñ Ú Þ Ø Öº Ø Á ØÚ Ò ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ö ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÈÖÓ º ÒÞ Ö Ò Ö ºËº ÁÒ ÓÖÑ Ö Ò Þ

Részletesebben

Ø Ø Ñ Ð Ò Ø Þ Á Þ Ý Ê Ò Þ Ø Å Ò ÞØ Ö ÙÑ Ú Ð Ñ ÒØ Þ Ñ Ö ÂÓ Ó Å Ý Ö Ã ÞÔÓÒØ Ã Þ Ð Ô ØÚ ÒÝ Ø ÑÓ ØØ ÓÒ Ö Ò Þ ÖÚ Þ È Ý Å Ø ÓÒ Ö Ò Ð Ð Î Ö ¾¼¼ Þ ÖÞ ¾¼¼ Þ Ö

Ø Ø Ñ Ð Ò Ø Þ Á Þ Ý Ê Ò Þ Ø Å Ò ÞØ Ö ÙÑ Ú Ð Ñ ÒØ Þ Ñ Ö ÂÓ Ó Å Ý Ö Ã ÞÔÓÒØ Ã Þ Ð Ô ØÚ ÒÝ Ø ÑÓ ØØ ÓÒ Ö Ò Þ ÖÚ Þ È Ý Å Ø ÓÒ Ö Ò Ð Ð Î Ö ¾¼¼ Þ ÖÞ ¾¼¼ Þ Ö ÍÊ È Á ÂÇ Ë ÂÇ ÁÄÇ Á ÓÒ Ö Ò Ø ÒÙÐÑ ÒÝÓ Þ ÙÖ Ô ÒØ Ö ØÚ Ò Ú ÓÖ ÙÐ Ò ÒÒ Ô Ö Þ Ö ÞØ ØØ Ô Ý Ñ Ø Ë ÆÌ ÁËÌÎýÆ ÌýÊËÍÄ Ì Þ ÔÓ ØÓÐ ËÞ ÒØ Þ Ã ÒÝÚ Ù Ô Ø ¾¼¼ Ø Ø Ñ Ð Ò Ø Þ Á Þ Ý Ê Ò Þ Ø Å Ò ÞØ Ö ÙÑ Ú Ð Ñ ÒØ Þ Ñ Ö ÂÓ

Részletesebben