Formális nyelvek és automaták
|
|
- Hanna Pataki
- 6 évvel ezelőtt
- Látták:
Átírás
1 Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián Utolsó óra MINTA ZH Eötvös Loránd Tudományegyetem Informatikai Kar
2
3 1. feladat: KMP (Knuth-Morris-Prett) autómatás feladatok: - ajánlatos ábrát készíteni a táblázathoz. - az ábrán csak az igazi visszakötéseket kell ábrázolni (azokat, ami 0-ba kötnek nem) - amilyen hosszú a minta, annyi állapot van - Képlet amit a számításokhoz használunk: (A mintát megtoldjuk egy betűvel. Mennyire fed át?) A feladatunk esetén: a mintánk, tehát tudjuk, hogy 5 állapota lesz. Az 5. állapot egyben végállapot is lesz, mert nekünk most elég egyszer megtalálnunk a teljes átfedést a szöveggel. (A kettős kör a végállapotot jelzi. Onnantól az autómata mindent elfogad) A kritikus eseteket a képlet alapján számoljuk ki. A mi esetünkben csak a és b betűink vannak, így ha mindent képlet alapján szeretnénk számolni, akkor minden állapot 2 esetet kell vizsgálni. Az első eset ha az adott állapotban lévő mintát egy betűvel toldjuk meg, míg a második eset, amikor -betűvel 1. Mi történik akkor, ha a minta 0. állapotához hozzáveszünk egy a betűt - Ha a mintát balról rátoljuk az a-ra akkor nem lesz átfedés 2. Mi történik akkor, ha a minta 1. állapotához hozzá veszünk egy -t
4 3. Mi történik akkor, ha a minta 2. állapotához hozzá veszünk egy -t 4. Mi történik akkor, ha a minta 3. állapotához hozzá veszünk egy -t 5. Mi történik akkor, ha a minta 4. állapotához hozzá veszünk egy -t Az első lépésként ábrázolt mintában a többi esetet már ábrázoltuk, amiket alap eseteknek is mondhatunk. Mivel 5 hosszúságú a mintánk, ezért -nél nem kell tovább vizsgálódnunk ( -t), mivel ekkor már a teljes minta szerepelne a képletünkben, így az átfedés maximális lenne. (Pl.: ) Visszacsatolások elkészítése az ábrához: Például: - ha a 3. állapotban levő mintát megtoldjuk az a-val, akkor 2 lesz az átfedés. -> a 3-os állapotból egy betűvel (terminálissal) ellátot nyilat húzunk, ami a 2-es állapotra mutat. Ne felejtsük el, hogy a 0-ba csatolásokat nem ábrázoljuk! Az összes igazi visszacsatolást ábrázolva az alábbit kapjuk:
5 Írjuk fel ezek után táblázat formájában is a b Ezek után a gráfunk vagy a táblázatunk segítségével elemezzük a szöveget! a b a b a a b b a b a b b a b Mivel megtaláltuk a szövegben a mintát, így egy jó szót kaptunk a b a b a a b b a b a b b a b Ezzel megoldottuk ezt a feladatot.
6 2. feladat: 3-as forma 3-as normálforma NDA DA típusú feladat 3-as normálformára hozás: Adott egy 3-as típusú grammatika (emékeztető): Hogy néz ki egy 3-as normálformára alakított grammatika: Ez lényegében egy autómata. (végállapot) 3-as formáról 3-as normálformára hozás: Típikus hiba: -mentesítés. NEM SZABAD! Mivel szükségünk van hiszen ez a végállapot! szabályra, 1. lépés: Lánctalanítás: Pl.: Lánctalanítás:
7 2. lépés: Fiktív végződés bevezetése, ha szükséges típusú szabályok helyett: típusú szabályokat kell használni 3. lépés: Hosszredukció típusú szabályok átalakítása: - Mindig a végét nevezzük el és ledaraboljuk!... Feladatunkban alkalmazzuk a fentebb említett szabályokat: 1. Lánctalanítás: lánctalanítva: 2. Fiktív végződések bevezetése + 3. Hosszredukció: Bevezetve:
8 Most, hogy 3-as normálformára hoztuk a grammatikánkat, írjuk meg az NDA t egy táblázatban. NDA felírása: Készítsünk egy olyan táblázatot, amiben a bal szélső oszlopban felsoroljuk a 3-as normálformára hozott grammatikában található nem terminálisokat, továbbá a legfelső sorában felsoroljuk az ugyan ebben a grammatikában szereplő terminálisokat. (A nem terminálisok az állapotok) S X Y A B V a b Ezek után meg kell határoznuk a bemenő állapotot és a végállapotot. Bemenő állapot ( ) mindíg a kezdő szimbólum, míg a kimenő állapot ( ) az a nem terminális, amelyik S X Y A B V a b Innentől kezdve egyszerű dolguk van a táblázat kitöltésében mivel meg nézzük az adott nem terminális jelet a táblázatunk bal oldalán: 1. S vissza nézünk a grammatikánkra: és a táblázatunkat kitöltjük az alapján, hogy milyen nem terminális található a táblázatunk tetejére felírt terminálisaink mellett. A többi szabály:
9 Kitöltve a táblázatunkat felírtuk az NDA-t: S X Y A B V a b Determinisztikussá tétel (DA felírása) - Van-e olyan, amikor S (kezdő szimbólum) ról indulva végállapothoz érünk - Állapot, amire elérhető halmazként tekintünk - Véges halmazok közötti leképezések (Unio művelet kell!) - Bemenő állapot ( ) - Azok a halmazok amiben megtalálható a kezdő szimbólum / maga a kezdő szimbólum - Kimenő állapot: ( ) Azok a halmazok, amelyekben meg találhatóak olyan nem terminális jelek, melyek közvetlen -ra képeznek NDA-ból (V)DA felírása: 1. lépés: {S} a b Az NDA-ban felírt halmazok lesznek az új állapotok, továbbá amennyiben valahol üresen hagytuk a táblázatot felveszünk egy úgynevezet hiba állapotot (jele ). Csak egyszer írunk fel egy halmazt az állapotok közé! Állapítsuk meg a bemeneti és kimeneti állapotokat a fentebb leírtak alapján: {S} a b (A hiba állapot értékei default módon hibák )
10 Ezek után az a teendőnk például: állapotot vizsgálva, hogy megnézzük az NDA táblázatában az X és A állapotokat és külön az oszlopbán található elemeket és külön a oszlopában található elemeket össze uniózzuk egy-egy halmazba. Ha megtettük áttérünk a (V)DA-nk következő állapotára és ugyan ezt megtesszük. Végeredményként az alábbi táblázatot kapjuk: {S} a b Ezzel megoldottuk a feladatunkat.
11 3. feladat: VDA-val ekvivalens minimális állapotszámú autómata Miért nem minimális állapotszámú egy VDA? 2.: - 1. nem összefüggő gráf (Vannak benne olyan állapothalmazok, melyeket a kezdő szimbólumból nem lehet elérni) Tenni való: kihúzni ezeket az állapotokat az autómatából - 2. állapotok osztályozása (Ha egyikről elindítva adott szót elfogad a másik is elfogadja?) ekvivalencia osztályok készítése: - osztályok közötti leképezés - hossz szerint haladunk - Végállapotra ( elfogadó az autómata ellenkező esetben nem - Ezek után betűnként külön bontva vizsgálódunk Feladatunk: a b autómata minimalizálása 1. lépés: Gráf összefüggőség vizsgálat: A bemenő állapotból kiindulva feltérképezzük a, b-n keresztül, hogy minden állapot elérhetőe. 1, 4, 6, 9, 2, 8, 7, 3, 5 (Sorrendbe téve: 1, 2, 3, 4, 5, 6, 7, 8, 9) Tehát ez az autómata felírható összefüggő gráffal, így nem tudunk kihúzni semmit.
12 2. lépés: Állapotok osztályozása Először a 0 hosszú ( szintű) ekvivalencia osztályt kell meghatároznunk. Ez két halmazból áll. Az első halmaz a nem végállapotú állapotok halmaza a másik halmaz pedig a végállapotú állapotoké. Az osztály jele: Tudjuk, hogy a végállapotú állapotok a kimenő állapotok, ezért itt egyszerű dolgunk van. Ezért: ( a végállapotú) Most vizsgáljuk meg a halmazokat az autómatára a-ra és b-re. Hagyjuk meg a végállapotú állapotok halmazát és kezdjük el finomítani a nem végállapotú állapotokat. (Jelzés: A osztály szerint vizsgálódunk!) Tehát vegyük az halmazt. Nézzük meg a-ra és b-re úgy, hogy melyek azok az állapotok, amik a csoportba képeznek és melyek azok, amelyek átképeznek másik csoportba. - a-ra: Nem képez át a másik csoportba: Átképez: - b-re: Nem képez át a másik csoportba: Átképez: Végállapú állapotok halmazánál: - a-ra nézve: nincs változás - b-re nézve: Nem képez át: Átképez: Ezzel megalkottuk az osztályt. Most ismét finomítunk a halmazokon. Meg kell vizsgálnunk, hogy minden halmazon belüle elem ugyan olyan szisztémában/ ugyan azokra a halmazokra képez-e. Ha észre vesszük a halmazban a a szempontjából mind a halmazra képez és b szempontjából mind a ketten a halmazra, viszont az 5-ös, bár az a szempontjából teljesíti ezt, de b szempontjából nem a halmazra képez, hanem szintén a -ra. Ezért a halmaz felbomlik halmazokra. Ezzel megalkottuk az osztályt. Mivel ezt az osztályt már nem tudjuk tovább finomítani ( ugyan az lenne, mint ), így vége az osztályozásnak. Az adott állapotokat, amik egy halmazon belül szerepelnek összeolvasszuk. Ezek lesznek a táblázatunkban az új állapotok.
13 a b Ezek után meghatározzuk a be és kimenő állapotokat. Az az összeolvaszott állapot, melynek a halmazában szerepel az eredeti autómatában bemenő állapotként definiált állapot, az bemenő állapot lesz, amelyikben pedig kimenő állapot szerepelt, az kimenő lesz. Így: a b Ezek után annyi a dolgunk, hogy az eredeti állapotaink a-ra és b-re vonatkozó részeit is külön-külön összeolvasszuk a mostani állapotok szerint. Például 167 megnézzük az 1-es, 6-os és 7-es állapot a oszlopában található számokat az eredeti autómatánkban és összeolvasszuk, beírjuk a mostani a alá, majd a b oszlopában található számokkal is ugyan ezt tesszük és beírjuk a mostani b alá. Így a minimális állapotszámú autómatánk: a b Ezzel megoldottuk a feladatunk.
14 4. feladat: CYK (Cocke Younger Kasami) algoritmusos feladat - Chomsky- normálforma szükséges a használatához. (ZH-ban nagy valószínűséggel úgy van megadva) - Alulról- felfele építkezünk Amennyiben megjelenik a kezdőszimbólum a piramis tetején úgy az adott szó levezethető a grammatikával, tehát a szó eleme az adott nyelvnek. Ha nem jelenik meg, akkor nem eleme. Továbbá alulról épít szintaxisfát. A feladat megoldása: Mivel a piramis tetején megjelenik a kezdő szimbólum, így az abbaab szó eleme a nyelvnek.
15 CYK algoritmushoz segítség: - cyk.ppt fájl - Egy program, amiben találhat CYK algoritmus lépésről lépésre meg tudod vele nézni az algoritmus működését Saját kis segítség: Feladat (CYK - algoritmussal): Az nyelvnek? szó eleme-e az alábbi grammatika által generált 0. Lépés: 1. Lépés: Megnézzük, hogy az adott terminális melyik halmazokban fordul közvetlen elő.
16 2. Lépés: Ábra 1: Melyik szabályokban található ilyen? Ábra 2: Mely szabályokban található ilyen? - Egyikben sem, így ez üres halmaz lesz Ábra 3: Mely szabályokban található ilyen?
17 3. Lépés: Ábra 1:Melyik szabályban található az alábbi szabályok egyike? És így tovább a legvégső lépés: A nyilak mutatják, hogy kell szorozni a halmazokat, hogy megkapjuk a felette levő halmazt.
18 5. feladat: Bizonyítsuk be, hogy az alábbi nyelv nem tartozik a hármas típusú nyelvek közé és adjunk rá ellen példát. 1. Lépés: Bizonyítás: - főleg a kis Bar-Hillel lemma segítségével kell bebizonyítani az ilyen feladatokat. 2. Lépés: Ellenpéldaként egy grammatikát vagy verem-autómatát kell adni. kis Bar-Hillel lemma: 1. Lépés: Bizonyítás Válasszuk az keverést, ahol. Vezessünk be egy küszöbszámot: Jelen esetünkben a beiterálható részszó (ismétlődő rész) az Erről elmondható, hogy Kezdjük el iterálni ez az részszót, ekkor Ezzel pedig ellentmondáshoz jutunk. Tehát nem lehet hármas típusú a nyelvünk. 2. Lépés: Ellenpélda [Köszönet: Laczkó Dórá-nak]
19 ...
Formális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések
1. Feladat Az első feladatban szereplő - kérdések 1 Minden környezet független nyelv felismerhető veremautomatával. Minden környezet független nyelv felismerhető 1 veremmel. Minden 3. típusú nyelv felismerhető
Feladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek!
Feladatok 1. A CYK algoritmus segítségével döntsük el, hogy cabcab eleme-e a G = {a, b, c}, {S, A, B, C, D, E}, P, S nyelvtan által generált nyelvnek! P: S AD EB SS A AB a B DD b C CB c D EC a E AD b 2.
Formális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
MintaFeladatok 2.ZH Megoldások
1. feladat Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) P={ } S A B C AB SC AC a c BC b CS SS c S a kezdőjel Mivel a piramis tetején lévő kocka a mondatkezdő szimbólumot
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián 2. gyakorlat Ismétlés: Megjegyzés: Az ismétlés egy része nem szerepel a dokumentumban, mivel lényegében a teljes 1.
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum
ZH feladatok megoldásai
ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a
MintaFeladatok 2.ZH Megoldások
Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) 1. feladat megoldása a b 1 2 3 2 4 2 3 2 1 4 6 3 5 10 6 6 8 7 7 9 7 8 8 9 9 8 8 10 5 1 I. Összefüggőség vizsgálat. H0={1}
Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2)
Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) ábécé: Ábécének nevezünk egy tetszőleges véges szimbólumhalmazt. Jelölése: X, Y betű: Az ábécé elemeit betűknek hívjuk. szó: Az X ábécé elemeinek
Formális nyelvek és automaták
2. megszorított grammatika/nyelv: Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián 4. gyakorlat + KES szabály mentesítés: - Új kezdő szimbólum, melyből levezethető
Automaták és formális nyelvek
Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt
Automaták mint elfogadók (akceptorok)
Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Atomataelmélet: A Rabin Scott-automata
A 19. óra vázlata: Atomataelmélet: A Rabin Scott-automata Az eddigieken a formális nyelveket generatív szempontból vizsgáltuk, vagyis a nyelvtan (generatív grammatika) szemszögéből. A generatív grammatika
Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.
Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12
Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)
Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
6. előadás A reguláris nyelvek jellemzése 2.
6. előadás A reguláris nyelvek jellemzése 2. Dr. Kallós Gábor 2014 2015 1 Tartalom A reguláris nyelvek osztályának jellemzése a körbebizonyítás Láncszabályok A 2. állítás és igazolása Ekvivalens 3-típusú
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
A számítógépes nyelvészet elmélete és gyakorlata. Automaták
A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Fogalomtár a Formális nyelvek és
Fogalomtár a Formális nyelvek és automaták tárgyhoz (A törzsanyaghoz tartozó definíciókat és tételeket jelöli.) Definíciók Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális
Állapot minimalizálás
Állapot minimalizálás Benesóczky Zoltán 2004 A jegyzetet a szerzői jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges.
Algoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
Chomsky-féle hierarchia
http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.
Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése
Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Alap fatranszformátorok II
Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
Chomsky-féle hierarchia
http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.
Véges automaták, reguláris nyelvek
Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata
Nyelv hatványa: Legyen L egy nyelv, nemnegatív egész hatványai,,. (rek. definició) Nyelv lezártja (iteráltja): Legyen L egy nyelv. L nyelv lezártja.
Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális ábécének nevezzük Ábécé: Ábécének nevezzük az univerzális ábécé egy tetszőleges véges részhalmazát Betű: Az ábécé elemeit
A szemantikus elemzés elmélete. Szemantikus elemzés (attribútum fordítási grammatikák) A szemantikus elemzés elmélete. A szemantikus elemzés elmélete
A szemantikus elemzés elmélete Szemantikus elemzés (attribútum fordítási grammatikák) a nyelvtan szabályait kiegészítjük a szemantikus elemzés tevékenységeivel fordítási grammatikák Fordítóprogramok előadás
Gazdasági informatika gyakorlat
Gazdasági informatika gyakorlat P-Gráfokról röviden Mester Abigél P-Gráf: A P-Gráfok olyan speciális páros gráfok, ahol a csúcsok két halmazba oszthatók: ezek az anyag jellegű csúcsok, valamint a gépek.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
9. előadás Veremautomaták 1.
9. előadás 1. Dr. Kallós Gábor 2014 2015 1 Tartalom Motiváció Verem és végtelen automata Felépítés, konfigurációk és átmenetek Szavak felismerése, felismert nyelv Az elfogadó állapottal és az üres veremmel
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Dicsőségtabló Beadós programozási feladatok
Dicsőségtabló Beadós programozási feladatok Hallgatói munkák 2017 2018 Szavak kiírása ábécé felett Készítő: Maurer Márton (GI, nappali, 2017) Elméleti háttér Adott véges Ʃ ábécé felett megszámlálhatóan
Formális nyelvek - 5.
Formális nyelvek - 5. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Lineáris
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algoritmusok és adatszerkezetek 2.
Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen
Relációk. 1. Descartes-szorzat. 2. Relációk
Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
32. A Knuth-Morris-Pratt algoritmus
32. A Knuth-Morris-Pratt algoritmus A nyers erőt használó egyszerű mintaillesztés műveletigénye legrosszabb esetben m*n-es volt. A Knuth-Morris-Pratt algoritmus (KMP-vel rövidítjük) egyike azon mintaillesztő
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset
ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT 1.a) Paramétert nem tartalmazó eset A bázistranszformáció egyszerűsített változatában a bázison kívül elhelyezkedő vektorokból amennyit csak
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Iván Szabolcs október 6.
Automaták irányítása II. Iván Szabolcs 2009. október 6. Tartalom 1 Alapfogalmak (ismét) 2 Egy kiterjesztés és egy ellenpélda 3 Pozitív részeredmények 4 A Road Coloring Problem Véges automaták Automata
6. előadás A reguláris nyelvek jellemzése 2.
6. előadás A reguláris nyelvek jellemzése 2. Dr. Kallós Gábor 2015 2016 1 Tartalom A reguláris nyelvek osztályának jellemzése a körbebizonyítás Láncszabályok A 2. állítás és igazolása Ekvivalens 3-típusú
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus
Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,
bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott
. Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
FORMÁLIS NYELVEK ÉS FORDÍTÓPROGRAMOK. LABORGYAKORLATOK
FORMÁLIS NYELVEK ÉS FORDÍTÓPROGRAMOK LABORGYAKORLATOK http://www.ms.sapientia.ro/~kasa/formalis.htm 0 Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Jelenlét kötelezõ!
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és
Mintaillesztő algoritmusok. Ölvedi Tibor OLTQAAI.ELTE
Mintaillesztő algoritmusok Ölvedi Tibor OLTQAAI.ELTE Mintaillesztő algoritmusok Amiről szó lesz: Bruteforce algoritmus Knuth-Morris-Pratt algoritmus Rabin-Karp algoritmus Boyer-Moore algoritmus Boyer-Moore-Horspool
TARTALOMJEGYZÉK 1. Hogyan kell használni a GONAL-f előretöltött injekciós tollat? 2. Mielőtt megkezdené az előretöltött injekciós toll használatát 3.
TARTALOMJEGYZÉK 1. Hogyan kell használni a GONAL-f előretöltött injekciós tollat? 2. Mielőtt megkezdené az előretöltött injekciós toll használatát 3. Az előretöltött injekciós toll előkészítése az injekció
Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása
Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer
Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből
FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
Nagy Krisztián Analízis 2
Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.
Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete
A számítógépes nyelvészet elmélete és gyakorlata Formális nyelvek elmélete Nyelv Nyelvnek tekintem a mondatok valamely (véges vagy végtelen) halmazát; minden egyes mondat véges hosszúságú, és elemek véges
1. oldal, összesen: 5
1. oldal, összesen: 5 Elmélet Word 1. Döntse el az alábbi állításról, hogy a tagmondatok tartalma igaz-e, s A WORD helyesírás-ellenőrző rendszere minden helyesírási hibánkat kijavítja, mert felismeri,
Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek
Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
NP-teljesség röviden
NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel
Temporális logikák és modell ellenırzés
Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,
ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk
1 pont Bármely formában elfogadható pl.:, avagy. 24 4
2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Dinamikus programozás - Szerelőszalag ütemezése
Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal
MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
Fordítóprogramok felépítése, az egyes programok feladata. A következő jelölésmódot használjuk: program(bemenet)(kimenet)
Fordítóprogramok. (Fordítóprogramok felépítése, az egyes komponensek feladata. A lexikáliselemző működése, implementációja. Szintaktikus elemző algoritmusok csoportosítása, összehasonlítása; létrehozásuk
Boronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.
Teljes visszalépéses elemzés
Teljes visszalépéses elemzés adott a következő nyelvtan S» aad a A» b c elemezzük a következő szöveget: accd» ccd ddc S S a A d a A b c d a c c d a c c d Teljes visszalépéses elemzés adott a következő
Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1
Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:
út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.
1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
Nagyméretű adathalmazok kezelése (BMEVISZM144) Reinhardt Gábor április 5.
Asszociációs szabályok Budapesti Műszaki- és Gazdaságtudományi Egyetem 2012. április 5. Tartalom 1 2 3 4 5 6 7 ismétlés A feladat Gyakran együtt vásárolt termékek meghatározása Tanultunk rá hatékony algoritmusokat
tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.
Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.
Algoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x