Automaták és formális nyelvek
|
|
- Júlia Mezei
- 10 évvel ezelőtt
- Látták:
Átírás
1 Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek
2 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt matematikai modelljei Információs gépek: bemenő adat: információ a környezettől kimenő adat: információ a környezet felé Kalman-féle rendszer modellbe illeszthetőség Formális nyelvek/2
3 Automaták és formális nyelvek - bevezetés Formális nyelvek: információ feldolgozás alapeszközei adathalmazok: véges sok jelből alkotott szavak szavak halmaza: nyelv nyelv: szabályok a szavak alkotására, feldolgozására Formális nyelvek/3
4 Formális nyelvek - alapfogalmak Def.: Ábécé Szimbólumok (jelek) tetszőleges, nemüres, véges halmazát ábécének, az ábécét alkotó jeleket betűknek nevezzük. jel: alapfogalom ábécék halmazok, így alkalmazhatók rájuk a halmazműveletek Formális nyelvek/4
5 Formális nyelvek - alapfogalmak Def.: Szó Legyen adott egy tetszőleges ábécé. Ekkor az ábécé betűiből alkotott véges sorozatokat szavaknak, az adott ábécéből alkotott szavaknak nevezzük. Pl.: V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ábécéből származó szavak a tízes számrendszerben felírt számok. Formális nyelvek/5
6 Formális nyelvek - alapfogalmak Def.: Szó hossza A szó hossza alatt a szót alkotó jelek számát értjük. Jele: α szó hossza d(α) Def.: Üres szó Az egyetlen betűt sem tartalmazó sorozatot üres szónak nevezzük és ε-nal jelöljük. Természetesen d(ε)=0. Formális nyelvek/6
7 Formális nyelvek - alapfogalmak Def.: Szavak egyenlősége Két szó egyenlő, ha hosszuk megegyezik és a betűik páronként rendre megegyeznek. Legyen α és β két szó. α = β, ha d(α) = d(β) = n és a 1 = b 1, a 2 = b 2,, a n = b n. Formális nyelvek/7
8 Formális nyelvek - alapfogalmak Példa: Legyen V 1 = {0, 1} ábécé szavai: ε, , 00 hosszuk: 0, 6, 2. Legyen V 2 = {if, then else, for to, do, begin, a, b, c} szavai: if a then b else c, for b to c do begin a hosszuk: 6, 7 Formális nyelvek/8
9 Formális nyelvek - alapfogalmak Def.: Szavak szorzása Legyen α és β két szó. α és β szorzatán (egyesítésén) azt az új szót értjük, ami úgy jön létre, hogy β-t leírjuk az α után. Az így kapott új szót az αβ jelöli. Ha α = a 1 a 2 a n és β = b 1 b 2 b m, akkor αβ = a 1 a 2 a n b 1 b 2 b m ha α V és β W, akkor αβ V W d(αβ) = d(α)+d(β) azaz d(αβ) = n+m Formális nyelvek/9
10 Formális nyelvek - alapfogalmak tetszőleges szóra igaz: εα = αε = α szavak szorzása asszociatív, de nem kommutatív Példa Formális nyelvek/10
11 Formális nyelvek - alapfogalmak Def.: Szavak hatványozása Ha α egy tetszőleges szó, akkor α 0 = ε, α 1 = α, illetve α n = α n-1 α, n=1, 2, 3, esetén. Def.: Szó tükörképe A szó tükörképének azt α -1 -gyel jelölt szót nevezzük, amely az α betűit fordított sorrendben tartalmazza, azaz α=a 1 a 2 a n esetén α -1 =a n a n-1 a 1. Formális nyelvek/11
12 Formális nyelvek - alapfogalmak Def.: Szó kezdőszelete, végszelete, részszava Az α szó a β szónak kezdőszelete (prefixuma), ha létezik olyan γ szó, amelyre β = αγ. Az α szó a β szónak végszelete (szuffixuma), ha létezik olyan γ szó, amelyre β = γα. Az α szó a β szónak részszava, ha léteznek olyan µ és η szavak, amelyre β = µαη. Ha V egy tetszőleges ábécé, akkor a V-ből alkotott összes szavak halmazát jelöljük V * -gal. Formális nyelvek/12
13 Formális nyelvek - alapfogalmak Def.: Formális nyelvek Egy adott ábécéből alkotott szavak tetszőleges halmazát formális nyelvnek nevezzük. Másképpen egy L halmazt pontosan akkor nevezünk formális nyelvnek, létezik olyan V L ábécé, melyre L V L*. Formális nyelvek/13
14 Formális nyelvek - alapfogalmak Példa: Legyen V={0, 1} ábécé, ekkor a V-ből alkotott formális nyelvek: az üres halmaz ; az üres szót tartalmazó egy elemű halmaz {ε}; a V * ; L 1 ={0, 00, 010, 1100} ; L 2 ={0 n 1 n : n 0} ; Formális nyelvek/14
15 Formális nyelvek - alapfogalmak az L 3 halmaz, amelyet az alábbiak szerint határozunk meg: 1. ε L 3 ; 2. ha α L 3, akkor 0α1 L 3 és 1α 0 L 3 ; 3. ha α L 3 és β L 3 akkor α β L 3 ; 4. L 3 -ben nincs más szó, csak azok, amik az szabályok véges sokszori alkalmazásával megkaphatunk. véges végtelen nyelvek Formális nyelvek/15
16 Formális nyelvek - alapfogalmak Műveletek nyelvekkel: Halmazelméleti műveletek L 1 L 2 = {ω : ω L 1 vagy ω L 2 } L 1 L 2 = {ω : ω L 1 és ω L 2 } L 1 - L 2 = {ω : ω L 1 és ω L 2 } L = V * -L, ahol V az L-hez tartozó ábécé. Formális nyelvek/16
17 Formális nyelvek - alapfogalmak Def.: Formális nyelvek szorzása Legyen adott két nyelv L 1 és L 2, a hozzájuk tartozó ábécék pedig legyenek W 1 és W 2. Az L 1 és L 2 nyelvek L 1 L 2 szorzatán a következő W 1 W 2 ből alkotott nyelvet érjük: L 1 L 2 = {αβ : α L 1 és β L 2 } Példa L 1 = {0, 01}, L 2 = {1, 11} akkor L 1 L 2 = {01, 011, 0111} A szorzás ebben az esetben is asszociatív, de nem kommutatív. Formális nyelvek/17
18 Formális nyelvek - alapfogalmak Def.: Formális nyelvek hatványozása Legyen L tetszőleges nyelv, V pedig a hozzá tartozó ábécé. Az L nyelv hatványait a következő módon határozzuk meg: L 0 = {ε} L 1 = L L n = L n-1 L, n = 1, 2, 3, Példa: Legyen L = {0, 1} Ekkor: L 2 = L L = {00, 01, 10, 11} L 3 = L 2 L = {000, 010, 100, 110, 001, 011, 101, 111} Formális nyelvek/18
19 Formális nyelvek - alapfogalmak Def.: Formális nyelv iteráltja Az L nyelv hatványainak egyesítését az L nyelv iteráltjának nevezzük L * -gal jelöljük: L = U n 0 L iteráltja tehát az L-beli szavak tetszőleges véges sok tényezőiből álló szorzatainak a halmaza. L n Formális nyelvek/19
20 Formális nyelvek - alapfogalmak Példa: Legyen L = {0, 01} Ekkor: L 2 = L L = {00, 001, 010, 0101} L 3 = L 2 L = {000, 0010, 0100, 01010, 0001, 00101, 01001, } és az iterált L * = {0, 01, 00, 001, 010, 0101, 000, 0010, 0100, } Formális nyelvek/20
21 Formális nyelvek - Grammatikák Generatív grammatikák: élő nyelv: szavak sorozatáról a nyelvtan szabályai alapján döntjük el, hogy mondat-e formális nyelvek: szavak generálása struktúra hozzárendelése információ a matematikai informatika, programozási nyelvek, gépi fordítóprogramok, számítási módszerek modellezése Formális nyelvek/21
22 Formális nyelvek - Grammatikák Generatív grammatika elemei: Egy ábécé, melynek az elemei a terminális jelek. Ez az ábécé a grammatika kimenő ábécéje, mely a generált nyelvhez tartozik. Egy másik ábécé, melynek az elemei a nemterminális jelek. Ez egy segédeszköz, betűi nem szerepelnek a generált nyelv szavaiban. Egy kezdő szimbólum (rögzített nemterminális jel). Formális nyelvek/22
23 Formális nyelvek - Grammatikák A szavak alkotását megadó helyettesítési szabályok. Ezek terminális és nemterminális jelekből alkotott szavak rendezett párjai, melyekben az első tag legalább egy nemterminális jelet tartalmaz. Formális nyelvek/23
24 Formális nyelvek - Grammatikák Generálás folyamata kiindulunk a egy szóból, amely kezdetben egyetlen jelből, a kezdőszimbólumból áll; ezután a vizsgált szó valamelyik részszavát egy alkalmazható helyettesítési szabály alapján egy másik szóra cseréljük ki; az eljárás addig folytatjuk, amíg olyan szóhoz nem jutunk, amely csak terminális jelekből áll; a kapott szó eleme lesz a generált nyelvnek. Formális nyelvek/24
25 Formális nyelvek - Grammatikák Def.: Generatív grammatika Egy G generatív grammatikán a következő rendezett négyest értjük: ahol G = <V, W, S, P> V a terminális jelekből álló ábécé; W a nemterminális jelekből álló ábécé; S W a kezdőszimbólum; P = {< α, β >} szabályhalmaz. Formális nyelvek/25
26 Formális nyelvek - Grammatikák P olyan < α, β > rendezett pároknak a véges halmaza, melyeknél α és β a V W halmazból alkotott szavak, és α-nak legalább egy betűje nemterminális jel. P elemeit helyettesítési szabályoknak nevezzük, jelölési mód: α β azaz α szó helyettesíthető β szóval. Formális nyelvek/26
27 Formális nyelvek - Grammatikák Def.: Közvetlen levezethetőség A G = <V, W, S, P> grammatika alapján a µ szó közvetlenül levezethető az η szóból, ha µ,η (V W) *, és léteznek olyan γ,δ (V W) * szavak, valamint olyan α β szabály P-ben, amelyekre jelölése: η µ η = γαδ, µ = γβδ Formális nyelvek/27
28 Formális nyelvek - Grammatikák Def.: Levezethetőség Szavaknak egy ω 1, ω 2, ω n sorozatára azt mondjuk, hogy ez ω n nek ω 1 ből történő levezetése a G grammatika alapján, ha ω 1 ω 2 ω n. Ha létezik ez a levezetés akkor azt mondjuk, hogy ω n levezethető ω 1 ből a G grammatika alapján és a következőképpen jelöljük: ω 1 ω n A közvetlen levezetések száma adja meg a levezetés hosszát. Formális nyelvek/28
29 Formális nyelvek - Grammatikák A G = <V, W, S, P> grammatika generálja az α szót, ha α V * -nak és α levezethető S-ből, azaz S α. Azt mondjuk, hogy a G = <V, W, S, P> grammatika generálja az L V * nyelvet, ha L = {α : α V*, S α} Ebben az esetben L-re használjuk az L(G) jelölést. Formális nyelvek/29
30 Formális nyelvek - Grammatikák Két grammatikát, G -t és G -t akkor nevezünk ekvivalensnek, ha L(G )=L(G ). Példa Formális nyelvek/30
31 Formális nyelvek - Grammatikák Tétel Legyen adva egy G=<V, W, S, P> generatív grammatika és tegyük fel, hogy P-ben vannak olyan szabályok, amelyek a jobb oldali szavukban is tartalmazzák az S kezdőszimbólumot. Ekkor meg lehet adni olyan G grammatikát, amely ekvivalens lesz G-vel, és amelyben a helyettesítési szabályok jobb oldalán nem fordul elő a G kezdőszimbóluma. Formális nyelvek/31
32 Formális nyelvek Grammatikák csoportosítása Grammatikák csoportosítása : a helyettesítési szabályokra tett megkötések alapján 1. csoport: Az olyan generatív grammatikákat, amelyeknek a helyettesítési szabályaira semmiféle megszorítást nem teszünk, vagyis amelyekben a szabályok: αaβ ω alakúak, ahol α,β és ω terminális és nemterminális jelekből alkotott szavak, A pedig nemterminális jel, általános vagy 0-típusú grammatikáknak nevezzük. Formális nyelvek/32
33 Formális nyelvek Grammatikák csoportosítása 2. csoport: Azokat a G = <V, W, S, P> generatív grammatikákat, amelyeknek a helyettesítési szabályai: αaβ αωβ alakúak, ahol α,β,ω (V W) *, ω ε és A W, környezetfüggő vagy 1-típusú grammatikáknak nevezzük. Ilyen szabályok esetén az A szimbólum csak α- β környezet esetén helyettesíthető az ω szóval. Példa Formális nyelvek/33
34 Formális nyelvek Grammatikák csoportosítása 3. csoport: Azokat a G=<V, W, S, P> generatív grammatikákat, amelyeknek a helyettesítési szabályai: A ω alakúak, ahol A W, ω (V W) * és ω ε, környezetfüggetlen vagy 2-típusú grammatikáknak nevezzük. Példa Formális nyelvek/34
35 Formális nyelvek Grammatikák csoportosítása 4. csoport: Azokat a G=<V, W, S, P> generatív grammatikákat, amelyeknek minden helyettesítési szabálya: A ab vagy A a alakú, ahol A, B W, a V, reguláris vagy 3- típusú grammatikáknak nevezzük. Példa Formális nyelvek/35
36 Formális nyelvek Grammatikák csoportosítása Def.: Egy formális nyelvet akkor nevezünk regulárisnak (3-típusúnak), környezetfüggetlennek (2-típusúnak), környezetfüggőnek (1-típusúnak) vagy általánosnak (0-típusúnak), ha van olyan reguláris, környezetfüggetlen, környezetfüggő vagy általános típusú grammatika, amelyik ezt a nyelvet generálja. Formális nyelvek/36
37 Formális nyelvek Grammatikák csoportosítása Chomsky-féle hierarchia reguláris g. környezetfüggetlen g. környezetfüggő g. általános g. Formális nyelvek/37
Chomsky-féle hierarchia
http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.
A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete
A számítógépes nyelvészet elmélete és gyakorlata Formális nyelvek elmélete Nyelv Nyelvnek tekintem a mondatok valamely (véges vagy végtelen) halmazát; minden egyes mondat véges hosszúságú, és elemek véges
Formális Nyelvek - 1. Előadás
Formális Nyelvek - 1. Előadás Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu
Chomsky-féle hierarchia
http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.
Formális nyelvek - 5.
Formális nyelvek - 5. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Lineáris
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián 2. gyakorlat Ismétlés: Megjegyzés: Az ismétlés egy része nem szerepel a dokumentumban, mivel lényegében a teljes 1.
Formális nyelvek és automaták
Formális nyelvek és automaták Király Roland 2012. november 16. 1 2 Tartalomjegyzék 1. Előszó 7 2. Bevezetés 9 2.1. Út a matematikai formulától az implementációig........ 9 2.2. Feladatok.............................
Atomataelmélet: A Rabin Scott-automata
A 19. óra vázlata: Atomataelmélet: A Rabin Scott-automata Az eddigieken a formális nyelveket generatív szempontból vizsgáltuk, vagyis a nyelvtan (generatív grammatika) szemszögéből. A generatív grammatika
Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.
Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
Automaták mint elfogadók (akceptorok)
Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Formális Nyelvek - 1.
Formális Nyelvek - 1. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 A
ALGEBRAI NYELV- ÉS KÓDELMÉLET. Babcsányi István
ALGEBRAI NYELV- ÉS KÓDELMÉLET Babcsányi István 2013 Tartalomjegyzék ELŐSZÓ................................. 5 I. NYELVEK 7 1. Nyelvek algebrája 9 1.1. Műveletek nyelvekkel........................ 9 1.2.
Formális nyelvek és automaták előadások
VÁRTERÉSZ MAGDA Formális nyelvek és automaták előadások 2005/06-os tanév 1. félév Tartalomjegyzék 1. Előzetes tudnivalók 4 2. Bevezetés 15 3. Ábécé, szó, formális nyelv 17 4. Műveletek nyelvekkel 24 4.1.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2)
Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) ábécé: Ábécének nevezünk egy tetszőleges véges szimbólumhalmazt. Jelölése: X, Y betű: Az ábécé elemeit betűknek hívjuk. szó: Az X ábécé elemeinek
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum
Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)
Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12
5. előadás Reguláris kifejezések, a reguláris nyelvek jellemzése 1.
5. előadás Reguláris kifejezések, a reguláris nyelvek jellemzése 1. Dr. Kallós Gábor 2014 2015 1 Tartalom Reguláris kifejezések Meghatározás, tulajdonságok Kapcsolat a reguláris nyelvekkel A reguláris
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
A számítógépes nyelvészet elmélete és gyakorlata. Automaták
A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának
A tananyag a TÁMOP A/1-11/ számú projekt keretében készült.
A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0038 számú projekt keretében készült. Tartalom 1. Előszó... 1 2. Bevezetés... 2 1. Út a matematikai formulától az implementációig... 2 2. Feladatok... 4 3. Típus,
6. előadás A reguláris nyelvek jellemzése 2.
6. előadás A reguláris nyelvek jellemzése 2. Dr. Kallós Gábor 2015 2016 1 Tartalom A reguláris nyelvek osztályának jellemzése a körbebizonyítás Láncszabályok A 2. állítás és igazolása Ekvivalens 3-típusú
Formális Nyelvek és Automaták v1.9
Formális Nyelvek és Automaták v1.9 Hernyák Zoltán E másolat nem használható fel szabadon, a készülő jegyzet egy munkapéldánya. A teljes jegyzetről, vagy annak bármely részéről bármely másolat készítéséhez
ZH feladatok megoldásai
ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a
A tananyag a TÁMOP A/1-11/ számú projekt keretében készült.
A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0038 számú projekt keretében készült. Tartalom 1. Előszó 2. Bevezetés Út a matematikai formulától az implementációig Feladatok Típus, művelet, állapot és állapottér
Csempe átíró nyelvtanok
Csempe átíró nyelvtanok Tile rewriting grammars Németh L. Zoltán Számítástudomány Alapjai Tanszék SZTE, Informatikai Tanszékcsoport 1. előadás - 2006. április 10. Képek (pictures) I. Alapdefiníciók ábécé:
6. előadás A reguláris nyelvek jellemzése 2.
6. előadás A reguláris nyelvek jellemzése 2. Dr. Kallós Gábor 2014 2015 1 Tartalom A reguláris nyelvek osztályának jellemzése a körbebizonyítás Láncszabályok A 2. állítás és igazolása Ekvivalens 3-típusú
Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy
1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
7. előadás Környezetfüggetlen nyelvtanok
7. előadás dr. Kallós Gábor 2017 2018 Tartalom Bevezető Deriváció Előállított szó és nyelv Levezetési sorozat Reguláris nyelvtanok Reguláris nyelvekre vonatkozó 2. ekvivalencia tétel Konstrukciók (NVA
Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek!
Feladatok 1. A CYK algoritmus segítségével döntsük el, hogy cabcab eleme-e a G = {a, b, c}, {S, A, B, C, D, E}, P, S nyelvtan által generált nyelvnek! P: S AD EB SS A AB a B DD b C CB c D EC a E AD b 2.
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Segédanyagok. Formális nyelvek a gyakorlatban. Szintaktikai helyesség. Fordítóprogramok. Formális nyelvek, 1. gyakorlat
Formális nyelvek a gyakorlatban Formális nyelvek, 1 gyakorlat Segédanyagok Célja: A programozási nyelvek szintaxisának leírására használatos eszközök, módszerek bemutatása Fogalmak: BNF, szabály, levezethető,
Formális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések
1. Feladat Az első feladatban szereplő - kérdések 1 Minden környezet független nyelv felismerhető veremautomatával. Minden környezet független nyelv felismerhető 1 veremmel. Minden 3. típusú nyelv felismerhető
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Házi feladatok megoldása. Nyelvek felismerése. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 5. gyakorlat
Házi feladatok megoldása Nyelvek felismerése Formális nyelvek, 5. gyakorlat 1. feladat Adjunk a következő nyelvet generáló 3. típusú nyelvtant! Azon M-áris számrendszerbeli számok, melyek d-vel osztva
A szemantikus elemzés elmélete. Szemantikus elemzés (attribútum fordítási grammatikák) A szemantikus elemzés elmélete. A szemantikus elemzés elmélete
A szemantikus elemzés elmélete Szemantikus elemzés (attribútum fordítási grammatikák) a nyelvtan szabályait kiegészítjük a szemantikus elemzés tevékenységeivel fordítási grammatikák Fordítóprogramok előadás
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Példák. Ismert a római számok halmaza, amely intuitív szintaxissal rendelkezik, hiszen pl.
A 10. óra vázlata: Példák Ismert a római számk halmaza, amely intuitív szintaxissal rendelkezik, hiszen pl. IIV-t VX-et vagy IIII-t nem fgadjuk el római számnak (habár v.ö. tarkk-kártya vagy némely óra
Fordítóprogramok (A,C,T szakirány) Feladatgy jtemény
Fordítóprogramok (A,C,T szakirány) Feladatgy jtemény ELTE IK 1 Lexikális elemzés 1. Add meg reguláris nyelvtannal, reguláris kifejezéssel és véges determinisztikus automatával a következ lexikális elemeket!
ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF
ADATBÁZIS-KEZELÉS Relációalgebra, 5NF ABSZTRAKT LEKÉRDEZŐ NYELVEK relációalgebra relációkalkulus rekord alapú tartomány alapú Relációalgebra a matematikai halmazelméleten alapuló lekérdező nyelv a lekérdezés
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Logika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Valasek Gábor valasek@inf.elte.hu
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek
Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
A SZÁMÍTÁSTUDOMÁNY ALAPJAI
Írta: ÉSIK ZOLTÁN A SZÁMÍTÁSTUDOMÁNY ALAPJAI Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Szegedi Tudományegyetem Természettudományi és Informatikai Kar Számítástudomány Alapjai Tanszék
Dr. Vincze Szilvia;
2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika
MintaFeladatok 1.ZH Megoldások
Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) 1. feladat L1 = {ab,ba,b} L2=b*ab* L3 = {a, bb, aba} L1L3 = {aba, abbb, ababa, baa, babb, baaba, ba, bbb, baba} (ab
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
NP-teljesség röviden
NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Véges automaták, reguláris nyelvek
Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata
MintaFeladatok 1.ZH Megoldások
Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) 1. feladat L1 = {ab,ba,b} L2=b*ab* L3 = {a, bb, aba} L1L3 = {aba, abbb, ababa, baa, babb, baaba, ba, bbb, baba} (ab+b)*
HALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
1 2. gyakorlat Matematikai és nyelvi alapfogalmak. dr. Kallós Gábor
1 2. gyakorlat Matematikai és nyelvi alapfogalmak dr. Kallós Gábor 2017 2018 Köszönetnyilvánítás Köszönetnyilvánítás (Acknowledgement) Ez a gyakorlati feladatsor nagyban épít a következő könyvre Elements
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Formális nyelvek és automaták
2. megszorított grammatika/nyelv: Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián 4. gyakorlat + KES szabály mentesítés: - Új kezdő szimbólum, melyből levezethető
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Könyvészet 1. Csörnyei Zoltán, Kása Zoltán, Formális nyelvek és fordítóprogramok, Kolozsvári Egyetemi Kiadó, 2007. 2.
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
Nyelv hatványa: Legyen L egy nyelv, nemnegatív egész hatványai,,. (rek. definició) Nyelv lezártja (iteráltja): Legyen L egy nyelv. L nyelv lezártja.
Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális ábécének nevezzük Ábécé: Ábécének nevezzük az univerzális ábécé egy tetszőleges véges részhalmazát Betű: Az ábécé elemeit
Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?
,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,
akonyv 2006/12/18 11:53 page i #1 Formális nyelvek és fordítóprogramok
akonyv 2006/12/18 11:53 page i #1 Csörnyei Zoltán Kása Zoltán Formális nyelvek és fordítóprogramok akonyv 2006/12/18 11:53 page ii #2 akonyv 2006/12/18 11:53 page iii #3 Csörnyei Zoltán Kása Zoltán FORMÁLIS
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1
Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
Formális Nyelvek és Automaták
i DÖMÖSI PÁL, FAZEKAS ATTILA, HORVÁTH GÉZA, MECSEI ZOLTÁN Formális Nyelvek és Automaták Egyetemi jegyzet Lektorálta NAGY BENEDEK 2003 Debreceni Egyetem Informatikai Intézet Debrecen Bevezetés Az algoritmikus
Gy ur uk aprilis 11.
Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián Utolsó óra MINTA ZH Eötvös Loránd Tudományegyetem Informatikai Kar 2012.05.18 1. feladat: KMP (Knuth-Morris-Prett)
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
Informatika szigorlat. A lexikális elemző feladatai közé tartozik a whitespace karakterek (a
Informatika szigorlat 17-es tétel: Felülről lefelé elemzések 1. Lexikális elemzés A lexikális elemző alapvető feladata az, hogy a forrásnyelvű program lexikális egységeit felismerje, azaz meghatározza
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
2011. szeptember 14. Dr. Vincze Szilvia;
2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,
Számítástudomány matematikai alapjai segédlet táv és levelező
Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására
Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.
Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.
Alap fatranszformátorok II
Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden