Házi feladatok megoldása. Veremautomaták. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 12. gyakorlat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Házi feladatok megoldása. Veremautomaták. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 12. gyakorlat"

Átírás

1 Veremutomták Formális nyelvek, 12. gykorlt Házi feldtok megoldás 1. feldt Oldjuk meg következő egyenletrendszert! X () Y = X X Y = Y Célj: A környezet-független nyelvek hsználtávl kpsoltos lpfeldtok egykorlás Foglmk: Szintxis-f, legl és legjo levezetés, ngy Br-Hillel lemm, felülről-lefelé és lulról-felfelé elemzés, LL(k), LR(k) nyelvtnok, verem-utomták. Feldtok jellege: Néhány szintxis-f egy konkrét 2. típusú nyelvtnn. Kisit onyolult nyelvtn esetéen (dott szóhoz) felülről-lefelé és z lulról-felfelé elemzés emuttás. Konkrét nyelvtnr z LL, LR tuljdonság deteketálás, illetve nem teljesülés kimuttás. Ngy Br-Hillel lemm lklmzás konkrét nyelvre. 1 verem építése kifejezésekhez, kettő verem ddogós nyelvhez. 2008/09 I. félév X = ( ) ( () Y ). A második egyenlete helyettesítve: ( ( ) () )Y ( ( ) ) = Y, miől Y = ( ( ) () ) ( ( ) ). Hsonlón: X = ( () 2 ) (() ). Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 1 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 2 / 23 Házi feldtok megoldás 2. feldt Htározzuk meg reguláris kifejezéssel z lái véges determinisztikus utomt áltl elfogdott nyelvet! Házi feldtok megoldás 3. feldt Készítsünk VDA-t következő reguláris kifejezéshez! ( ). q 0 q 1 q 2 q 1 q 3 q 4 q 2 q 3 q 4 q 3 q 0 q 3 q 4 q 4 q 4 X = Y Z Y = V Z = V V = X V V = (X ), Y = (X ), X = ( (X ) ) (X ), X = ( ) X ( ( ) ), X = (( ) ) ( ( ) ). q 3 ( ) (leontássl) q 2 q 1 q 4 q 5 q 6 q 7 q 8 q 9 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 3 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 4 / 23

2 Házi feldtok megoldás 3. feldt Készítsünk VDA-t következő reguláris kifejezéshez! ( ). Házi feldtok megoldás 3. feldt Készítsünk VDA-t következő reguláris kifejezéshez! ( ). (egyszerűsítve) q 1 q 2 q 6 q 8 q 9 (NDA NDA) q 1 q 2 q 6 q 8 q 9 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 5 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 6 / 23 Házi feldtok megoldás 3. feldt Készítsünk VDA-t következő reguláris kifejezéshez! ( ). VDA { } {q 2, q 6, q 9 } {q 1 } { } {q 2, q 6, q 9 } {q 2, q 9 } {q 1, q 6 } {q 8 } {q 1 } {q 2 } {q 1 } { } { } {} {} {} {q 2, q 9 } {q 2, q 9 } {q 1 } {} {q 1, q 6 } {q 2 } {q 1, q 6 } {q 8, } {q 8 } {} {} {q 8 } {q 2 } {q 2 } {q 1 } {} {} {} {} {} {q 8, } {} {} {q 8 } Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 7 / 23 Veremutomták Veremutomt (1-verem) ltt következő 7-est értjük: V = Q, T, Σ, δ, q 0, σ 0, F, hol Q T Σ δ q 0 Q σ 0 Σ F Q z állpotok (véges) hlmz egy áéé, emenő áéé verem áééje állpotátmeneti függvény, δ : Q (T {}) Σ 2 Q Σ kezdőállpot verem kezdőszimólum végállpotok hlmz. A veremutomt egy ütemen kiolvss központi egység állpotát, z input szó ktuális szimólumát és verem tetőelemét, ennek függvényéen új állpot kerül, verem tetőelemét felülírj egy vgy tö jellel (zz egy szóvl), z input szó következő etűjére áll z olvsófej (kivéve -mozgás) és tetőmuttó z új tetőelemre áll. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 8 / 23

3 Veremutomták Elfogdás, determinisztikus veremutomt (q, u, α) álljon zon állpot-veremtrtlom párokól, melyeket z u (T {}) inputsorozt végigolvsás után kphtunk, h kezdeten verem trtlm α és z állpot q, zz rekurzívn: 1. (q, t, σβ) = {(q, τβ) (q, τ) δ(q, t, σ)} 2. (q, vt, α) = {(q, τ) τ = βγ, (q, σγ) (q, v, α), (q, β) δ(q, t, σ)}. (τ, α, β, γ Σ, σ Σ, u, v T, t T, q, q, q Q) Tehát verem trtlmát egy τ Σ szó reprezentálj, verem tetőmuttój szó első etűjére mutt. V végállpottl elfogd egy u szót, h {q Q β Σ, (q, β) (q 0, u, σ 0 )} F. V üres veremmel elfogd egy u szót, h q Q, hogy (q, ) (q 0, u, σ 0 ). Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 9 / 23 Veremutomták Péld 1. Feldt Készítsünk végállpottl elfogdó veremutomtát következő L nyelvhez! L = {u {,, } u = ww 1, w {, } + } V = {q 0, q 1, q 2, q 3 }, {,, }, {#,, }, δ, q 0, #, {q 3 }. δ(q 0, t, #) = (q 1, t#) t {, } δ(q 1, t 1, t 2 ) = (q 1, t 1 t 2 ) t 1, t 2 {, } δ(q 1,, t) = (q 2, t) t {, } δ(q 2, t, t) = (q 2, ) t {, } δ(q 2,, #) = (q 3, #) Determinisztikus veremutomt: olyn veremutomt, melyre q Q, σ Σ, t T {} : δ(q, t, σ) 1. q Q, σ Σ : δ(q,, σ) 0 = t T : δ(q, t, σ) = 0. A fenti veremutomt determinisztikus. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 10 / 23 Veremutomták Péld Az 1. Feldt megoldás átmenetdigrmml: (,#) # (,) (,) (,) (,) (,) (,) (,) (,#) # (,) (, #) # q 0 q 1 q 2 q 3 Tehát veremől egy σ etűt kivenni δ(q, t, σ) = (q, ), verem trtlmát változtlnul hgyni δ(q, t, σ) = (q, σ), egy σ etűt etenni δ(q, t, σ) = (q, σ σ), tetőelemet felülírni egy tetszőleges τ Σ szóvl δ(q, t, σ) = (q, τ) szály megdásávl lehet. Megjegyzés: Nemdeterminisztikus veremutomt esetén δ(q, t, σ) = (q, τ), vlóján zt jelenti, hogy (q, τ) δ(q, t, σ), e helyett δ(q, t, σ)-t töértékűen djuk meg. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 11 / 23 Veremutomták Péld 2. Feldt Készítsünk végállpottl elfogdó veremutomtát következő L nyelvhez! L = {u {, } u = ww 1, w {, } + } V = {q 0, q 1, q 2, q 3 }, {, }, {#,, }, δ, q 0, #, {q 3 }. δ(q 0, t, #) = (q 1, t#) t {, } δ(q 1, t 1, t 2 ) = (q 1, t 1 t 2 ) t 1, t 2 {, } δ(q 1, t, t) = (q 2, ) t {, } δ(q 2, t, t) = (q 2, ) t {, } δ(q 2,, #) = (q 3, #) Itt tehát δ(q 1,, )-nk és δ(q 1,, )-nek két értéke vn, veremutomt nemdeterminisztikus. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 12 / 23

4 Veremutomták Péld 3. Feldt Készítsünk üres veremmel elfogdó veremutomtát sk z változót trtlmzó helyes kifejezések nyelvéhez! V = {q 0, q 1 }, {, +,,, /, (, )}, {#, (}, δ, q 0, #,. δ(q 0,, σ) = (q 1, σ) σ {#, (} δ(q 0, (, σ) = (q 0, (σ) σ {#, (} δ(q 1, t, σ) = (q 0, σ) σ {#, (}, t {+,,, /} δ(q 1, ), () = (q 1, ) δ(q 1,, #) = (q 1, ) δ(q 1,, #) és δ(q 1,, #) sem üres, tehét második feltétel nem teljesül, zz veremutomt nemdeterminisztikus. Veremutomták Péld 4. Feldt Készítsünk üres veremmel elfogdó veremutomtát z L = {u {, } l (u) = l (u)} nyelvhez! V = {q 0 }, {, }, {#, +, }, δ, q 0, #,. δ(q 0,, σ) = (q 0, +σ) σ {#, +} δ(q 0,, ) = (q 0, ) δ(q 0,, σ) = (q 0, σ) σ {#, } δ(q 0,, +) = (q 0, ) δ(q 0,, #) = (q 0, ) δ(q 0,, #) és δ(q 0,, #) sem üres, tehét második feltétel nem teljesül, zz veremutomt nemdeterminisztikus. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 13 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 14 / 23 Veremutomták Összefoglló Ngy Br-Hillel lemm Szükséges feltétel egy nyelv 2. típus trtozásár A determinisztikus veremutomták áltl elfogdott nyelvek osztály vlódi részhlmz veremutomták áltl elfogdott nyelvek osztályánk. A végállpottl és z üres veremmel elfogdó veremutomták áltl elfogdhtó nyelvek osztály megegyezik (ármely veremutomtához készíthető egy másik típusú vele ekvivlens veremutomt). A veremutomták áltl elfogdott nyelvek osztály megegyezik 2-es típusú nyelvtnok áltl generált nyelvek osztályávl (L 2 -vel). Ngy Br-Hillel-lemm Minden L L 2 esetén léteznek p, q > 0 nyelvfüggő egész konstnsok (p = p(l), q = q(l)), melyekre h u L, és l(u) > p, kkor u-nk létezik u = xyzvw felontás, hol l(yv) > 0, l(yzv) q és minden i 0 egészre xy i zv i w L. Kevésé formálisn lényeget következõképpen fejezhetjük ki: L minden elég hosszú szván vn két, egymáshoz közel lévõ, nem triviális, párhuzmosn eiterálhtó részszó. 2-vermek: Ezek már minden L 0 -eli nyelvet el tudnk fogdni, zz z 1-vermekhez képest már két osztálynyi z ugrás. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 15 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 16 / 23

5 Ngy Br-Hillel lemm Ngy Br-Hillel lemm 5. Feldt: L = { n n n n N}? L 2 Nem. Indirekt, tegyük fel, hogy L L 2. Ekkor Ngy Br-Hillel lemm szerint léteznek nyelvfüggő p és q konstnsok. Legyen M = mx{p, q}. Tekintsük z u = M M M szót. Mivel l(u) > M p, ezért Ngy Br-Hillel lemm szerint létezik z u-nk u = xyzvw felontás, hol l(yv) > 0, l(yzv) q M = l( M ) = l( M ) és {xy i zv i w i 0} L. Tehát vgy x, vgy w trtlmzz M -t részszóként. Tegyük fel, hogy x z ( másik eset teljesen nlóg). Vizsgáljuk meg, milyen szvkt kpunk y és v ( kettő közül leglá z egyik nem z üres szó) párhuzmos eiterálás során. A kpott szvk {xy i zv i w i 0}. 5. Feldt: L = { n n n n N}? L 2 (folyttás) H y vgy v vlmelyike k l lkű, hol k, l > 0, kkor eiterálás során olyn szvkt kpnánk melyek felváltv -ól és -ől álló lokkokt trtlmznk. H i 2, kkor ezek szvk nem lesznek L-eliek. H viszont y és v k vgy k lkú (leglá z egyik kitevő pozitív), kkor z iteráióvl olyn szvkt kpunk, melyek M M 1 M 2 lkúk. Így viszont i 2-re mx{m 1, M 2 } > M, zz kpott szó ez eseten sem L-eli, tehát kezdeti, indirekt feltevésünk volt hmis. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 17 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 18 / 23 Ngy Br-Hillel lemm 2. típusú nyelvtnok feletti szintxisfák A szintxisf definíiój 6. Feldt: L = { n2 n N}? L 2 Nem. Indirekt, tegyük fel, hogy L L 2. Ekkor Ngy Br-Hillel lemm szerint léteznek nyelvfüggő p és q konstnsok. Legyen M = mx{p, q}. Tekintsük z u = M2 szót. Mivel l(u) > M p, ezért Ngy Br-Hillel lemm szerint létezik z u-nk u = xyzvw felontás, hol K := l(yv) > 0, l(yzv) q M. xy i zv i w = M2 +(i 1)K. Mivel egy növekvő számtni soroztn iztosn vn nem négyzetszám, ezért Ngy Br-Hillel lemm feltétele nem teljesül, tehát L L 2. Legyen G = T, N, P, S tetszőleges 2-es típusú nyelvtn. A t nemüres fát G feletti szintxisfánk nevezzük, h: 1) Pontji T N {} elemeivel vnnk ímkézve. 2) Belső pontji N elemeivel vnnk ímkézve. 3) H egy első pont ímkéje X, közvetlen leszármzottjink ímkéi pedig lról jor olvsv X 1, X 2,..., X k, kkor X X 1 X 2... X k P. 4) Az -nl ímkézett pontoknk nins testvére. Szintxisfákkl levezetések szerkezetét árázoljuk. Jelölje egy dott t szintxisf leveleinek lról jor vló összeolvsását front(t), f gyökerét pedig gy(t). Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 19 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 20 / 23

6 2. típusú nyelvtnok feletti szintxisfák Legl és legjo levezetések 2. típusú nyelvtnok feletti szintxisfák Egyértelmű nyelv(tn) Legl illetve legjo levezetés: H levezetés folymán vlmely poziión ( mondtform i. etûjén) helyettesítés történik, kkor korái (1,..., i 1) illetve késői (i + 1, i + 2,...) pozíiókt levezetés már nem érinti. Legl (legjo) mondtform: Vlmely L(G)-eli szó legl (legjo) levezetése során elõforduló mondtform. Elemzés: u egy szintxisfájánk elkészítése, zz melyre gy(t) = S, és front(t) = u. A szóprolém eldöntésének szintxisf konstrukióján lpuló módszere jól hsználhtó progrmnyelvek elemzéséhez, ugynis z eljárás így z elemzendõ szó szerkezetét is megdj. Egyértelmű nyelvtn: minden u L(G)-nek pontosn egy szintxisfáj létezik. Egyértelmű nyelv: Létezik 2. típusú egyértelmű nyelvtn, mi generálj. Lényegesen nem egyértelmű nyelv: H nem létezik 2. típusú egyértelmű nyelvtn, mi generálj. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 21 / 23 Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 22 / típusú nyelvtnok feletti szintxisfák 7. Feldt: G = {,, }, {S}, {S SS SS }, S ) Mutssunk példát egy leglá 7 hosszúságú szó legjo levezetésére! ) Egyértelmű-e nyelvtn? ) Egyeértelmű-e z L(G) nyelv? ) S SS SSS SSSS SSS SS S ) Nem, például. (S SS SSS és S SS SSS levezetéskezdetekhez más szintxisf trtozik.) ) Igen, például: G = {,, }, {S, A}, {S A AS, A A}, S. Formális nyelvek (12. gykorlt) Veremutomták 2008/09 I. félév 23 / 23

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

Formális nyelvek. Aszalós László, Mihálydeák Tamás. Számítógéptudományi Tanszék. December 6, 2017

Formális nyelvek. Aszalós László, Mihálydeák Tamás. Számítógéptudományi Tanszék. December 6, 2017 Formális nyelvek Aszlós László, Mihálydeák Tmás Számítógéptudományi Tnszék Deember 6, 2017 Aszlós, Mihálydeák Formális nyelvek Deember 6, 2017 1 / 17 Problémfelvetés Az informtikábn ngyon gykori feldt

Részletesebben

Környezetfüggetlen nyelvek

Környezetfüggetlen nyelvek Környezetfüggetlen nyelvek Kiegészítő nyg z Algoritmuselmélet tárgyhoz ( ónyi Ivnyos Szó: Algoritmusok könyv mellé) Friedl Ktlin BM SZI friedl@cs.me.hu 2017. ugusztus 3. A reguláris nyelveket véges utomtákkl

Részletesebben

Az LR elemző felépítése. Léptetés. Redukálás. Kiegészített grammatika. Mit kell redukálni? Kiegészített grammatika. elemző. elemző.

Az LR elemző felépítése. Léptetés. Redukálás. Kiegészített grammatika. Mit kell redukálni? Kiegészített grammatika. elemző. elemző. Emlékeztető Emlékeztető: elemzési irányok Felülről lefelé lulról felfelé LR elemzések (z LR() elemzés) () () () () B B Forítóprogrmok előás (,C,T szkirány) () () () () () () () B () B () () () B () Ez

Részletesebben

4. Legyen Σ = {0, 1}. Adjon meg egy determinisztikus véges automatát, amely azokat a szavakat fogadja el,

4. Legyen Σ = {0, 1}. Adjon meg egy determinisztikus véges automatát, amely azokat a szavakat fogadja el, lgoritmuselmélet 29 2 gykorlt Véges utomták Legyen Σ = {, } djon meg egy determinisztikus véges utomtát, mely zokt szvkt fogdj el, melyeken páros sok null és pártln sok egyes vn! z ötlet z, hogy számoljuk

Részletesebben

Környezetfüggetlen nyelvek

Környezetfüggetlen nyelvek Környezetfüggetlen nyelvek Kiegészítő nyg z Algoritmuselmélet tárgyhoz VI. ( ónyi Ivnyos Szó: Algoritmusok könyv mellé) Friedl Ktlin BM SZI friedl@cs.me.hu 2016. feruár 24. A reguláris nyelveket véges

Részletesebben

Irodalom. Formális nyelvek I/1. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004.

Irodalom. Formális nyelvek I/1. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004. Irodlom Formális nyelvek I/1. Véges utomták és reguláris nyelvek Fülöp Zoltán SZTE TTIK Informtiki Intézet Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Fülöp Zoltán, Formális nyelvek és szintktikus

Részletesebben

Irodalom. Formális nyelvek I. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004.

Irodalom. Formális nyelvek I. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004. Irodlom Formális nyelvek I. Véges utomták és reguláris nyelvek Fülöp Zoltán SZTE TTK Informtiki Tnszékcsoport Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Fülöp Zoltán, Formális nyelvek és szintktikus

Részletesebben

Formális nyelvek I/2.

Formális nyelvek I/2. Formális nyelvek I/2. Véges utomták minimlizálás Fülöp Zoltán SZTE TTIK Informtiki Intézet Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Véges utomták minimlizálás Két utomt ekvivlens, h ugynzt

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

4. előadás Determinisztikus véges automaták

4. előadás Determinisztikus véges automaták Formális nyelvek és utomták 4. elődás Determinisztikus véges utomták dr. Kllós Gáor 2017 2018 Formális nyelvek és utomták Trtlom Determinisztikus véges utomták Meghtározás, működés Átmeneti reláció (ismételt

Részletesebben

Fonya ZH recap szabivános typo lehet, bocs

Fonya ZH recap szabivános typo lehet, bocs Fony ZH recp 2015 szivános typo lehet, ocs Regexől DFA-t. Erre direkt lgoritmust nem néztünk, olyt tudunk, hogy regexől NFA-t, ztán olyt, hogy NFA-t determinizálni. Nézzük ezeket lépésenként. Thompson

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

Programtervezési ismeretek

Programtervezési ismeretek Progrmtervezési ismeretek Feldtok gykorláshoz 1. Hlmzok m veletek 1. Tekintsük z A = {α β γ ζ} és B = {igz hmis} hlmzokt! Írjuk fel z A A A B B A B B Déscrtes szorztokt! Írjuk fel 2 A 2 B hlmzokt! Írjuk

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

Nyelvek és Automaták

Nyelvek és Automaták Budpesti Műszki és Gzdságtudományi Egyetem dr. Friedl Ktlin Nyelvek és Automták Óri jegyzet, 200. Szerkesztette: Horváth Ádám Mészégető Blázs Előszó A jelen jegyzet elsősorbn Budpesti Műszki és Gzdságtudományi

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert: . Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum

Részletesebben

Logika és számításelmélet. 10. előadás

Logika és számításelmélet. 10. előadás Logika és számításelmélet 10. előadás Rice tétel Rekurzíve felsorolható nyelvek tulajdonságai Tetszőleges P RE halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. P triviális, ha P

Részletesebben

Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek!

Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek! Feladatok 1. A CYK algoritmus segítségével döntsük el, hogy cabcab eleme-e a G = {a, b, c}, {S, A, B, C, D, E}, P, S nyelvtan által generált nyelvnek! P: S AD EB SS A AB a B DD b C CB c D EC a E AD b 2.

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb: Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

4. előadás: A vetületek általános elmélete

4. előadás: A vetületek általános elmélete 4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Formális nyelvek és automaták

Formális nyelvek és automaták Formális nyelvek és utomták Horváth Árpád 2015. április 21. Nézzük először vázltosn félév fontosbb foglmit! Nyelvek, nyelvtnok és utomták kpcsolt áltlábn (formális) nyelv szvk hlmz Például C, Jv nyelvek,

Részletesebben

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:

Részletesebben

Véges automaták, reguláris nyelvek

Véges automaták, reguláris nyelvek Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata

Részletesebben

24. MŰVELETI ERŐSÍTŐK ALKALMAZÁSAI

24. MŰVELETI ERŐSÍTŐK ALKALMAZÁSAI 24. MŰVELETI EŐSÍTŐK ALKALMAZÁSAI élkitűzés: Az elektroniki gondolkodásmód fejlesztése. I. Elméleti áttekintés A műveleti erősítőkkel (továikn ME) csknem minden, nem túlságosn ngyfrekvenciás elektroniki

Részletesebben

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása.

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása. VEL.4 Aszimmetrikus hiák számítási módszere, hálózti elemek sorrendi helyettesítő vázlti. Aszimmetrikus zárltok számítás. Szimmetrikus összetevők módszere Alpelve, hogy ármilyen tetszőleges szimmetrikus

Részletesebben

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára 8. évfolym MNy1 feltlp MAGYAR NYELVI FELADATLAP 8. évfolymosok számár 2013. jnuár 19. 10:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügyelj küllkr! A feltokt tetszés szerinti sorrenen olhto meg. A

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket! Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük

Részletesebben

Egy látószög - feladat

Egy látószög - feladat Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Házi feladatok megoldása. Nyelvek felismerése. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 5. gyakorlat

Házi feladatok megoldása. Nyelvek felismerése. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 5. gyakorlat Házi feladatok megoldása Nyelvek felismerése Formális nyelvek, 5. gyakorlat 1. feladat Adjunk a következő nyelvet generáló 3. típusú nyelvtant! Azon M-áris számrendszerbeli számok, melyek d-vel osztva

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 26. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 26. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 3. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 03

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

Formális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések

Formális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések 1. Feladat Az első feladatban szereplő - kérdések 1 Minden környezet független nyelv felismerhető veremautomatával. Minden környezet független nyelv felismerhető 1 veremmel. Minden 3. típusú nyelv felismerhető

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L

Részletesebben

Győry Ákos: A Titu-lemma. A Titu-lemma. Győry Ákos Földes Ferenc Gimnázium, Miskolc

Győry Ákos: A Titu-lemma. A Titu-lemma. Győry Ákos Földes Ferenc Gimnázium, Miskolc A Titu-lemm Győry Ákos Földes Feren Gimnázium, Miskol Az lái feldtsort jórészt z 5. Rátz László Vándorgyűlésen elhngzott nygól állítottm össze, néhány feldttl kiegészítettem, néhol pedig új izonyításokkl

Részletesebben

Mérnöki modellalkotás Az elmélettől a gyakorlatig. Prefix fák tömörítése: a dinamikus programozás

Mérnöki modellalkotás Az elmélettől a gyakorlatig. Prefix fák tömörítése: a dinamikus programozás Mérnöki modelllkotás Az elmélettől gykorltig Prefix fák tömörítése: dinmikus progrmozás Trtlom Ismétlés: IP forglomtováítás és LPM prefix fák és fejárások normlizálás: minimális prefix-mentes form FIB

Részletesebben

3.1. Halmazok számossága

3.1. Halmazok számossága 38 Győri István, Hrtung Ferenc: MA1114f és MA6116 elődásjegyzet, 2006/2007 3. Mérték- és integrálelmélet 3.1. Hlmzok számosság Azt mondjuk, hogy egy véges A hlmz számosság n, h z A hlmz n db elemből áll.

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 7. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

Vektorok (folytatás)

Vektorok (folytatás) Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri

Részletesebben

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják. 5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás 7. feruár.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény folytonos z, intervllumon, vlmint létezik f()d htárérték

Részletesebben

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom: Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok /0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

Mintafeladatsor. Ismerd fel a szabályt, majd folytasd a sort még két elemmel! Ügyelj a szófajra is! Toldalékos szavakat nem írhatsz!

Mintafeladatsor. Ismerd fel a szabályt, majd folytasd a sort még két elemmel! Ügyelj a szófajra is! Toldalékos szavakat nem írhatsz! MRO Histori Telefon: 06-1/336-1656 E-mil: info@felvesznek.hu Mintfeltsor 1. Ismer fel szályt, mj folyts sort még két elemmel! Ügyelj szófjr is! Tollékos szvkt nem írhtsz! ) rk, rát, rár,...,... ) megolvs,

Részletesebben

Formális nyelvek - 9.

Formális nyelvek - 9. Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges

Részletesebben

Többváltozós analízis gyakorlat

Többváltozós analízis gyakorlat Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete

Részletesebben

Deníciók és tételek a beugró vizsgára

Deníciók és tételek a beugró vizsgára Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,

Részletesebben

Emelt szintő érettségi tételek. 3. tétel: Nevezetes ponthalmazok síkban és térben

Emelt szintő érettségi tételek. 3. tétel: Nevezetes ponthalmazok síkban és térben . tétel: Nevezetes ponthlmzok síkn és téren Ponthlmzok: Sík vgy tér részhlmzi, áltlán utsításokkl djuk meg: A P x; y R x + y = B= R Nevezetes ponthlmzok: = { ( ) } vgy { PO= r, r>. Két pont szkszfelezı

Részletesebben

Törésmechanika. Statikus törésmechanikai vizsgálatok

Törésmechanika. Statikus törésmechanikai vizsgálatok Törésmechnik (Gykorlti segédlet) A C törési szívósság meghtározás Sttikus törésmechniki vizsgáltok A vizsgáltokt áltlábn z 1. és. ábrán láthtó úgynevezett háromontos hjlító (TPB) illetve CT róbtesteken

Részletesebben

A számítógépes nyelvészet elmélete és gyakorlata. Automaták

A számítógépes nyelvészet elmélete és gyakorlata. Automaták A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben