Folyamatmodellezés (BPMN), adatfolyamhálók
|
|
- Pál Orsós
- 7 évvel ezelőtt
- Látták:
Átírás
1 Folyamatmodellezés (BPMN), adatfolyamhálók Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1
2 DEMÓ Futtatható üzleti folyamat (Bonita): alkalmazásbolt 2
3 ÜZLETI FOLYAMAT MODELLEK A GYAKORLATBAN 3
4 UML Activity Diagram Szabványosított jelölés, kiterjesztésekkel o Részletesen ld. SzoftTech, 3. félév 4
5 Business Process Modeling Notation (BPMN) Business Process Management Initiative (BPMI) május: BPMN 1.0 specifikáció 2011: végleges BPMN 2.0 Célok Közérthetőség Felhasználó Üzleti elemző kezdeti folyamatterv Műszaki fejlesztő Implementáció Belső modell automatikus generálás céljára BPEL4WS Üzleti végfelhasználó (monitorozás, menedzsment) 5
6 Példa BPMN 6
7 Adatfolyam Esemény Állapotváltozás Ok-hatás Eseménytípusok: Start, Intermediate, End Tevékenység Atomi/összetett Taszk/alfolyamat Átjáró Szekvencia konvergencia/divergencia AND, OR, XOR, 7
8 Összeköttetés Szekvencia Tevékenységek sorrendje a folyamatban Üzenet Asszociáció Két független folyamat részvevő közötti információcsere Adat, szöveg stb. hozzárendelés 8
9 Tagolás Pool Résztvevő jelölése Sáv Tevékenységek csoportosítása 9
10 Artifact Adat objektum Szimbolikus token Csoport Annotáció Tevékenységek csoportosítása Kiegészítő szöveges információ (komment) 10
11 ÜZLETI FOLYAMATOK VÉGREHAJTÁSA 11
12 Folyamatok szemantikája Modellezés szempontjából Az elvárt működés 12
13 Tokenáramlás Folyamat végrehajtása A folyamat állapota 13
14 Elemi tevékenység állapotai T végrehajtás kezdete végrehajtás vége T végrehajtás előtt T végrehajtás alatt T befejezve t 14
15 Elemi tevékenység állapotai T végrehajtás előtt T végrehajtás alatt T befejezve végrehajtás kezdete végrehajtás vége T végrehajtás előtt T végrehajtás alatt T befejezve t 15
16 Folyamat állapotai T 1 T 2 T 1 végrehajtás előtt T 1 végrehajtás alatt T 1 befejezve T 2 végrehajtás előtt T 2 végrehajtás alatt T 2 befejezve t 16
17 Háttér: matematikai modell Allen-féle intervallum logika (1983) o Pl. tesztelésnél használják, 13 ( ) eset James F. Allen: Maintaining knowledge about temporal intervals. In: Communications of the ACM. 26 November ACM Press. pp , ISSN
18 Háttér: matematikai modell Allen-féle intervallum logika (1983) o Pl. tesztelésnél használják, 13 ( ) eset X EQUALS y X BEFORE y X MEETS y X OVERLAPS y X STARTS y X FINISHES y X DURING y James F. Allen: Maintaining knowledge about temporal intervals. In: Communications of the ACM. 26 November ACM Press. pp , ISSN n intervallum: 1,1,13,409, eset
19 Mit lehet ellenőrizni? Pl. a végrehajtás nem folyamat alapon történt o Megfelelt-e az elvárásoknak (sorrend, függetlenség)? Mi lehetett a folyamat a rendszer mögött? o Workflow mining Pl. a futtatókörnyezet megengedő o Lépés kihagyható o Ilyenkor is teljesülnek az elvárások? Eszköz: formális módszerek o Logika, Petri-hálók, modellellenőrzés, stb. 19
20 Elemi tevékenység finomított állapotgépe Valójában mi történik? (BPMN szabvány) 20
21 Elemi tevékenység finomított állapotgépe Tevékenység megszakítható, visszavonható, hibázhat Futtatókörnyezet felelőssége kezelni Szabvány írja le az állapotokat/átmeneteket Nem ugyanaz, mint a lépést végrehajtó erőforrás/alkalmazás állapota! Tervezési feladat: pl. mit jelent egy esetén a visszavonás 21
22 Futtatás: workflow engine Folyamatok életciklusának kezelése o Folyamat sablonok kezelése o Példányosítás, adatok kezelése Verziókezelés, online frissítése API beágyazható/csatolható elemeknek o REST, WS, EJB Üzleti szabályok (döntések) kezelése Emberi lépések (human task) o Böngészőben megjeleníthető o Jogosultságok kezelése 22
23 Folyamatmenedzsment Követelmények Folyamatmodell Szolgáltalás Meglévő komponensek Integráció Folyamatmenedzsment komponens(ek) Optimalizálás Monitorozás Analízis 23
24 Folyamatmenedzsment Követelmények Folyamatmodell Szolgáltalás Meglévő komponensek Integráció Folyamatmenedzsment komponens(ek) Optimalizálás Optimalizálás, erőforrásfelhasználás, stb: Monitorozás Analízis Teljesítménymodellezés és Szimuláció előadások 24
25 ESETTANULMÁNY: STORM Adatfeldolgozás Apache Storm használatával (Nádudvari Tamás: Nagyméretű adathalmazok elemzésének stream processing alapú támogatása) 25
26 Alkalmazás adatfolyam A lementett hálózati adatokat tartalmazó rekordokat fájlból kiolvassuk Egy rekordban szerepel a forrás és cél IP cím, időpont forgalmazott csomagszám adatmennység 26
27 Alkalmazás adatfolyam A hálózati rekordokat egy adatbázisba küldjük 27
28 Alkalmazás adatfolyam A Storm alkalmazás első komponense kiolvassa a beküldött rekordokat 28
29 Alkalmazás adatfolyam Az alkalmazás szempontjából lényegtelen adatokat levágja a rekordokból 29
30 Alkalmazás adatfolyam Csak az időpontot és a cél IP címet tartalmazó értékpárok lesznek továbbküldve 30
31 Alkalmazás adatfolyam Egy külső web szolgáltatás segítségével az IP címekhez megkeresi a hozzátartozó országot 31
32 Alkalmazás adatfolyam (időpont, ország) értékpárok 32
33 Alkalmazás adatfolyam Az adatokat idő alapján aggregálja 3 perces blokkokba Országok szerint összegez Adatbázisba ment 33
34 Alkalmazás adatfolyam A csúszó ablakból kieső adatok törlésért felel 34
35 Alkalmazás adatfolyam Nem a beérkező rekordok hatására ( percenként) 35
36 Alkalmazás adatfolyam Ország név és gyakoriság értékpárok Megjelenítés: egyszerű webszolgáltatás és weblap 36
37 Alkalmazás adatfolyam 37
38 Szöveges folyamat (topológia) TopologyBuilder builder = new TopologyBuilder(); builder.setspout("redis_spout", new RedisSpout(), 1); builder.setbolt("gatherer", new Gatherer(), 5).shuffleGrouping("redis_spout"); builder.setbolt("locator", new GeoTagger(), 10).shuffleGrouping("gatherer"); builder.setbolt("aggregator", new Aggregator(), 10).fieldsGrouping("locator", new Fields("date")); builder.setspout("timer_spout", new TimerSpout(), 1); builder.setbolt("sweeper", new Sweeper(), 5).shuffleGrouping("timer_spout"); 38
39 Kimenet 39
40 Miért/hogyan folyamat? Adatáramlás explicit megjelenik o Először szűr, aztán összesít Implicit függőségek (DB) Folyamat sablon ~ topológia o Saját definíció, nem szabvány Nem általános célú o Kifejezetten adatfeldolgozás o (Eredetileg: állapotfrissítések) 40
41 ADATFOLYAMHÁLÓK Data Flow Network, DFN 41
42 Adatfolyamhálók célja Csomópontok és kommunikáció modellezése o Pl. BPMN folyamatok leképzése (speciális eset) Csomópont is lehet egy modell o Nem emlékezet/állapotmentes o Állapotgép o Folyamatmodell? o Maga is egy adatfolyamháló Későbbi előadásban o Hierarchia modellezése o Finomítási lépések 42
43 Komponensek kommunikációja Lazán csatolás nem azonnali lépés Csatorna o FIFO vagy random access (mi alapján olvasunk belőle?) o Kapacitással rendelkeznek (mennyi token lehet rajta?) o Adatmodell rendelhető hozzá (pl. tokenhalmaz) Mögöttes technológia o Pl. üzenetsor alapú megoldások o MQ, JMS, MQTT,.. 43
44 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) csomópontok irányított élek (FIFO csatornák) Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=2; > Adatok o Tokenek 44
45 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) csomópontok irányított élek (FIFO csatornák) Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek 45
46 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) csomópontok Kiinduló irányított állapot élek (FIFO csatornák) Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek 46
47 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) csomópontok Kiinduló irányított állapot élek (FIFO csatornák) Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek Bemeneti csatorna 47
48 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) Bemeneti csomópontok Kiinduló csatornáról irányított állapot élek (FIFOelvett csatornák) token Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek Bemeneti csatorna 48
49 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) Bemeneti csomópontok Kiinduló csatornáról irányított állapot élek (FIFOelvett csatornák) token Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek Bemeneti csatorna Célállapot 49
50 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) Bemeneti csomópontok Kiinduló csatornáról irányított állapot élek (FIFOelvett csatornák) token Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek Bemeneti csatorna Célállapot Kimeneti csatorna 50
51 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) Bemeneti csomópontok Kiinduló csatornáról irányított állapot élek (FIFOelvett csatornák) token Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek Bemeneti csatorna Célállapot 51 Kimeneti csatorna Kimeneti csatornára kitett token
52 Adatfolyam modellezés Nem determinisztikus DFN formalizmus o [Jonsson, Cannata] Struktúra o Adatfolyam gráf (DFG) Bemeneti csomópontok Kiinduló csatornáról irányított állapot élek (FIFOelvett csatornák) token Viselkedés o Tüzelési szabályok: <s0; in=c0; s1; out=c2; > Adatok o Tokenek Bemeneti csatorna Célállapot 52 Kimeneti csatorna Prioritás Kimeneti csatornára kitett token
53 Nem determinisztikus adatfolyam A rendszer determinisztikus: o Egy adott állapotban bekövetkező feltételek szerint hajt végre akciókat. A rendszer nem determinisztikus: o Példa1: Az eddigi feltételek helyett az akciók végrehajtásának valószínűsége adott (randomizált modell). o Példa2: nem tudjuk/nem modellezük a döntések belsejét (ld később: predikátum absztrakció, példa: x<8 helyett A ) o A randomizált modell nem feltétlenül,,ekvivalens a determinisztikus modellel. o Egymást kizáró alternatívák is lehetségesek A kapott eredményt értelmezni kell 53
54 A módszer előnyei Tulajdonság Grafikus, moduláris, kompakt, hierarchikus Fekete és átlátszó doboz modell Finomítási szabályok Információáramlás direkt leírása Elosztott modell mind finom, mind durva pontossággal Adatvezérelt működés Hívási átlátszóság, atomi tulajdonság, információrejtés Matematikai formalizmus Transzformáció: TTPN, PA Alkalmas Egyszerűen áttekinthető modell Modellezés korai fázisban Többszintű modellezés Hibaterjedés modellezése Aszinkron, konkurens események Eseményvezérelt real-time rendszerek Hibatűrő alkalmazások Formális módszerek Validáció, időbeli analízis 54
55 Adatfolyam hálózat formális leírása Adatfolyam hálózat: egy hármas (N, C, S ) o N : csomópontok halmaza o C : csatornák halmaza I: bemenő csatornák kapcsolat a külvilággal O: kimenő csatornák IN: belső (csomópontok közötti) csatornák o S : állapotok halmaza Adatfolyam csatorna: o végtelen kapacitású FIFO csatorna, o egy bemeneti és egy kimeneti csomóponthoz kötve o állapota: S c = M c tokenszekvencia 55
56 Adatfolyam csomópont formális leírása Adatfolyam csomópont: n = (I n,o n,s n,s n0,r n,m n ), ahol I n bemenő csatornák halmaza O n kimenő csatornák halmaza S n csomópont állapotok halmaza s 0 n csomópont kezdőállapota, s 0 n S n M n tokenek halmaza R n tüzelések halmaza, r n R n egy ötös (s n, X in, s n, X out, ) s n tüzelés előtti és utáni állapotok, s n S X in X out bemenő leképzés, X in : I n M n kimenő leképzés, X out : O n M n tüzelés prioritása, N 56
57 in n Egy példa out Egy token kapacitású csatornák Hálózat: o DFN = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: o r1=<s; in=ok; s; out=ok; 0> 57
58 in Egy példa Egy token kapacitású csatornák Hálózat: o DFN = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: n Csomópontok halmaza out o r1=<s; in=ok; s; out=ok; 0> 58
59 in Egy példa Egy token kapacitású csatornák Hálózat: o DFN = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: n Csomópontok halmaza out o r1=<s; in=ok; s; out=ok; 0> Csatornák halmaza 59
60 in Egy példa Egy token kapacitású csatornák Hálózat: o DFN = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Állapotok halmaza Tüzelések: n Csomópontok halmaza out o r1=<s; in=ok; s; out=ok; 0> Csatornák halmaza 60
61 in n Egy példa out Egy token kapacitású csatornák Bemenő csatornák o DFN halmaza = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Hálózat: Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: o r1=<s; in=ok; s; out=ok; 0> 61
62 in n Egy példa out Egy token kapacitású csatornák Bemenő Kimenő csatornák csatornák o DFN halmaza halmaza = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Hálózat: Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: o r1=<s; in=ok; s; out=ok; 0> 62
63 in n Egy példa out Egy token kapacitású csatornák Bemenő Kimenő csatornák csatornák o DFN halmaza halmaza = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Hálózat: Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: o r1=<s; in=ok; s; out=ok; 0> Csomópont állapotok halmaza 63
64 in n Egy példa out Egy token kapacitású csatornák Bemenő Kimenő csatornák csatornák o DFN halmaza halmaza = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Hálózat: Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: Tokenek o r1=<s; in=ok; s; out=ok; 0> halmaza Csomópont állapotok halmaza 64
65 in n Egy példa out Egy token kapacitású csatornák Bemenő Kimenő csatornák csatornák o DFN halmaza halmaza = ({n}, {in, out}, {(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)}) Hálózat: Csomópontok: o n = ({in}, {out}, {s}, s, {ok,0}, {r1}) Tüzelések: Tokenek o r1=<s; in=ok; s; out=ok; 0> halmaza Csomópont állapotok halmaza Tüzelések halmaza 65
66 Példa - Számláló Készítsük el egy adatfolyam Számláló csomópontját, amely számláló bemenetén és tokeneket kap, majd a kimenetén a w00t token jelenik meg, amennyiben egymás után 3 db jelet olvas a bementről. 66
67 Példa - Bíró Készítsük el egy adatfolyam Bíró csomópontját. A csomópont két bemenetéről egyszerre olvassa be egy érme feldobásának eredményét és a játékos tippjét. Ha a dobás és a tipp megegyezik a kimeneten a jelet, egyébként a jelet adja ki. 67
68 Adatfolyam modellek kiértékelése + Interaktív szimuláció Validáció, helyességbizonyítás (direkt/indirekt) Dinamikus tulajdonságok: elérhetőség, holtpontmentesség + Időbeli analízis (indirekt) Tüzelési szabályokban végrehajtási idő, mint valószínűségi változó + Hibaszimuláció (direkt, diszkrét esemény szimuláció) Működési modell kiegészítése hibamodellel, hibahatások elemzése + Teszttervezés (indirekt) Tesztgenerálás, tesztelhetőségi analízis, tesztkészlet optimalizálás Hibahatás analízis (direkt) FMEA: hibamód és hatás analízis, hibafa és eseményfa generálás (Megbízhatósági analízis) (indirekt) Klasszikus mértékek: megbízhatóság, rendelkezésre állás, MTBF, 68
Folyamatmodellezés (BPMN) és alkalmazásai
Folyamatmodellezés (BPMN) és alkalmazásai Rendszermodellezés 2018. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Folyamatmodellezés (BPMN), adatfolyamhálók
Folyamatmodellezés (BPMN), adatfolyamhálók Rendszermodellezés 2016. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Ez vajon egy állapotgép-e? Munkafolyamat (Workflow):
Adatfolyam hálók Dr. Bartha Tamás, Dr. Pataricza András fóliái
Adatfolyam hálók Dr. Bartha Tamás, Dr. Pataricza András fóliái Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Adatfolyam modellezés Nem determinisztikus
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék. Folyamatmodellezés
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamatmodellezés Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata, amelyeket
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék. Folyamatmodellezés
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamatmodellezés Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata, amelyeket
Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata,
Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata,
Folyamatmodellezés a gyakorlatban. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Folyamatmodellezés a gyakorlatban Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Business ProcessModeling Notation Business ProcessModeling Notation (BPMN)
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
Folyamatmodellezés. Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem. Hibatűrő Rendszerek Kutatócsoport
Folyamatmodellezés Rendszermodellezés 2018. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika 1 és Információs
Folyamatmodellezés. Budapesti Műszaki és Gazdaságtudományi Egyetem. Hibatűrő Rendszerek Kutatócsoport. Budapesti Műszaki és Gazdaságtudományi Egyetem
Folyamatmodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika 1 és Információs Rendszerek Tanszék 1 Tartalom
Modell alapú tesztelés mobil környezetben
Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed
Részletes szoftver tervek ellenőrzése
Részletes szoftver tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A részletes
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Folyamatmodellezés. Budapesti Műszaki és Gazdaságtudományi Egyetem. Hibatűrő Rendszerek Kutatócsoport. Budapesti Műszaki és Gazdaságtudományi Egyetem
Folyamatmodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Tartalom
Integrált keretrendszer
Integrált keretrendszer Példa SAP R/3 Üzleti, szervezeti folyamatok modellezése Eseményvezérelt folyamat lánc (Event-driven Process Chain (EPC), Ereignisgesteuerte Prozessketten (EPK)) 1 BPMN Business
Nagy bonyolultságú rendszerek fejlesztőeszközei
Nagy bonyolultságú rendszerek fejlesztőeszközei Balogh András balogh@optxware.com A cég A BME spin-off-ja A Hibatűrő Rendszerek Kutatócsoport tagjai alapították Tisztán magánkézben Szakmai háttér Hibatűrő
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
Viczián István IP Systems http://jtechlog.blogspot.hu/ JUM XIX. - 2012. szeptember 18.
Viczián István IP Systems http://jtechlog.blogspot.hu/ JUM XIX. - 2012. szeptember 18. Két projekt Mindkettőben folyamatirányítás Eltérő követelmények Eltérő megoldások Dokumentum gyártási folyamat Üzemeltetés
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron
Szolgáltatásintegráció (VIMIM234) tárgy bevezető
Szolgáltatásintegráció Szolgáltatásintegráció (VIMIM234) tárgy bevezető Gönczy László gonczy@mit.bme.hu A tárgyról A tantárgy célja a hallgatók megismertetése a komplex informatikai rendszerek integrációs
- Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban
I. Intelligens tervezőrendszerek - Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban Adat = struktúrálatlan tények, amelyek tárolhatók,
Modellek ellenőrzése és tesztelése
Modellek ellenőrzése és tesztelése Rendszermodellezés imsc gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,
Automatikus tesztgenerálás modell ellenőrző segítségével
Méréstechnika és Információs Rendszerek Tanszék Automatikus tesztgenerálás modell ellenőrző segítségével Micskei Zoltán műszaki informatika, V. Konzulens: Dr. Majzik István Tesztelés Célja: a rendszerben
Modellinformációk szabványos cseréje. Papp Ágnes, Debreceni Egyetem EFK
Modellinformációk szabványos cseréje Papp Ágnes, agi@delfin.unideb.hu Debreceni Egyetem EFK Tartalom MOF, UML, XMI Az UML és az XML séma MDA - Model Driven Architecture Networkshop 2004 2 Az OMG metamodell
Szolgáltatásintegráció (VIMIM234) tárgy bevezető
Szolgáltatásintegráció Szolgáltatásintegráció (VIMIM234) tárgy bevezető Gönczy László gonczy@mit.bme.hu A tárgyról A tantárgy célja a hallgatók megismertetése a komplex informatikai rendszerek integrációs
Petri hálók: Alapelemek és kiterjesztések
Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet
Modellezés Petri hálókkal. dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék
Modellezés Petri hálókkal dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Modellező eszközök: DNAnet, Snoopy, PetriDotNet A DNAnet modellező
Szoftvertechnológia ellenőrző kérdések 2005
Szoftvertechnológia ellenőrző kérdések 2005 Mi a szoftver, milyen részekből áll és milyen típusait különböztetjük meg? Mik a szoftverfejlesztés általános lépései? Mik a szoftvergyártás általános modelljei?
Modellellenőrzés a vasút automatikai rendszerek fejlesztésében. XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő
Modellellenőrzés a vasút automatikai rendszerek fejlesztésében XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő 2018.04.25-27. Tartalom 1. Formális módszerek state of the art 2. Esettanulmány
UML (Unified Modelling Language)
UML (Unified Modelling Language) UML (+ Object Constraint Language) Az objektum- modellezés egy szabványa (OMG) UML A 80-as, 90-es években egyre inkább terjedő objektum-orientált analízis és tervezés (OOA&D)
Diszkrét állapotú rendszerek modellezése. Petri-hálók
Diszkrét állapotú rendszerek modellezése Petri-hálók Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron
Autóipari beágyazott rendszerek. Komponens és rendszer integráció
Autóipari beágyazott rendszerek és rendszer integráció 1 Magas szintű fejlesztési folyamat SW architektúra modellezés Modell (VFB) Magas szintű modellezés komponensek portok interfészek adattípusok meghatározása
JAVA webes alkalmazások
JAVA webes alkalmazások Java Enterprise Edition a JEE-t egy specifikáció definiálja, ami de facto szabványnak tekinthető, egy ennek megfelelő Java EE alkalmazásszerver kezeli a telepített komponensek tranzakcióit,
Intervenciós röntgen berendezés teljesítményszabályozójának automatizált tesztelése
Intervenciós röntgen berendezés teljesítményszabályozójának automatizált tesztelése Somogyi Ferenc Attila 2016. December 07. Szoftver verifikáció és validáció kiselőadás Forrás Mathijs Schuts and Jozef
EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA
infokommunikációs technológiák EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA Témavezető: Tarczali Tünde Témavezetői beszámoló 2015. január 7. TÉMAKÖR Felhő technológián
Szoftver-mérés. Szoftver metrikák. Szoftver mérés
Szoftver-mérés Szoftver metrikák Szoftver mérés Szoftver jellemz! megadása numerikus értékkel Technikák, termékek, folyamatok objektív összehasonlítása Mér! szoftverek, programok CASE eszközök Kevés szabványos
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben
Modellek fejlesztése
Modellek fejlesztése Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Tartalom
Modellek fejlesztése
Modellek fejlesztése Molnár Vince, Dr. Pataricza András Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és
Feltörekvő technológiák: seam, drools, richfaces és társai a JBossban
Feltörekvő technológiák: seam, drools, richfaces és társai a JBossban Török Tamás senior consultant ULX Nyílt Forráskódú Tanácsadó és Disztribúciós Kft. Miről lesz ma szó? Röviden az ULX-ről A JBoss közösségről
Petri hálók: Alapelemek és kiterjesztések
Petri hálók: Alapelemek és kiterjesztések dr. Bartha Tamás dr. Pataricza András dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellek a formális ellenőrzéshez Mivel nyújt többet
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (8) Szoftverminőségbiztosítás Szoftvertesztelési folyamat (folyt.) Szoftvertesztelési ráfordítások (Perry 1995) Tesztelésre fordítódik a projekt költségvetés 24%-a a projekt menedzsment
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
Modellezési alapismeretek
Modellezési alapismeretek Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Hogyan lehet megakadályozni az üzleti modellezés és az IT implementáció szétválását? Oracle BPM Suite
Hogyan lehet megakadályozni az üzleti modellezés és az IT implementáció szétválását? Oracle BPM Suite Petrohán Zsolt Vezető tanácsadó zsolt.petrohan@oracle.com Napirend Oracle Fusion Middleware BPM kihívásai
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (10) Szoftverminőségbiztosítás Struktúra alapú (white-box) technikák A struktúrális tesztelés Implementációs részletek figyelembevétele Tesztelési célok -> lefedettség Implicit
Petri hálók: alapfogalmak, kiterjesztések
Petri hálók: alapfogalmak, kiterjesztések dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék A Petri hálók eredete Petri háló: Mi az? Carl Adam Petri: német matematikus,
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Leképzések Mérnöki modellek Magasabb szintű formalizmusok PN, CPN, DFN,
Modellezési alapismeretek
Modellezési alapismeretek Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Diszkrét állapotú rendszerek modellezése. Petri-hálók
Diszkrét állapotú rendszerek modellezése Petri-hálók Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron
Enterprise extended Output Management. exom - Greendoc Systems Kft. 1
Enterprise extended Output Management exom - Greendoc Systems Kft. 1 exom - Greendoc Systems Kft. 2 Sokféle bementi adatformátum kezelése Adatok fogadása különböző csatornákon Előfeldolgozás: típus meghatározás,
Témakörök. Structured Analysis (SA) Előnyök (SA) (SA/SD) Jackson Structured Programming (JSP) Szoftvertechnológia
Témakörök Struktúrált fejlesztés Szoftvertechnológia előadás Structured Analysis/Stuctured Design (SA/SD) Jackson Structured Programming (JSP) Jackson System Development e e (JSD) Data Structured Systems
Software Engineering Babeş-Bolyai Tudományegyetem Kolozsvár
Software Engineering Dr. Barabás László Ismétlés/Kitekintő Ismétlés Software Engineering = softwaretechnológia Projekt, fogalma és jellemzői, személyek és szerepkörök Modell, módszertan Kitekintés Elemzés/
Autóipari beágyazott rendszerek. A kommunikáció alapjai
Autóipari beágyazott rendszerek A kommunikáció alapjai 1 Alapfogalmak Hálózati kommunikáció Vezérlőegységek közötti információ továbbítás Csomópontok Kommunikációs csatornákon keresztül Terepbuszok (cluster)
alkalmazásfejlesztő környezete
A HunGrid infrastruktúra és alkalmazásfejlesztő környezete Gergely Sipos sipos@sztaki.hu MTA SZTAKI Hungarian Academy of Sciences www.lpds.sztaki.hu www.eu-egee.org egee EGEE-II INFSO-RI-031688 Tartalom
ALKALMAZÁS KERETRENDSZER
JUDO ALKALMAZÁS KERETRENDSZER 2014 1 FELHASZNÁLÓK A cégvezetők többsége a dobozos termékek bevezetésével összehasonlítva az egyedi informatikai alkalmazások kialakítását költséges és időigényes beruházásnak
Szoftver karbantartás
Szoftver karbantartás Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Áttekintés Követelményspecifikálás Architektúra
Informatikai rendszertervezés
Informatikai rendszertervezés Dr. Varró Dániel Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
MŰSZAKI TESZTTERVEZÉSI TECHNIKÁK A TESZT FEJLESZTÉSI FOLYAMATA A TESZTTERVEZÉSI TECHNIKÁK KATEGÓRIÁI
MŰSZAKI TESZTTERVEZÉSI TECHNIKÁK A TESZT FEJLESZTÉSI FOLYAMATA A TESZTTERVEZÉSI TECHNIKÁK KATEGÓRIÁI MUNKAERŐ-PIACI IGÉNYEKNEK MEGFELELŐ, GYAKORLATORIENTÁLT KÉPZÉSEK, SZOLGÁLTATÁSOK A DEBRECENI EGYETEMEN
SABLONOZÓ KERETRENDSZER
SABRE SABLONOZÓ KERETRENDSZER 2014 1 FELHASZNÁLÓK Számtalan olyan vállalat és állami szervezet létezik, akik ügyfeleikkel sablonlevelek segítségével kommunikálnak, vagy sablonlevelekben értesítik partnereiket
Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István
Laborgyakorlat 3 A modul ellenőrzése szimulációval Dr. Oniga István Szimuláció és verifikáció Szimulációs lehetőségek Start Ellenőrzés után Viselkedési Funkcionális Fordítás után Leképezés után Időzítési
IT ügyfélszolgálat és incidenskezelés fejlesztése az MNB-nél
IT ügyfélszolgálat és incidenskezelés fejlesztése az MNB-nél Molnár László MNB, ITIL Projektvezető Fábián János ICON Professional Services Vezérfonal Az MNB IT működése, a SIP kiváltó okai A projekt módszereinek
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
Stream processing ősz, 10. alkalom Kocsis Imre,
Stream processing 2017 ősz, 10. alkalom Kocsis Imre, ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Az adatfolyam-feldolgozó elem: blokkséma
Petri hálók: alapfogalmak, kiterjesztések
Petri hálók: alapfogalmak, kiterjesztések dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók felépítése, működése A Petri hálók eredete Petri háló: Mi
10-es Kurzus. OMT modellek és diagramok OMT metodológia. OMT (Object Modelling Technique)
10-es Kurzus OMT modellek és diagramok OMT metodológia OMT (Object Modelling Technique) 1 3 Modell és 6 Diagram Statikus modell : OMT Modellek és diagramok: Statikus leírása az összes objektumnak (Név,
Részletes tervek ellenőrzése
Szoftverellenőrzési technikák Részletes tervek ellenőrzése Majzik István http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Áttekintés Milyen szerepe van a részletes terveknek? Milyen ellenőrzési módszerek vannak?
Használati alapú és modell alapú tesztelés kombinálása szolgáltatásorientált architektúrák teszteléséhez az ipari gyakorlatban
Használati alapú és modell alapú tesztelés kombinálása szolgáltatásorientált architektúrák teszteléséhez az ipari gyakorlatban Nagy Attila Mátyás 2016.12.07. Áttekintés Bevezetés Megközelítés Pilot tanulmányok
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati
Integrációs mellékhatások és gyógymódok a felhőben. Géczy Viktor Üzletfejlesztési igazgató
Integrációs mellékhatások és gyógymódok a felhőben Géczy Viktor Üzletfejlesztési igazgató Middleware projektek sikertelenségeihez vezethet Integrációs (interfész) tesztek HIÁNYA Tesztadatok? Emulátorok?
Erőforrás gazdálkodás a bevetésirányításban
Professzionális Mobiltávközlési Nap 2009 Új utakon az EDR Erőforrás gazdálkodás a bevetésirányításban Fornax ZRt. Nagy Zoltán Vezérigazgató helyettes Budapest, 2009. április 9. Tartalom 1. Kézzelfogható
Magasabb szintű formalizmus: Állapottérképek (statecharts) dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Magasabb szintű formalizmus: Állapottérképek (statecharts) dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Mivel nyújt többet egy magasabb szintű
A J2EE fejlesztési si platform (application. model) 1.4 platform. Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem
A J2EE fejlesztési si platform (application model) 1.4 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2007. 11.13. A J2EE application model A Java szabványok -
Modellező eszközök, kódgenerálás
Modellező eszközök, kódgenerálás Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
Adattárház kialakítása a Szövetkezet Integrációban, UML eszközökkel. Németh Rajmund Vezető BI Szakértő március 28.
Adattárház kialakítása a Szövetkezet Integrációban, UML eszközökkel Németh Rajmund Vezető BI Szakértő 2017. március 28. Szövetkezeti Integráció Központi Bank Takarékbank Zrt. Kereskedelmi Bank FHB Nyrt.
Programfejlesztési Modellek
Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció
Történet John Little (1970) (Management Science cikk)
Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn
A szoftver-folyamat. Szoftver életciklus modellek. Szoftver-technológia I. Irodalom
A szoftver-folyamat Szoftver életciklus modellek Irodalom Ian Sommerville: Software Engineering, 7th e. chapter 4. Roger S. Pressman: Software Engineering, 5th e. chapter 2. 2 A szoftver-folyamat Szoftver
Miért is transzformáljunk modelleket? Varró Dániel
Miért is transzformáljunk modelleket? Varró Dániel Mit látunk a képen? Tipikus kérdések (Hardvertervezés) Jól működik-e? 1+1 = 2? Hogyan készítsünk 8 bites összeadót 4 bites összeadóval? Hogyan készítsünk
Modell alapú tesztelés: célok és lehetőségek
Szoftvertesztelés 2016 Konferencia Modell alapú tesztelés: célok és lehetőségek Dr. Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Informatikai rendszertervezés
Informatikai rendszertervezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Nyílt hozzáférésű informatikai rendszerek BME VIMM 5294
Nyílt hozzáférésű informatikai rendszerek BME VIMM 5294 Übelhart István ubelhart@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszéke Nyílt rendszerek
Adat és folyamat modellek
Adat és folyamat modellek Előadásvázlat dr. Kovács László Folyamatmodell nyersanyag miből termék mit funkció ki munkaerő eszköz mivel Objektumok Tevékenységek Adatmodell Funkció modell Folyamat modell
Üzleti folyamatok rugalmasabb IT támogatása. Nick Gábor András 2009. szeptember 10.
Üzleti folyamatok rugalmasabb IT támogatása Nick Gábor András 2009. szeptember 10. A Generali-Providencia Magyarországon 1831: A Generali Magyarország első biztosítója 1946: Vállalatok államosítása 1989:
Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe
Hálózat hidraulikai modell integrálása a térinformatikai rendszerébe Hálózathidraulikai modellezés - Szakmai nap MHT Vízellátási Szakosztály 2015. április 9. Térinformatikai rendszer bemutatása Működési
Szoftver értékelés és karbantartás
Szoftver értékelés és karbantartás Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Emlékeztető: Biztonsági követelmények
Parametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
S01-7 Komponens alapú szoftverfejlesztés 1
S01-7 Komponens alapú szoftverfejlesztés 1 1. A szoftverfejlesztési modell fogalma. 2. A komponens és komponens modell fogalma. 3. UML kompozíciós diagram fogalma. 4. A szoftverarchitektúrák fogalma, összetevői.
Pentaho 4: Mindennapi BI egyszerűen. Fekszi Csaba Ügyvezető 2011. október 6.
Pentaho 4: Mindennapi BI egyszerűen Fekszi Csaba Ügyvezető 2011. október 6. 1 2 3 4 5 Bevezetés Pentaho-ról röviden - áttekintő Mindennapi BI egyszerűen a Pentaho 4 újdonságai Pentaho összefoglaló Alkalmazás
Számítógéppel segített folyamatmodellezés p. 1/20
Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől
3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások
3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek ok Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb
Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):
Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki
folyamatrendszerek modellezése
Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét