A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
|
|
- Alajos Székely
- 9 évvel ezelőtt
- Látták:
Átírás
1 A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1
2 Modell alapú fejlesztési folyamat (részlet) Formális verifikáció (modellellenőrzés) Automatikus kódgenerálás Formális rendszermodell (forráskód specifikációja) Kézi kódolás Implementáció (forráskód) Tesztgenerálás Futtatható tesztkészlet Specifikációnak megfelelő tesztek 2
3 Használati esetek Kézi kódolás esetén: Konformancia ellenőrzés Modell tesztgenerálás Absztrakt tesztesetek kézi kódolás Implementáció (automatikus) tesztelés leképzés Konkrét tesztesetek Automatikus kódgenerálás esetén: Validáció kódgenerálás Modell Implementáció tesztgenerálás kézi validálás Absztrakt tesztesetek leképzés Konkrét tesztesetek 3
4 Előfeltételek Állapot alapú, eseményvezérelt működés KS, LTS, KTS az alapszintű formalizmusok Fedési kritériumok szerinti tesztelés Állapotfedés: A tesztekkel járjunk be minden állapotot Átmenetfedés: A tesztekkel járjunk be minden átmenetet Alapötlet: Egy teszt: Egy megfelelő állapottér bejárási szekvencia Cél: A modellellenőrző járja be az állapotteret! Irányítsuk úgy, hogy a modellellenőrző által generált ellenpélda legyen a teszteset Teszt elfogadhatósági kritérium Modell mint referencia alapján származtatható 4
5 Hogyan használható a modell ellenőrző? Állapot fedettség: LineWeak állapotra keyno LineOk keyrdy PowerOff Error Ready keyyes LineWeak keyack 5
6 Hogyan használható a modell ellenőrző? keyno LineOk keyrdy PowerOff Error Ready keyyes LineWeak keyack Kritérium megadása: A LineWeak állapotot soha sem lehet elérni: EF LineWeak 6
7 Hogyan használható a modell ellenőrző? keyno LineOk keyrdy PowerOff Error Ready keyyes LineWeak keyack Kritérium ellenőrzése modellellenőrzővel: Eredmény: A kifejezés nem igaz! 7
8 Hogyan használható a modell ellenőrző? Az eszköz ezzel az ellenpéldával demonstrálja, hogy a követelmény nem teljesül, az állapot elérhető. keyno LineOk keyrdy PowerOff Error Ready keyyes LineWeak keyack Ez viszont pontosan egy, a LineWeak állapotot lefedő teszteset! 8
9 Automatikus tesztgenerálás Mérnöki modell Matematikai modell Modellellenőrző Teszteset Tesztelési kritérium TL formulák 9
10 A működés menete I. Mérnöki modell Matematikai modell Tesztelési kritérium Modell- A rendszer modelljét ellenőrző egy modellellenőrző bemeneti nyelvére transzformáljuk. TL formulák Teszteset 10
11 A működés menete II. Mérnöki modell Tesztelési kritérium Matematikai A fedési kritériumokat modell temporális logikai formulákkal fogalmazzuk meg. Például: Legyen minden egyes Modell állapot lefedve Teszteset ellenőrző tesztek által. TL formulák 11
12 A működés menete III. Mérnöki modell Olyan futást akarunk, ahol teljesül a kritérium, ezért a formulák negáltjait ellenőriztetjük. Tesztelési kritérium Matematikai modell TL formulák Modellellenőrző Teszteset 12
13 A működés menete IV. Mérnöki modell Matematikai modell Modellellenőrző Teszteset Tesztelési kritérium TL formulák A kiadódó ellenpéldák egy-egy tesztesetet adnak meg. 13
14 Egy megvalósítás UML állapottérkép UPPAAL modell Modellellenőrző XML teszteset Fedési kritérium CTL formulák 14
15 Vezérlés alapú fedettségi kritériumok Minden állapot és átmenet egyértelműen azonosítva: Egyedi L(s) címke illetve (a) akció Állapot fedés: KS vagy KTS modellen Minden s állapotra: EF L(s) vagy EF (L(s) EF start) start egy kezdőállapot címkéje, a következő teszt indításához Átmenet fedés: LTS vagy KTS modellen Minden t átmenetre, ahol (s,a,s ) : EF (a) 15
16 Korlátozások Modellellenőrző: Csak egy ellenpéldát generál Célja a hatékony állapottér bejárás: Nem feltétlenül a legrövidebb teszt esetet kapjuk! Sok modellellenőrző konfigurálható: Szélességi bejárás kérhető Mélységi bejáráshoz mélységkorlát megadható Rövidebb ellenpélda iteratívan kereshető Legrövidebb/legkisebb tesztkészlet kiválasztása: NP-teljes probléma! Absztrakt és konkrét teszt esetek közt leképezés kell Absztrakt teszt eset: A modell bejárása (ellenpélda) Konkrét teszt eset: Hívási szekvencia adott teszt környezetben Nemdeterminisztikus modellek esetén nehézségek 16
17 Példa: Tesztgenerálási eredmények (állapotfedés) Options (compile or run-time) Time required for test generation Length of the test sequences Longest test sequence -i 22m 32.46s dbfs 11m 48.83s i -m1000 4m 47.23s I 2m 48.78s 25 6 default 2m 04.86s I -m1000 1m 46.64s m m 25.48s m200 -w s 17 3 Paraméterek a SPIN modellellenőrzőhöz: -i iteratív, -I közelítő iteratív -dbfs: szélességi keresés -m mélységi keresés korlátja -w hash tábla korlátja Mobiltelefon vezérlését leíró modell 10 állapot, 21 átmenet 17
18 Példa: Szinkronizációs protokoll tesztelése Bitek szinkronizálása egy elosztott rendszerben 5 objektum, 31 állapot, 174 átmenet 2e+08 bejárandó állapot Más technikák is kellenek: Mélységkorlát bevezetése Szűkítések a modellben: FIFO kommunikációs csatorna méretének korlátozása Korábban lefedett kritériumok kihagyása További heurisztikák alkalmazása: Mélyen fekvő állapotok lefedése előbb Állapottér levágása 18
19 Példa: Teljes állapotfedésű tesztek Szinkronizációs protokoll 19
20 Kiterjesztés valósidejű rendszerekre Óra változók: Időfüggő viselkedést modellezhetünk Időzített automaták használata Modellellenőrző: UPPAAL 20
21 Példa: Generált tesztek State: ( input.sending mobile.poweron mobile1.lineok mobile2.callwait ) t=0 inputevent=28 outputevent=14 in_poweron=1 #depth=5 Delay: 6 A teszt időzítési viszonyok is szerepelnek a generált tesztesetben State: ( input.sending mobile.poweron mobile1.lineok mobile2.callwait ) t=6 inputevent=28 outputevent=14 in_poweron=1 #depth=5 Transitions: input.sending->input.sendinput { 1, inputchannel!, 1 } mobile2.callwait->mobile2.voic { inputevent == evkeyyes && t > 5 && in_poweron, inputchannel?, 1 } 21
22 Tesztgenerálás SAT alapú modellellenőrzővel Logikai függvény konstruálása: Kihajtogatás k lépésben a kezdőállapotból Teszt kritérium megadása: TG formula, pl.: Adott állapot elérése Adott állapotátmenet végrehajtása Adott modellrészlet bejárása, FQL nyelv teszt célokhoz (FSHELL): in /code.c/ k SAT ( ) path(, s,..., ) I s s s TG Kezdőállapot Modell széthajtogatás Teszt cél Ha található behelyettesítés, akkor az egy tesztet ad: A teszt teljesíti a TG kritériumot A legrövidebb teszt az iteráció során megtalálható 22
23 Összefoglalás Tesztgenerálás fedési kritériumokhoz Állapotok fedése Átmenetek fedése Klasszikus modellellenőrzők használata Fedési kritériumhoz temporális logikai kifejezéskészlet Ellenpéldák adják a teszt eseteket A modellellenőrző konfigurálása fontos SAT alapú (korlátos) modellellenőrző használata Fedési kritérium (teszt cél) mint predikátum SAT eredménye (behelyettesítés) adja a teszt esetet 23
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Automatikus tesztgenerálás modell ellenőrző segítségével
Méréstechnika és Információs Rendszerek Tanszék Automatikus tesztgenerálás modell ellenőrző segítségével Micskei Zoltán műszaki informatika, V. Konzulens: Dr. Majzik István Tesztelés Célja: a rendszerben
Modell alapú tesztelés
Modell alapú tesztelés Majzik István és Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/ 1 Motiváció Tartalomjegyzék
Modell alapú tesztelés
Modell alapú tesztelés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Motiváció Tartalomjegyzék Modellek (informális) szerepe a tesztelésben Modell alapú tesztgenerálás Tesztgenerálás
Modell alapú tesztelés
Modell alapú tesztelés Majzik István és Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/ 1 Motiváció Tartalomjegyzék
Modell alapú tesztelés
Szoftver- és rendszerellenőrzés (VIMIMA01) Modell alapú tesztelés Majzik István és Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS) Magasabb szintű formalizmusok Temporális
Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Hatékony technikák modellellenőrzéshez: Korlátos modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk most? Alacsony szintű formalizmusok (KS, LTS, KTS)
Részletes tervek ellenőrzése
Szoftverellenőrzési technikák Részletes tervek ellenőrzése Majzik István http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Áttekintés Milyen szerepe van a részletes terveknek? Milyen ellenőrzési módszerek vannak?
Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Modell alapú tesztelés mobil környezetben
Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Részletes szoftver tervek ellenőrzése
Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron
Szoftver-modellellenőrzés absztrakciós módszerekkel
Szoftver-modellellenőrzés absztrakciós módszerekkel Hajdu Ákos Formális módszerek 2017.03.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 BEVEZETŐ 2
Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek
Formális verifikáció Modellezés és modellellenőrzés
Formális verifikáció Modellezés és modellellenőrzés Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Forráskód generálás formális modellek alapján
Forráskód generálás formális modellek alapján dr. Majzik István Horányi Gergő és Jeszenszky Balázs (TDK) BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Hogyan használhatók
Modell alapú tesztelés: célok és lehetőségek
Szoftvertesztelés 2016 Konferencia Modell alapú tesztelés: célok és lehetőségek Dr. Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Specifikáció alapú teszttervezési módszerek
Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész
Specifikáció alapú teszttervezési módszerek
Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész
Felhasználói felületek tesztelése
Szoftverellenőrzési technikák Felhasználói felületek tesztelése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/ Motiváció
Automatikus kódgenerálás helyességének ellenőrzése
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatikus kódgenerálás helyességének ellenőrzése Készítette: Jeszenszky Balázs, V. Inf., jeszyb@gmail.com Konzulens:
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben
Felhasználói felületek tesztelése
Szoftverellenőrzési technikák Felhasználói felületek tesztelése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/ Motiváció
Formális modellezés és verifikáció
Formális modellezés és verifikáció Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT Célkitűzések
Modellellenőrzés a vasút automatikai rendszerek fejlesztésében. XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő
Modellellenőrzés a vasút automatikai rendszerek fejlesztésében XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő 2018.04.25-27. Tartalom 1. Formális módszerek state of the art 2. Esettanulmány
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
MODELL ALAPÚ AUTOMATIKUS
MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK MODELL ALAPÚ AUTOMATIKUS TESZTGENERÁLÁS DIPLOMATERV Micskei Zoltán Műszaki informatika szak Konzulens: Dr. Majzik István Budapest 2005. május Modell alapú
Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Zárthelyi mintapéldák Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Elméleti kérdések Indokolja meg, hogy az A (X Stop F Start) kifejezés szintaktikailag helyes kifejezés-e CTL illetve
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD)
Hatékony technikák modellellenőrzéshez: Szimbolikus technikák (ROBDD) dr. Majzik István dr. Pataricza András dr. Bartha Tamás BME Méréstechnika és Információs Rendszerek Tanszék 1 Hol tartunk? Alacsony
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Leképzések Mérnöki modellek Magasabb szintű formalizmusok PN, CPN, DFN,
A formális módszerek szerepe
A formális módszerek szerepe dr. Majzik István dr. Bartha Tamás dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék 1 Matematikai technikák, Formális módszerek elsősorban diszkrét
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
Követelmények formalizálása: Temporális logikák. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Követelmények formalizálása: Temporális logikák dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mire kellenek a temporális logikák? 2 Motivációs mintapélda: Kölcsönös kizárás 2
Rendszermodellezés: házi feladat bemutatás
Rendszermodellezés: házi feladat bemutatás Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
Intervenciós röntgen berendezés teljesítményszabályozójának automatizált tesztelése
Intervenciós röntgen berendezés teljesítményszabályozójának automatizált tesztelése Somogyi Ferenc Attila 2016. December 07. Szoftver verifikáció és validáció kiselőadás Forrás Mathijs Schuts and Jozef
Mesterséges intelligencia alapú regressziós tesztelés
Mesterséges intelligencia alapú regressziós tesztelés Gujgiczer Anna, Elekes Márton* * AZ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA ÚNKP-16-1-I. KÓDSZÁMÚ ÚJ NEMZETI KIVÁLÓSÁG PROGRAMJÁNAK TÁMOGATÁSÁVAL KÉSZÜLT
Modellek ellenőrzése és tesztelése
Modellek ellenőrzése és tesztelése Rendszermodellezés imsc gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák
Magasabb szintű formalizmus: Állapottérképek (statecharts) dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Magasabb szintű formalizmus: Állapottérképek (statecharts) dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Mivel nyújt többet egy magasabb szintű
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
2. gyakorlat: Részletes tervek és forráskód ellenőrzése
2. gyakorlat: Részletes tervek és forráskód ellenőrzése A gyakorlaton a részletes tervek ellenőrzésével és a forráskód verifikációját végző statikus ellenőrző eszközökkel fogunk foglalkozni. Részletes
Informatikai rendszertervezés
Informatikai rendszertervezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
R3-COP. Resilient Reasoning Robotic Co-operating Systems. Autonóm rendszerek tesztelése egy EU-s projektben
ARTEMIS Joint Undertaking The public private partnership in embedded systems R3-COP Resilient Reasoning Robotic Co-operating Systems Autonóm rendszerek tesztelése egy EU-s projektben Micskei Zoltán Budapesti
Struktúra alapú teszttervezési módszerek
Szoftverellenőrzési technikák Struktúra alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Teszttervezés módszerei I. Specifikáció alapú A rendszer mint fekete doboz
Autóipari beágyazott rendszerek. Komponens és rendszer integráció
Autóipari beágyazott rendszerek és rendszer integráció 1 Magas szintű fejlesztési folyamat SW architektúra modellezés Modell (VFB) Magas szintű modellezés komponensek portok interfészek adattípusok meghatározása
Szoftver modul/unit tesztelés
Szoftver modul/unit tesztelés Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/ 1 Szoftvermodul tesztelés Szoftvermodultesztelés
Informatikai rendszertervezés
Informatikai rendszertervezés Dr. Varró Dániel Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális
A formális módszerek szerepe
A formális módszerek szerepe dr. Majzik István dr. Bartha Tamás dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék 1 Mik azok a formális módszerek? Matematikai technikák, elsősorban
Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május)
Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május) Teszt kérdések 1. Melyik állítás igaz a folytonos integrációval (CI) kapcsolatban? a. Folytonos
Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék
Formális módszerek A formális modellezés és a formális verifikáció alapjai dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István Dr. Pataricza András BME Méréstechnika és Információs
A szoftver-folyamat. Szoftver életciklus modellek. Szoftver-technológia I. Irodalom
A szoftver-folyamat Szoftver életciklus modellek Irodalom Ian Sommerville: Software Engineering, 7th e. chapter 4. Roger S. Pressman: Software Engineering, 5th e. chapter 2. 2 A szoftver-folyamat Szoftver
Teszttervezés. Majzik István, Micskei Zoltán. Integrációs és ellenőrzési technikák (VIMIA04) Méréstechnika és Információs Rendszerek Tanszék
Integrációs és ellenőrzési technikák (VIMIA04) Teszttervezés Majzik István, Micskei Zoltán Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák
Algoritmizálás, adatmodellezés tanítása 6. előadás
Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér
Elosztott adatbázis-kezelő formális elemzése
Elosztott adatbázis-kezelő formális elemzése Szárnyas Gábor szarnyas@mit.bme.hu 2014. december 10. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és
Petri hálók: Alapelemek és kiterjesztések
Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet
Modellező eszközök, kódgenerálás
Modellező eszközök, kódgenerálás Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
Struktúra alapú teszttervezési módszerek
Szoftver- és rendszerellenőrzés (VIMIMA01) Struktúra alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Teszttervezés módszerei I. Specifikáció alapú A rendszer mint
A formális módszerek szerepe
A formális módszerek szerepe dr. Majzik István dr. Bartha Tamás dr. Pataricza András BME Méréstechnika és Információs ek Tanszék 1 Mik azok a formális módszerek? 2 Matematikai technikák Formális módszerek
Futásidőbeli verifikáció
Futásidőbeli verifikáció Szoftver- és rendszerellenőrzés előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Tartalomjegyzék Célkitűzések
Szoftver karbantartási lépések ellenőrzése
Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/
Miskolci Egyetem Alkalmazott Informatikai Intézeti Tanszék A minőségbiztosítás informatikája. Készítette: Urbán Norbert
Miskolci Egyetem Alkalmazott Informatikai Intézeti Tanszék A minőségbiztosítás informatikája Készítette: Urbán Norbert Szoftver-minőség A szoftver egy termelő-folyamat végterméke, A minőség azt jelenti,
Programfejlesztési Modellek
Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció
2011.11.29. JUnit. JUnit használata. IDE támogatás. Parancssori használat. Teszt készítése. Teszt készítése
Tartalom Integrált fejlesztés Java platformon JUnit JUnit használata Tesztelési technikák Demo 2 A specifikáció alapján teszteljük a program egyes részeit, klasszikus V-modell szerint Minden olyan metódust,
Teszttervezés. Majzik István, Micskei Zoltán. Integrációs és ellenőrzési technikák (VIMIA04) Méréstechnika és Információs Rendszerek Tanszék
Integrációs és ellenőrzési technikák (VIMIA04) Teszttervezés Majzik István, Micskei Zoltán Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és
Időzített átmeneti rendszerek
Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek
A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai
A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási
Formális módszerek. A formális modellezés és a formális verifikáció alapjai. dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék
Formális módszerek A formális modellezés és a formális verifikáció alapjai dr. Bartha Tamás BME Közlekedés- és Járműirányítási Tanszék dr. Majzik István Dr. Pataricza András BME Méréstechnika és Információs
A formális módszerek szerepe a rendszerek biztonságának növelésében
A formális módszerek szerepe a rendszerek biztonságának növelésében Dr. Bartha Tamás BME Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék A formális módszerek rövid bemutatása
Modellek ellenőrzése
Modellek ellenőrzése Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems
Sztochasztikus temporális logikák
Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
2.előadás. alapfogalmak, formális definíció
2.előadás Források: -Molnár Ágnes: Formális módszerek az informatikában (1), NetAkadámia Tudástár -dr. Pataricza András, dr. Bartha Tamás: Petri hálók: alapfogalmak, formális definíció Validáció és verifikáció
A modell-ellenőrzés gyakorlata UPPAAL
A modell-ellenőrzés gyakorlata UPPAAL Uppsalai Egyetem + Aalborgi Egyetem közös fejlesztése; 1995. első verzió megjelenése; részei: - grafikus modellt leíró eszköz (System editor) - szimulátor (Simulator)
Petri hálók: Alapelemek és kiterjesztések
Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Modellinformációk szabványos cseréje. Papp Ágnes, Debreceni Egyetem EFK
Modellinformációk szabványos cseréje Papp Ágnes, agi@delfin.unideb.hu Debreceni Egyetem EFK Tartalom MOF, UML, XMI Az UML és az XML séma MDA - Model Driven Architecture Networkshop 2004 2 Az OMG metamodell
Magasabb szintű formalizmus: Állapottérképek (statecharts) dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Magasabb szintű formalizmus: Állapottérképek (statecharts) dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Mivel nyújt többet egy magasabb szintű
Összefoglaló. Modell alapú automatikus tesztgenerálás
Összefoglaló A szoftverfejlesztés során a tesztelés mindig is a folyamat fontos feladata, mely sok idıt és erıforrást igényel. A klasszikus tesztelési módszerek kezdeti lépése a tesztek megtervezése, a
Folyamatmodellezés (BPMN), adatfolyamhálók
Folyamatmodellezés (BPMN), adatfolyamhálók Rendszermodellezés 2015. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
A szoftver-folyamat. Szoftver életciklus modellek. Szoftver-technológia I. Irodalom
A szoftver-folyamat Szoftver életciklus modellek Irodalom Ian Sommerville: Software Engineering, 7th e. chapter 4. Roger S. Pressman: Software Engineering, 5th e. chapter 2. 2 A szoftver-technológia aspektusai
Formális módszerek GM_IN003_1 Bevezetés
Formális módszerek GM_IN003_1 Formális módszerek Formális módszer! formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben nincs olyan formális eljárás, ami egy komplex rendszer minden
Élő webes alkalmazások rendszerfelügyelete cím- és tartalomteszteléssel
Élő webes alkalmazások rendszerfelügyelete cím- és tartalomteszteléssel Ercsényi Gábor fejlesztőmérnök 1 2004-05-04 Bevezetés Nem megy a bót! 2 Webes szolgáltatások nagy mennyiségű generált oldal igény
Verifikáció és validáció Általános bevezető
Verifikáció és validáció Általános bevezető Általános Verifikáció és validáció verification and validation - V&V: ellenőrző és elemző folyamatok amelyek biztosítják, hogy a szoftver megfelel a specifikációjának
Modellezési alapismeretek
Modellezési alapismeretek Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés és tesztelés: egy kombinált megközelítés szoftverek verifikálására
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés és tesztelés: egy kombinált megközelítés szoftverek verifikálására
Időt kezelő modellek és temporális logikák
Időt kezelő modellek és temporális logikák Valósidejű rendszerek követelményeinek formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Transzformációk integrált alkalmazása a modellvezérelt szoftverfejlesztésben. Ráth István
Transzformációk integrált alkalmazása a modellvezérelt szoftverfejlesztésben Ráth István rath@mit.bme.hu A grafikus nyelvek... mindenhol ott vannak: Grafikus felületek (Visual Studio) Relációs sémák (dbdesign)
Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.
Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj
5. gyakorlat Modellek ellenőrzése és tesztelése Megoldások
5. gyakorlat Modellek ellenőrzése és tesztelése Megoldások Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade