Környezetfüggetlen nyelvek
|
|
- Renáta Balog
- 5 évvel ezelőtt
- Látták:
Átírás
1 Környezetfüggetlen nyelvek Kiegészítő nyg z Algoritmuselmélet tárgyhoz ( ónyi Ivnyos Szó: Algoritmusok könyv mellé) Friedl Ktlin BM SZI friedl@cs.me.hu ugusztus 3. A reguláris nyelveket véges utomtákkl vgy reguláris kifejezésekkel dtuk meg. ermészetesen vnnk továi lehetőségek is. Most nyelveken levő szályszerűségek egy másmilyen megdásáról lesz szó, mi reguláris nyelveken túl is lklmzhtó. z formális nyelvtn vgy röviden nyelvtn. A formális nyelvtnok nem egészen olynok, mint például mgyr nyelvtn. Bár eredetileg természetes nyelvek szályink leírásár készültek, de könnyeen hsználhtók mesterséges nyelvek, például progrmozási nyelvek pontos megdásár, mint egy eszélt nyelv helyes mondtink tökéletes leírásár. 1. Környezetfüggetlen nyelvtn A formális nyelvtnok lényegéen átírási szályokt dnk meg, melyekkel egy kezdő szimólumól kiindulv szvkt tudunk előállítni. A formális nyelvtnoknk itt csk egy speciális, tlán leggykrn hsznált fjtájávl fogllkozunk, mi már önmgán is elég hhoz, hogy nem reguláris nyelvet is leírjunk vele. 1. Definíció. gy környezetfüggetlen nyelvtn (röviden CF nyelvtn) ltt egy olyn G = (V, Σ, S, P ) rendszert értünk, hol V egy véges, nem üres hlmz, változók (vgy nemterminálisok) hlmz, Σ z áécé, krkterek (vgy terminálisok) hlmz. Feltétel, hogy V Σ =. S V kezdő változó, 1
2 P egy véges hlmz, z ún. levezetési (vgy produkciós, illetve átírási) szályok hlmz. P elemei A α lkúk, hol A V egy változó, α (V Σ) egy változókól és Σ elemeiől álló tetszőleges, véges hosszú sorozt. 1. Péld. Legyen V = {A}, Σ = {, }, kezdő változó természetesen z A, levezetési szályok hlmz pedig P = {A A, A ε}. zzel meg is dtunk egy CF nyelvtnt. A nyelvtnok megdásánál sokszor nem írjuk ki z összes prmétert, csk levezetési szályokt soroljuk fel. H mást nem mondunk, kkor szályokn szereplő kisetűk Σ elemei, ngyetűk változók, z első szály l oldl kezdő változó. ováá zok szályok, melyeknek l oldlán ugynz áll, összevonhtók, függőleges vonlll válsztjuk el különöző jo oldlkt. en formán z előző nyelvtn így néz ki: A A ε Amikor egy szót krunk megkpni, kezdő szimólumól indulunk ki, és minden lépésen z egyik változót helyettesítjük egy hozzá trtozó szály jo oldlávl. A cél, hogy végül egy olyn soroztot kpjunk, mien már nincs változó. Formálisn: 2. Definíció. gy G = (V, Σ, S, P ) nyelvtnnál levezetés ltt egy olyn γ 0 γ 1 γ 2 γ n véges hosszú soroztot értünk (n 0), melyen γ 0 = S, továá γ i (V Σ), és mindegyik γ i+1 megkphtó γ i -ől egy levezetési szály lklmzásávl. z zt jelenti, hogy minden 0 i < n esetén γ i felírhtó γ i = δ 1 Aδ 2 lkn, hol δ 1, δ 2 (V Σ) és A V úgy, hogy γ i+1 = δ 1 αδ 2 hol A α egy P -hez trtozó levezetési szály. 2. Péld. Az előző nyelvtn esetén egy levezetés pl. z lái A A A A (Az utolsó lépésen keletkezett ε üres részszót nem tüntettük fel kpott szó közepén, hiszen ez itt nem efolyásolj, hogy mi is szó.) Az így levezetett szó z. Könnyű látni, hogy eől nyelvtnól pontosn zok Σ = {, } feletti szvk vezethetők le, melyek n n lkúk (n 0). 1. Megjegyzés. Vegyük észre, hogy példán szereplő nyelvtn egy nem reguláris nyelvet htároz meg! 2
3 A levezetések közül zok lesznek számunkr érdekesek, melyeken kezdő változóól indulv végül egy olyn krktersorozthoz jutunk, mien már nincsenek változók. 3. Definíció. A G = (V, Σ, S, P ) nyelvtn áltl generált L(G) nyelv zokól w Σ szvkól áll, melyekhez vlmilyen n 0 számr vn olyn S γ 1 γ 2 γ n levezetés, mien γ n = w 2. Megjegyzés. Vegyük észre, hogy h egy levezetés során eljutunk egy w Σ szóhoz, kkor levezetés tová már iztos nem folytthtó, mivel w nem trtlmz változót, ilyenkor már egyetlen szály sem lklmzhtó. 3. Péld. ekintsük z lái nyelvtnt! S S S Itt tehát z egyetlen változó z S, z áécé z {, }. A nyelvtnól levezethető pl. z szó: S S Az is látszik, hogy nyelvtn áltl generált nyelv {, } -ól z összes nem üres szót trtlmzz, zz L = {, } \ {ε}. z zért igz, mert egy tetszőleges, leglá 1 hosszú w {, } szónk elölről kezdve egymás után tudjuk generálni krktereit: míg nem z utolsó krkterről vn szó, ddig z vgy z első vgy második szállyl, z utolsó krkter pedig 3. vgy 4. szállyl állíthtó elő. 1. Feldt. Mely szvkól áll z lái nyelvtn áltl generált nyelv? S ε Megoldás: Jelölje L zt nyelvet, mi zokól nem üres szvkól áll, melyeken z első krkter megegyezik z utolsóvl. Látszik, hogy S-ől csk ilyen szvk vezethetők le, zz h L(G) jelöli generált nyelvet, kkor L(G) L. Megmuttjuk, hogy itt egyenlőség vn, zz hogy minden L-eli szó levezethető. hhez vegyük észre, hogy -ől minden és etűkől álló sorozt előállíthtó z előző példához hsonlón. Az S szályi lehetővé teszik, hogy szó első és utolsó krkterét generáljuk. H 1-nél hossz L-eli szót krunk, kkor ez két krkter között levő részszót -ől elő tudjuk állítni. 2. Feldt. Legyen Σ = {, } és L álljon zokól szvkól, melyeken z etűk szám megegyezik etűk számávl. Adjunk olyn G nyelvtnt, mire L(G) = L. Megoldás: gy lehetséges megoldás: S SS SS ε 3
4 Ahhoz, hogy ez vlón jó nyelvtn, először is vegyük észre, hogy minden eseten, mikor vlmelyik szályt lklmzzuk, ugynnnyi -t generálunk, mint hány -t ezért L(G) L. Azt kell még megmuttni, hogy minden w L szó levezethető nyelvtnól. zt w hossz szerinti indukcióvl látjuk e. Nyilván ez igz 0 hosszú w = ε szór. gy hosszú szó nincs z L nyelven. A kettő hosszú szvkr is könnyű látni, mert vgy z első vgy második szály egyszeri lklmzás után hrmdik szályt kétszer hsználv megkphtjuk w szót. együk fel, hogy L legfelje k hosszú szviról már tudjuk, hogy levezethetők és legyen w = k + 1. ö eset lehetséges: mennyien w = w, kkor w L és een z eseten z S SS kezdés után S első előfordulásáól, z indukciós feltevés szerint w levezethető. A második S etűre z S ε szályt lklmzv megkpjuk w szót. Hsonlón járhtunk el, mennyien w = w. H viszont w első és utolsó etűje megegyezik, és ez etű mondjuk, kkor vegyük w-nek egy legrövide nem üres kezdőszeletét, mien ugynnnyi vn mint. Ilyen iztos vn, hiszen teljes szón ugynnnyi vn mindkét etűől. Legyen ez x és w = xy. kkor válsztásunk mitt x L, miől y L is következik. Másrészt x, mivel -vl kezdődött, ezért -re végződik, zz x = z lkú, hol z L. gy ilyen w-re jó levezetést kpunk, h z S SS lépés után z első S-ől z-t, másodikól z y-t vezetjük le (mi z indukciós feltevés mitt lehetséges). Hsonlón járhtunk el kkor is, mikor w első etűje, csk ilyenkor levezetés z S SS szállyl indul. (Vlóján z első két esetre nincs is szükség. H szó -vl kezdődik, és x legrövide kezdőszelet, mien ugynnnyi vn mindkét etűől, kkor z mindig igz, hogy w = xy = zy. és z, y L, de z előfordulht, hogy y z üres szó, mi viszont levezetést nem zvrj.) Nézzünk egy kicsit onyolult nyelvtnt! 4. Péld. S (1-2) S (3-4) ε (5-7) (8-9) z is környezetfüggetlen nyelvtn, hol kezdő változó z. Az lái levezetésen, zért, hogy könnye legyen követni, z láhúzott rész jelöli következőként lklmzott szály l oldlát, nyíl feletti szám szály sorszámát S 8 S 9 S 8 9 S 8 S ehát kpott szó L(G). 4
5 A fenti levezetés során tö válsztásunk is volt, hogy melyik változót melyik szály lpján helyettesítsük. 2. Levezetési f, egyértelműség gy levezetés sokszor jon áttekinthető h lépéseket egy fá rendezzük. 4. Definíció. Legyen G egy környezetfüggetlen nyelvtn és x egy szó. Az x levezetési fáj G-en egy gyökeres f, melyen gyökér kezdő változóvl, minden nem levél csúcs egy változóvl, minden levél Σ egy elemével vgy ε-nl vn címkézve. H egy A csúcs gyerekei lról jor olvsv B 1, B 2,..., B k, kkor nyelvtnnk vn A B 1 B 2... B k szály. (Itt B i Σ V {ε}.) A levelekeli krkterek lról jor olvsv éppen z x szót dják. A definícióól világos, hogy egy x L(G) szó tetszőleges levezetéséől lehet levezetési fát készíteni, és levezetési fáól is kiolvshtó leglá egy levezetés. Fontos zonn megjegyezni, hogy míg levezetés egyértelműen meghtározz fát, visszfelé ez nem igz, áltlán egy levezetési fáól ugynnnk szónk tö levezetése is kiolvshtó, hiszen például válszthtunk, milyen sorrenden lépjünk tová z egyes ágkon. 5. Definíció. gy x L(G) szó l-levezetése egy olyn levezetés, mikor minden lépésen γ i elejéhez legközelei változót helyettesítjük egy megfelelő nyelvtni szály lpján. rre már igz, hogy egy levezetési fáól egyetlen l-levezetés olvshtó ki. 5. Péld. Az előző példán leírt levezetéshez trtozó levezetési f. ől töféle levezetés is leolvshtó, l-levezetés szályi sorrenden: 1, 8, 1, 9, 2, 3, 5, 9, 7, 9, 8, 8. Jo oldlt egy ugynehhez szóhoz trtozó másik levezetési f láthtó. 5
6 S S ε ε 6. Definíció. gy w L(G) szó egyértelműen levezethető G nyelvtnól, h G-en egyetlen levezetési fáj vn. A G nyelvtn egyértelmű, h G-ől minden w L(G) szó egyértelműen levezethető. Az L nyelv egyértelmű, h létezik egyértelmű nyelvtn. zek szerint z előző példeli szó nem egyértelműen levezethető, hiszen két különöző levezetési fáj is vn. Így persze nyelvtn sem egyértelmű. 3. Megjegyzés. Az egyértelműen levezethetőség fenti definíciój ekvivlens zzl, hogy szó l-levezetése egyértelmű. Lássunk most egy fontos példát, z ritmetiki kifejezések nyelvét. Csk összedást és szorzást fogunk enne hsználni, de kiegészíthető továi műveletekkel is. Az egyszerű ritmetiki nyelvtn: + () (1) Itt z egyetlen változó, z áécé elemei pedig +,,, vlmint nyitó és csukó zárójel. z egy nem egyértelmű nyelvtn, hiszen például z + kifejezéshez két különöző levezetési f is trtozik, + + 6
7 4. Megjegyzés. H erre két fár nem mint levezetési fákr, hnem mint kifejezés kiértékelésének módját megdó fákr gondolunk, kkor látszik, hogy míg z első megfelel z ritmetiki kifejezések szokásos kiértékelésének (elő szorzást végezzük el, után z összedást) második,,rossz sorrenden végzi műveleteket. 1. étel. Az elő látott (1) egyszerű ritmetiki nyelvtn nem egyértelmű, de z áltl generált nyelv egy egyértelmű nyelv. Bizonyítás vázlt: Jelölje G z egyszerű ritmetiki nyelvtnt. Az elő már láttuk, hogy G nem egyértelmű. A nyelv egyértelműségéhez muttnunk kell egy másik G nyelvtnt, mi egyértelmű nyelvtnt és mire L(G ) = L(G). Legyen G következő: + F F F () Világos, hogy G nyelvtnnl levezethető ritmetiki kifejezések levezethetők z eredeti nyelvtnól is. Azt kell megmuttni, hogy h w L(G), kkor w L(G ) is teljesül, sőt G -eli levezetési fáj egyértelmű. zt w hossz szerinti indukcióvl mutthtjuk meg. H w = 1, kkor csk w = lehet, és ez megkphtó G -en z F levezetéssel, és könnyű látni, hogy másként nem. Hossz szvkr zt kell észrevenni, hogy h vnnk zárójelen kívüli + jelek, kkor először ezeket kell generálni (sorrenden visszfelé) z első szály segítségével, után zárójelen kívüli jeleket, mjd zárójeleken levő kifejezéseket. 5. Megjegyzés. Vegyük észre, hogy een módosított nyelvtnn h levezetési fát kiértékelési fánk tekintjük, kkor műveletek sorrendje szokásos lesz
Környezetfüggetlen nyelvek
Környezetfüggetlen nyelvek Kiegészítő nyg z Algoritmuselmélet tárgyhoz VI. ( ónyi Ivnyos Szó: Algoritmusok könyv mellé) Friedl Ktlin BM SZI friedl@cs.me.hu 2016. feruár 24. A reguláris nyelveket véges
Házi feladatok megoldása. Veremautomaták. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 12. gyakorlat
Veremutomták Formális nyelvek, 12. gykorlt Házi feldtok megoldás 1. feldt Oldjuk meg következő egyenletrendszert! X () Y = X X Y = Y Célj: A környezet-független nyelvek hsználtávl kpsoltos lpfeldtok egykorlás
Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése
Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q
4. Legyen Σ = {0, 1}. Adjon meg egy determinisztikus véges automatát, amely azokat a szavakat fogadja el,
lgoritmuselmélet 29 2 gykorlt Véges utomták Legyen Σ = {, } djon meg egy determinisztikus véges utomtát, mely zokt szvkt fogdj el, melyeken páros sok null és pártln sok egyes vn! z ötlet z, hogy számoljuk
Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása
Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0
Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása
Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer
Irodalom. Formális nyelvek I. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004.
Irodlom Formális nyelvek I. Véges utomták és reguláris nyelvek Fülöp Zoltán SZTE TTK Informtiki Tnszékcsoport Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Fülöp Zoltán, Formális nyelvek és szintktikus
Irodalom. Formális nyelvek I/1. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004.
Irodlom Formális nyelvek I/1. Véges utomták és reguláris nyelvek Fülöp Zoltán SZTE TTIK Informtiki Intézet Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Fülöp Zoltán, Formális nyelvek és szintktikus
Formális nyelvek. Aszalós László, Mihálydeák Tamás. Számítógéptudományi Tanszék. December 6, 2017
Formális nyelvek Aszlós László, Mihálydeák Tmás Számítógéptudományi Tnszék Deember 6, 2017 Aszlós, Mihálydeák Formális nyelvek Deember 6, 2017 1 / 17 Problémfelvetés Az informtikábn ngyon gykori feldt
Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)
Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér
5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
Az LR elemző felépítése. Léptetés. Redukálás. Kiegészített grammatika. Mit kell redukálni? Kiegészített grammatika. elemző. elemző.
Emlékeztető Emlékeztető: elemzési irányok Felülről lefelé lulról felfelé LR elemzések (z LR() elemzés) () () () () B B Forítóprogrmok előás (,C,T szkirány) () () () () () () () B () B () () () B () Ez
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
2007. jnuár 26. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. jnuár 26. 15:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
2009. jnuár 23. MATEMATIKA FELADATLAP 4. évfolymosok számár 2009. jnuár 23. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto
IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
Formális nyelvek I/2.
Formális nyelvek I/2. Véges utomták minimlizálás Fülöp Zoltán SZTE TTIK Informtiki Intézet Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Véges utomták minimlizálás Két utomt ekvivlens, h ugynzt
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
4. évfolym AMt3 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 20. jnuár 28. 1:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám
7. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02
FELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2008. jnuár 26. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 26. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
Fonya ZH recap szabivános typo lehet, bocs
Fony ZH recp 2015 szivános typo lehet, ocs Regexől DFA-t. Erre direkt lgoritmust nem néztünk, olyt tudunk, hogy regexől NFA-t, ztán olyt, hogy NFA-t determinizálni. Nézzük ezeket lépésenként. Thompson
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis
PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám
3. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 03
A Riemann-integrál intervallumon I.
A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
4. előadás: A vetületek általános elmélete
4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1
Házi feladatok megoldása. Nyelvek felismerése. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 5. gyakorlat
Házi feladatok megoldása Nyelvek felismerése Formális nyelvek, 5. gyakorlat 1. feladat Adjunk a következő nyelvet generáló 3. típusú nyelvtant! Azon M-áris számrendszerbeli számok, melyek d-vel osztva
1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,
Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt
Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek!
Feladatok 1. A CYK algoritmus segítségével döntsük el, hogy cabcab eleme-e a G = {a, b, c}, {S, A, B, C, D, E}, P, S nyelvtan által generált nyelvnek! P: S AD EB SS A AB a B DD b C CB c D EC a E AD b 2.
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
2006. feruár 2. MATEMATIKA FELADATLAP 6. évfolymosok számár 2006. feruár 2. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon
5. A logaritmus fogalma, a logaritmus azonosságai
A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton
Kombinációs hálózatok egyszerűsítése
Komináiós hálóztok egyszerűsítése enesózky Zoltán 24 jegyzetet szerzői jog véi. zt ME hllgtói hsználhtják, nyomtthtják tnulás éljáól. Minen egyé felhsználáshoz szerző elegyezése szükséges. él: speifikáióvl
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
4. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2010. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
4. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2014. jnuár 18. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Lineáris programozás
Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
4. Hatványozás, gyökvonás
I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)
9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek
. Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen
Nyelvek és Automaták
Budpesti Műszki és Gzdságtudományi Egyetem dr. Friedl Ktlin Nyelvek és Automták Óri jegyzet, 200. Szerkesztette: Horváth Ádám Mészégető Blázs Előszó A jelen jegyzet elsősorbn Budpesti Műszki és Gzdságtudományi
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
Chomsky-féle hierarchia
http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.
MATEMATIKA FELADATLAP
MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt :00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
2006. jnuár 27. MATEMATIKA FELADATLAP 6. évfolymosok számár 2006. jnuár 27. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon
Automaták és formális nyelvek
Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym Mt1 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2013. jnuár 18. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2017. jnuár 21. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
Arányosság. törtszámot az a és a b szám arányának, egyszer en aránynak nevezzük.
Arányosság Az törtszámot z és szám rányánk, egyszeren ránynk nevezzük. Az rány értéke zt ejezi ki, hogy z szám hányszor ngyo számnál, illetve szám hányszor kise z számnál. Az rányokkl végezhet két legontos
I. HALMAZOK, KOMBINATORIKA
I HLMZOK, KOMINTORIK VEGYES KOMINTORIKI FELDTOK dott 9 külsõre egyform érme z érmék közül z egyik hmis, tömege könnye töinél Rendelkezésünkre áll egy kétkrú mérleg, mellyel összehsonlításokt tudunk végezni
2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.
PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám
2. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02
M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:
Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
4. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2014. jnuár 23. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
4. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár : ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg. Minden
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
Logika és számításelmélet. 10. előadás
Logika és számításelmélet 10. előadás Rice tétel Rekurzíve felsorolható nyelvek tulajdonságai Tetszőleges P RE halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. P triviális, ha P
4. előadás Determinisztikus véges automaták
Formális nyelvek és utomták 4. elődás Determinisztikus véges utomták dr. Kllós Gáor 2017 2018 Formális nyelvek és utomták Trtlom Determinisztikus véges utomták Meghtározás, működés Átmeneti reláció (ismételt
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
Szinusz- és koszinusztétel
Szinusz- és koszinusztétel. Htározzuk meg z oldlk rányát, h α 0, β 60. α + β + γ 80 γ 80 α β 80 0 60 90 A szinusztételt felhsználv z oldlk rány: zz : : : sin β : sin 0 : sin 60 : sin 90 : : : : : :. Htározzuk
Formális nyelvek - 5.
Formális nyelvek - 5. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Lineáris
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.
Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (
Gyökvonás. Hatvány, gyök, logaritmus áttekintés
Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R
Megint a szíjhajtásról
Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0
PÉLDA: Négyezer-hatszázöt Jel Szám
15. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 05
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2011. jnuár 21. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.
Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L
Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük
Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált
GAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
2009. jnuár 29. MATEMATIKA FELADATLAP 4. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012
Konfár László Kozmáné Jk Ágnes Pintér Klár sokszínû munkfüzet 8 Hrmdik, változtln kidás Mozik Kidó Szeged, 0 Szerzõk: KONFÁR LÁSZLÓ áltlános iskoli szkvezetõ tnár KOZMÁNÉ JK ÁGNES áltlános iskoli szkvezetõ
MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára
8. évfolym MNy2 feltlp MAGYAR NYELVI FELADATLAP 8. évfolymosok számár 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügyelj küllkr és helyesírásr! A feltokt tetszés szerinti sorrenen olhto meg. A megolásr
Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (
9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R
VI. Deriválható függvények tulajdonságai
1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn
Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym Mt1 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2015. jnuár 17. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7