Temporális logikák és modell ellenırzés
|
|
- Mária Piroska Vinczené
- 9 évvel ezelőtt
- Látták:
Átírás
1 Temporális logikák és modell ellenırzés
2 Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen, valamikor biztosan Temporális logikák: a modális logikák egy formális rendszerét képezik arra, hogy kijelentések igazságának időbeli (sorrendiségi) változását vizsgálhassuk. Erre a célra temporális operátorok állnak rendelkezésünkre (pl. mindig P akkor igaz, ha a P kijelentés minden jövőbeli pillanatban igaz, valamikor Q akkor igaz, ha van olyan jövőbeli pillanat, amikor Q igaz. Az időbeliség logikai időre, az időpillanatok sorrendiségére vonatkozik (a valós idő múlását az operátorok nem kezelik)
3 Temporális logikák Elsősorban folyamatosan működő rendszerek (pl. operációs rendszerek, beágyazott rendszerek stb.) tulajdonságainak leírására használjuk. Ezekben a rendszerekben a bemenetek és kimenetek kapcsolata nem adható meg transzformációként, a helyesség nem fogalmazható meg a kezdeti és végállapotokra vonatkozó elő- és utófeltételek formájában (pl. nem értelmezhető a végállapot) A tulajdonságok egy része lokális, tehát egy-egy aktuális időpillanathoz köthető, más részük elérhetőségi, azaz a működés során jövőbeli időpillanatokra vonatkozik. Utóbbiakat a biztonság illetve élőség kategóriákba soroljuk. Biztonsági tulajdonságok: veszélyes, nemkívánatos helyzetek elkerülését fogalmazzák meg, univerzális kvantorokat alkalmaznak az időpillanatokra ( minden pillanatban igaz, hogy a rendszer biztonságos állapotban van ). Induktív módszerekkel bizonyíthatóak. Pl. egy többprocesszes rendszer esetében ilyenek: holtpontmentesség (minden időpillanatban van egy futásra kész processz), kölcsönös kizárás (soha nincs két processz egyszerre kritikus szakaszban), adatbiztonság (soha nincs jogosulatlan hozzáférés)
4 Temporális logikák Az élő jellegű tulajdonságok bizonyos kívánatos helyzetek elérését írják elő (pl. kérésre válasz érkezik, eredmény előáll stb.). Ezeket az időpillanatokon alkalmazott egzisztenciális kvantorokkal lehet megfogalmazni. Nehézség, hogy induktív módon nem levezethetőek. Általában azt kell megmutatni, hogy a rendszer mindig közelebb kerül a kívánatos helyzethez. Például: Elküldött üzenet megérkezik (ha egy üzenetküldés történt, akkor valamikor bekövetkezik az az időpillanat, amikor az üzenet megérkezik) Kérés kiszolgálása megtörténik Nincs kiéheztetés (minden processz előbb-utóbb futhat, létezik olyan jövőbeli időpillanat amikor a processz futó állapotba kerül) Terminálás: a program előbb-utóbb eléri végállapotát Egyes tulajdonságok (pl. egy adott helyzet végtelenül sokszor fennáll) nem sorolhatóak ezekbe a kategóriákba
5 Temporális logikák osztályozása Kijelentés- illetve elsőrendű logikák: a temporális kijelentéslogikák a temporális operátok mellett a klasszikus kijelentéslogika eszköztárát használják, hasonlóan az elsőrendű temporális logikák a temporális operátorok mellett alkalmazzák az elsőrendű logikák eszköztárát Pont- illetve intervallumlogikák: a pont logikák jellemzője, hogy a temporális operátorokat egy-egy időpillanatban értékeljük ki, míg az intervallumlogikák esetében időintervallumokra definiáljuk és értékeljük ki őket Diszkrét- illetve folytonos idejű logikák: a legtöbb esetben (pl. programok vagy állapotgépek vizsgálata) elégséges az idő diszkrét kezelése (egymás utáni időpillanatokat feleltetünk meg a természetes számok sorozatának), de hibrid (pl. analóg elemeket is tartalmazó) valósidejű rendszerek esetében szükséges lehet a folytonos idő kezelése)
6 Temporális logikák osztályozása Lineáris- illetve elágazó idejű logikák: az első esetben az egymás utáni időpillanatokat mint lineáris rendszert kezeljük: minden időpillanatnak csak egy-egy rákövetkező időpillanata értelmezett (egyféle jövőt veszünk figyelembe). A második esetben az egymás utáni időpillanatok egy elágazó fastruktúrát alkotnak, minden pillanatnak több rákövetkezője értelmezett (többféle lehetséges jövő) Lineáris idejű temporális logika (LTL Linear Time Temporal Logic): az időpillanatok egy idővonal mentén követik egymást, erre az idővonalra vonatkoztatjuk a temporális operátorokat Elágazó idejű temporális logikák (BTL Branching Time Temporal Logic): az időpillanatok fa struktúrában elágazó idővonalak mentén követik egymást, az operátok az elágazásokra is vonatkoznak, nemcsak a vonalakra (pl. kifejezhető: valami minden elágazásra igaz, valami legalább egy idővonalra igaz) Múlt illetve jövő kezelése: általában a jövőre vonatkoznak, de néhány tulajdonság leírásának megkönnyítése érdekében a múltra is vonatkozhatnak
7 Esetünkben a temporális logikák által leírt tulajdonságokat (pl. az útkereszteződésben a lámpa valamikor zöld lesz ) diszkrét állapotokkal és akciókkal (műveletekkel) rendelkező rendszereken (pl. számítógépes programok, állapotgépek pl. a közlekedési lámpa vezérlője) szeretnénk ellenőrizni A jelen időpillanat az aktuális állapotot vagy akciót, a jövő időpillanatok pedig rákövetkező állapotokat vagy akciókat jelölnek, tehát az egymás utáni időpillanatok az állapotok vagy akciók egymásutániságának (szekvenciájának) felelnek meg. A temporális logikák modelljeiként matematikailag jól kezelhető struktúrákat és formalizmusokat alkalmazunk, és módszereket amelyek lehetővé teszik a temporális logikai kijelentések igazságának ellenőrzését. A modellek általában származtathatóak a tervezéshez közelebb álló félformális modellekből (állapottérképek, adatfolyam gráfok)
8 Kripke struktúrák: Legyen AP atomi kijelentések véges halmaza (az alkalmazásban tovább nem bontható kijelentések, pl. a lámpa piros, x>25, a processz kritikus szakaszban van stb. A kijelentéseket P, Q, nagybetűkkel jelöljük Egy adott AP mellett a Kripke-struktúra a következő hármas: M=(S, R, L), ahol S az állapotok véges halmaza R S S állapotátmeneti reláció L:S 2 AP az állapotok címkézése atomi kijelentésekkel. Egy állapotot több kijelentés is címkézhet. Minden s állapotra true L(s) és false L(s) Kripke struktúrát alkalmazunk, ha rendszerünk működését legjobban állapotok segítségével tudjuk leírni, az állapotokat lokálisan az adott állapotra igaz kijelentésekkel tudjuk jellemezni. A temporális logika segítségével leírt tulajdonságokat az egyes állapotokra érvényes lokális kijelentések alapján értékeljük ki.
9 Kripke struktúrák példa: Jelzőlámpa: AP = {zöld, sárga, piros, villogó sárga} {z öld } {sárga} {piros} {piros, sárga} s1 s2 s3 s4 s5 {villogó_sárga}
10 Cimkézett állapotátmeneti (tranzíciós) rendszerek (LTS Labeled Transition systems): Az állapotátmenetekhez akciókat rendelünk, melyek tovább nem bonthatóak, és általában egy-egy alkalmazás-specifikus műveletet (üzenetet, a környezettel való kölcsönhatást) jelentenek, kisbetűkkel jelöljük őket (a,b,c) Egy LTS a T=(S, Act, ) hármas, ahol: S az állapotok véges halmaza Act=(a,b,c, ) az akciók véges halmaza S Act S címkézet állapot-átmeneti reláció. Egy állapotátmenetet egy akció címkézhet LTS modelleket használunk, ha rendszerünket leginkább az állapotátmenetek során bekövetkezett akciók sorozatával tudjuk leírni (az egyes állapotokat kevésbé tudjuk lokálisan jellemezni). Pl. kommunikációs (üzenetet küldő/fogadó) rendszerek. A temporális logikák segítségével leírt tulajdonságok igazságát a lehetséges akciósorozatok alapján értékeljük ki
11 LTS példa: Italautomata: pénz tea kávé
12 Kripke állapot-átmeneti rendszerek (KTS - Kripke Transition Systems): Az állapotokat kijelentésekkel, az átmeneteket akciókkal címkézzük. Adott AP és Act mellett tehát a KTS a K=(S,,L) hármas. KTL modelleket használunk programok esetén az utasítások (akciók) és változók (állapotokhoz rendelt kijelentések) egyidejű megadására. Példa: z:=0; i:=0; while (i!=y) do z:=z+x; i:=i+1; end z:=z+x i:=i+1 [i!=y] {true} z:=0 i:=0 {i!=y, z=i*x} {z=i*x} [i=y] {z=y*x}
13 Automaták véges szavakon: Véges hosszúságú szavakon értelmezhetjük az A=(Σ, S, S 0, ρ, F) automatát, ahol: Σ - az ábécé (a betűk nem üres halmaza) S az állapotok véges, nem üres halmaza S 0 S a kezdőállapotok halmaza ρ: S Σ 2 S az állapot-átmeneti reláció (egy beérkező betű hatására új állapotba lép az automata) F az elfogadó állapotok halmaza Egy ω = (a 0,,a n-1 ) szót elfogad az automata, ha létezik rá elfogadó futás. Az automata által elfogadott nyelv: L(A)={ω Σ ω elfogadott} Ilyen automatákat használhatunk pl. véges hosszúságú bemenetek feldolgozásának leírására. A temporális logika segítségével leírt tulajdonságokat az elfogadott nyelv alapján értékeljük ki.
14 Büchi automaták: Végtelen hosszúságú szavakon értelmezzük, így módosítanunk kell az elfogadás kritériumát, mivel nincsen végállapot Az A automata futása egy beérkező a 0,a 1 végtelen betűsorozat (szó) hatására az r=(s 0,s 1, ) állapotsorozat, ahol s 0 S 0 és 0 i re s i+1 =ρ(s i,a i ). A végtelen futás jellemzője azon s S állapotok halmaza, amelyeket a futás végtelenül sokszor érint: lim(r) = {s s=s i végtelenül sokszor} Egy futást elfogadónak nevezünk, ha lim(r) F. Egy ω végtelenül hosszú szót elfogad az automata, ha létezik rá elfogadó futás. A Büchi automata által elfogadott nyelv: L(A)={ω Σ ω elfogadott} A temporális logika által leírt tulajdonságokat az elfogadott nyelv alapján értékeljük ki.
Részletes szoftver tervek ellenőrzése
Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Követelmények formalizálása: Temporális logikák dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mire kellenek a temporális logikák? 2 Motivációs mintapélda: Kölcsönös kizárás 2
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek
Formális verifikáció Modellezés és modellellenőrzés
Formális verifikáció Modellezés és modellellenőrzés Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Követelmények formalizálása: Temporális logikák dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mintapélda: Kölcsönös kizárás 2 résztvevőre, 3 megosztott változóval (H. Hyman, 1966)
Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Zárthelyi mintapéldák Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Elméleti kérdések Indokolja meg, hogy az A (X Stop F Start) kifejezés szintaktikailag helyes kifejezés-e CTL illetve
Követelmények formalizálása: Temporális logikák
Követelmények formalizálása: Temporális logikák dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Miért jó a követelményeket
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
Formális modellezés és verifikáció
Formális modellezés és verifikáció Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT Célkitűzések
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Leképzések Mérnöki modellek Magasabb szintű formalizmusok PN, CPN, DFN,
Kiterjesztések sek szemantikája
Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák
Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék
Formális módszerek A formális modellezés és a formális verifikáció alapjai dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István Dr. Pataricza András BME Méréstechnika és Információs
Sztochasztikus temporális logikák
Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Időzített átmeneti rendszerek
Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek
... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.
Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat
Automaták mint elfogadók (akceptorok)
Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e
Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
Véges automaták, reguláris nyelvek
Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata
Részletes tervek ellenőrzése
Szoftverellenőrzési technikák Részletes tervek ellenőrzése Majzik István http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Áttekintés Milyen szerepe van a részletes terveknek? Milyen ellenőrzési módszerek vannak?
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez
Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 3. ADATTÍPUSOK...26 3.1. AZ ADATOK LEGFONTOSABB JELLEMZŐI:...26 3.2. ELEMI ADATTÍPUSOK...27 3.3. ÖSSZETETT ADATTÍPUSOK...28
Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?
,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12
Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS) Magasabb szintű formalizmusok Temporális
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33
1/33 Logika és számításelmélet I. rész Logika Harmadik előadás Tartalom 2/33 Elsőrendű logika bevezetés Az elsőrendű logika szintaxisa 3/33 Nulladrendű állítás Az ítéletlogikában nem foglalkoztunk az álĺıtások
Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)
Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok
Automatikus tesztgenerálás modell ellenőrző segítségével
Méréstechnika és Információs Rendszerek Tanszék Automatikus tesztgenerálás modell ellenőrző segítségével Micskei Zoltán műszaki informatika, V. Konzulens: Dr. Majzik István Tesztelés Célja: a rendszerben
Temporális adatbázisok. Kunok Balázs szakdolgozata alapján
Temporális adatbázisok Kunok Balázs szakdolgozata alapján Miért? Döntéshozatalok körülményeinek meghatározása. Nem csak az a lényeges, hogy hogyan változott az adat, hanem az is, hogy miért. Adatok helyreállíthatók
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony
Logikai ágensek. Mesterséges intelligencia március 21.
Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
Elsőrendű logika. Mesterséges intelligencia március 28.
Elsőrendű logika Mesterséges intelligencia 2014. március 28. Bevezetés Ítéletkalkulus: deklaratív nyelv (mondatok és lehetséges világok közti igazságrelációk) Részinformációkat is kezel (diszjunkció, negáció)
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
SÚLYOS BALESETEK ELEMZÉSE. 3. téma: Kvalitatív módszerek - Hibafa
Az oktatási anyag a szerzők szellemi terméke. Az anyag kizárólag a 2014.01.22-23 23-i OKF Továbbképzés céljaira használható. Sokszorosítás, utánközlés és mindennemű egyéb felhasználás a szerzők engedélyéhez
Modell alapú tesztelés mobil környezetben
Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed
folyamatrendszerek modellezése
Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
2. Logika gyakorlat Függvények és a teljes indukció
2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
Termelő-fogyaszt. fogyasztó modell
Termelő-fogyaszt fogyasztó modell A probléma absztrakt megfogalmazása Adott egy N 1 kapacitású közös tároló. Adott a folyamatok két csoportja, amelyek a tárolót használják. n 1 termelő folyamat, m 1 fogyasztó
Dr. Mileff Péter
Dr. Mileff Péter 1 2 1 Szekvencia diagram Szekvencia diagram Feladata: objektumok egymás közti üzenetváltásainak ábrázolása egy időtengely mentén elhelyezve. Az objektumok életvonala egy felülről lefelé
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális
Programok értelmezése
Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése
2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
Temporális logikai specifikációk vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Temporális logikai specifikációk vizsgálata Diplomaterv Készítette Segesdi
Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1
Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy
Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására
Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.
Szekvencia diagram. Szekvencia diagram Dr. Mileff Péter
Dr. Mileff Péter 1 2 Szekvencia diagram Feladata:objektumok egymás közti üzenetváltásainak ábrázolása egy időtengely mentén elhelyezve. Az objektumok életvonala egy felülről lefelé mutató időtengelyt képvisel.
Szkriptnyelvek. 1. UNIX shell
Szkriptnyelvek 1. UNIX shell Szkriptek futtatása Parancsértelmez ő shell script neve paraméterek shell script neve paraméterek Ebben az esetben a szkript tartalmazza a parancsértelmezőt: #!/bin/bash Szkriptek
A számítógépes nyelvészet elmélete és gyakorlata. Automaták
A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Bevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK
5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás
Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:
Java II. I A Java programozási nyelv alapelemei
Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak
6. Közös változóval rendelkező párhuzamos program, Közös változó,
6. Közös változóval rendelkező párhuzamos program, Közös változó, Reynold kritérium. Atomi művelet, atomi utasítás. szintaxis, szemantika, tulajdonságok. Szinkronizációs párhuzamos program, szintaxis,
5. A kiterjesztési elv, nyelvi változók
5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A
Osztott rendszer. Osztott rendszer informális definíciója
Osztott rendszer Osztott rendszer informális definíciója Egymástól elkülönülten létező program-komponensek egy halmaza. A komponensek egymástól függetlenül dolgoznak saját erőforrásukkal. A komponensek
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben
ELEMI PROGRAMOZÁSI TÉTELEK
ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk
Szoftver-modellellenőrzés absztrakciós módszerekkel
Szoftver-modellellenőrzés absztrakciós módszerekkel Hajdu Ákos Formális módszerek 2017.03.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 BEVEZETŐ 2
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony
AWK programozás, minták, vezérlési szerkezetek
10 AWK programozás, minták, vezérlési szerkezetek AWK futtatási módok AWK parancs, közvetlen programkódmegadás: awk 'PROGRAMKÓD' FILE példa: ls -l awk '{print $1, $5}' a programkód helyére minden indentálás
Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS)
Múlt és jövő: Új algoritmusok lineáris temporális tulajdonságok szaturáció-alapú modellellenőrzésére
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Múlt és jövő: Új algoritmusok lineáris temporális tulajdonságok szaturáció-alapú
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
Időt kezelő modellek és temporális logikák
Időt kezelő modellek és temporális logikák Valósidejű rendszerek követelményeinek formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor
Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor A szotverarchitektúra fogalma A szoftverarchitektúra nagyon fiatal diszciplína. A fogalma még nem teljesen kiforrott. Néhány definíció: A szoftverarchitektúra
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere
Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
SZÁMÍTÁSTUDOMÁNY ALAPJAI
SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz
8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.
8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Automaták és formális nyelvek
Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián Utolsó óra MINTA ZH Eötvös Loránd Tudományegyetem Informatikai Kar 2012.05.18 1. feladat: KMP (Knuth-Morris-Prett)
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
Dinamikus modell: állapotdiagram, szekvencia diagram
Programozási : állapotdiagram, szekvencia diagram osztályszerep Informatikai Kar Eötvös Loránd Tudományegyetem 1 osztályszerep Tartalom 1 2 3 osztályszerep 2 Bevezető Állapot Interakciós Tevékenység osztályszerep
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
Algoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum
A matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja
5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
Programfejlesztési Modellek
Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.