NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere"

Átírás

1 Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett Először általában a nem-determinisztikus programok formális helyesség bizonyításait vizsgáljuk Majd a nem-determinisztikus strukturált programok szintéziséről lesz szó 2 Nem-determinisztikus program elemek 1. A számítási csomópontokhoz nem függvényt, hanem relációt (nem-determinisztikus függvényt) rendelünk. 2. Az elágazási csomópontoknál kettőnél több kivezető él lehet, és mindegyikhez tartozik egy feltétel, ám ezek a feltételek nem szükségképpen teljesek és diszjunktak páronként. o Az átfedő feltételek okozzák a nem-determinisztikusságot o Ha egyik feltétel sem teljesül, ekkor hibás lesz a működés 3. Nem-determinisztikus szekvencia, azaz nincs megkötés a szekvenciát alkotó tagprogramok sorrendjére o Ez átvezet a párhuzamos programok vizsgálatához, ezért itt nem is számolunk vele Program-gráf A programok leírására a determinisztikus programoknál bevezetett gráfot használhatjuk: 1. A számítási csomópontokban megengedjük, hogy az f számítás nem-determinisztikus legyen: f A A. v f(v) helyett: v e ha e f(v) (v : f(v) ) Ennek alesete a v f(v) g(v) f, g : A A, amikor v f(v) vagy v g(v) hajtódik végre. 2. Az elágazási csomópontoknál megengedünk kettőnél több kivezető élt is, amelyekhez egy-egy kvantorfüggetlen logikai kifejezés tartozik. Ha egyszerre több kivezető él feltétele is teljesül, akkor az egyik ilyen ág hajtódik végre. Ha egyik feltétel sem teljesül, ekkor hibás működés keletkezik. 3. A gyűjtő csomópontokba kettőnél több él is befuthat. 3 4 Floyd módszerének felidézése Floyd módszer általánosítása Determinisztikus programok esetében egy rögzített kezdő csomóponthoz és kiinduló állapothoz egyértelműen tartozott egy végrehajtás és egy út a program-gráfban. Floyd módszere úgy mutatta meg, hogy bármelyik φ -ből induló végrehajtás ψ-ben áll meg, hogy a program-gráfnak a végrehajtáshoz tartozó útját, pontosabban annak útszakaszait vizsgálta. Ennek alapja az volt, hogy adott kiinduló állapot mellett egy út egyértelműen azonosította a végrehajtást. A nem-determinisztikusság miatt egy rögzített kezdő csomóponthoz és kiinduló állapothoz többféle végrehajtás is tartozhat. Egy végrehajtáshoz ugyan most is egyértelműen tartozik egy út a program-gráfban, de adott kiinduló állapot mellett egy úton több végrehajtás is keletkezhet. A Floyd módszer tehát nem-determinisztikus program esetén is alkalmazható, de az útszakasz jellemzők felírása körülményesebb. Erre megoldást jelenthet, ha sűrűn címkézzük a program-gráfot (minden csomópont előtt és után), de ekkor a helyességbizonyítás a sok útszakasz miatt hosszadalmas

2 Nem-determinisztikus strukturált programok A strukturált programokat most is rekurzív módon definiáljuk. Kétféle definíciót is fogunk látni őrfeltételes (parciális) értékadás kiválasztás iteráció kilépéses iteráció Szintaxis 1. S::= skip v f(v) S 1 ; S 2 if 1 S 1 n S n fi do 1 S 1 n S n od do 1 S 1 n S n S e ; exit od ahol S 1, S 2,S n, S e nem-determinisztikus programok f : A A; f(v) kifejezés 1,, n, : A L; i (v), (v) kvantorfüggetlen logikai kifejezések 7 8 Szemantika 1. skip () = () () ( v f(v))( )=, f() ( v f(v))( )=, fail fail, M[S 1 ]() (S 1 ; S 2 )() = S 1 () S 2 (M[S 1 ]() ) fail, M[S 1 ]() (S 1 ; S 2 )() = S 1 () i[1..n]: i() (if 1 S 1 n S n fi)( ) = S i ( ) i[1..n]: i () (if 1 S 1 n S n fi)( ) =, fail i[1..n]: i () (do 1 S 1 n S n od)() = (S i; do 1 S 1 n S n od)() i[1..n]: i () (do 1 S 1 n S n od)( ) = i[1..n]: i () (do 1 S 1 n S n S e ; exit od)() = (S i; do 1 S 1 n S n S e ; exit od)() i[1..n]: i () (do 1 S 1 n S n S e ; exit od)()=s e () Szintaxis 2. S::= skip v: f(v) S 1 ; S 2 if 1 S 1 n S n fi while (v) do S 0 od ahol S 0, S 1, S 2,S n nem-determinisztikus programok f A A 1,, n : A L; i (v) kvantorfüggetlen logikai kifejezések 9 10 Szemantika 2. skip () = (v : f(v))( )= (v), e, ahol e f() fail, M[S 1 ]() (S 1 ; S 2 )() = S 1 () S 2 (M[S 1 ]() ) fail, M[S 1 ]() (S 1 ; S 2 )() = S 1 () i [1..n]: i() (if 1 S 1 n S n fi)( ) = S i( ) i[1..n]: i () (if 1 S 1 n S n fi)( ) =, fail () (while (v) do S 1 od )() = (S 1 ; while (v) do S 1 od )() () (while (v) do S 1 od )() = Leggyengébb előfeltétel (Dijkstra) Legyenek ahol Q, R : A L állítások és S egy program Dijkstra leggyengébb előfeltétele [lf(s,r)] = { σ D p(s) p(s)(σ) [R] } {Q} S {R} helyett használjuk: Q lf(s,r) Teljes helyesség feltétele: lf(s, ) ahol (, ) a feladat specifikációja bb-re: Q b lf(s, R b )

3 Hoare axiómái és szabályai a leggyengébb előfeltétel használatával Üres program: Értékadás: lf(skip, R) = R lf(v f(v), R) =R f f totális Szekvencia: Q lf((s 1 ;S 2 ), R) ha Q lf(s 1, Q ) és Q lf(s 2, R) ahol Q : A L Elágazás: Q lf(if then S 1 else S 2 fi, R) ha Q lf(s 1, R) és Q lf(s 2, R) Ciklus: Q lf(while do S 0 od), R) ha Q P és P R és P lf(s 0,P) és P t>0 és t 0 Z: P t=t 0 lf(s 0, t<t 0 ) ahol P : A L, t : A Z Hoare-Dijkstra-Gries módszer axiómái és szabályai nem-determinisztikus programokra Üres program: lf(skip, R) = R Értékadás: lf(v: f(v), R)(v) = v D f e f(v) : R(e) Szekvencia: Q lf((s 1 ;S 2 ), R) ha Q : A L úgy, hogy Q lf(s 1, Q ) és Q lf(s 2, R) Elágazás: Q lf(if 1 S 1 n S n fi, R) ha Q 1 n és i {1.. n}: Q i lf(s i, R) Ciklus: Q lf(while do S 0 od), R) ha I : A L és t : A Z úgy, hogy Q I és I R és I lf(s 0, I) és I t>0 és t 0 Z: I t=t 0 lf(s 0, t<t 0 ) Példa Valós szám természetes számú hatványa A = RNR x n h Q = (x=x n=n ) R = (h = x n ) I = (h*x n = x n ) t = n h := 1 n 0 h, n := h * x, n 1 Kell: Q lf(s, R) 1. Q lf(h := 1, I) Q I h 1 2. I lf(while, R) b) I n=0 R c) I n 0 t>0 d) I n 0 t=t 0 lf(h, n := h * x, n 1, I t<t 0 ) h := 1 n 0 I n 0 t=t 0 ( I t<t 0 ) h,n h*x, n-1 n>0 h, n := h * x, n Példa befejezése I = h*x n = x n 1. Q I h 1 =(h* x n = x n ) h 1 = (x n = x n ) 2. b) I n=0 R ~ h* x n = x n n=0 h = x n c) I n 0 n>0~ h* x n = x n n 0 n>0 (n : N) d) I n 0 n=n 0 ((I n<n 0 ) h,n h*x, n-1 n>0 )= =( h*x* x n-1 = x n n-1<n 0 n>0 ) (n : N) I Példa Két természetes szám legkisebb közös többszöröse A = NNN a b c Q = (a=a b=b a>0 b>0) R = (Q d = lkkt(a,b) ) I = (Q ad bc max(d,c) lkkt(a,b) ) t = lkkt(a,b) max(d,c) d, c := a, b d<c d c d>c d := d+a c := c +b

4 Kell: Q lf(s, R) 1. Q lf(d,c := a,b, I) Q I d,c a,b 2. I lf(while, R) b) I d=c R c) I d c t>0 d) I d c t=t 0 lf(if, I t<t 0 ) d<c d := d+a d, c := a, b d c d>c c := c +b d) I d c t=t 0 lf(if, I t<t 0 ) i. I d c t=t 0 d<c d>c ii. I d c t=t 0 d<c lf(d := d+a, I t<t 0 ) I d c t=t 0 d<c (I t<t 0 ) d d+a iii. I d c t=t 0 d>c lf(c := c +b, I t<t 0 ) I d c t=t 0 d>c (I t<t 0 ) c c+b Példa befejezése I = Q ad bc max(d,c) lkkt(a,b) 1. Q I d,c a,b =(Q ad bc max(d,c) lkkt(a,b)) d,c a,b =(Q aa bb max(a,b) lkkt(a,b) ) 2. b) I d=c R (ad bd d lkkt(a,b) d= lkkt(a,b)) c) I d c lkkt(a,b) max(d,c)>0 (lkkt(a,b) max(d,c)) i. I d c lkkt(a,b) max(d,c)= t 0 d<c d>c ii. I d c lkkt(a,b) max(d,c)=t 0 d<c Q a(d+a) bc max(d+a, c) lkkt(a,b) lkkt(a,b) max(d+a,c)<t 0 iii. I d c lkkt(a,b) max(d,c)=t 0 d>c Q ad b(c+b) max(d,c+b) lkkt(a,b lkkt(a,b) max(d,c+b)<t 0 Axiómák lf(skip, R)=R helyett [lf(skip, R)]=[R] [lf(skip, R)] = { σ D p(skip) p(skip)(σ) [R] } = = { σ A σ [R] } = [R] [lf( v: f(v), R)] = { σ D p(v: f(v)) p(v: f(v))(σ)[r]} = = { σ D f f(σ)[r]} = ( { σ D f e f(σ) : R(e)} ) = = { σ D f σ[r f]} = D f [R f] lf( v: f(v), R)= v D f e f(v) : R(e) helyett [lf(v: f(v), R)]=D f [R f] Szekvencia levezetési szabályának Elég belátni: Q lf(s, R) helyett [Q] [lf(s, R)] [Q] [lf(s 1, Q )] [lf(s 1, lf(s 2, R))] = [lf((s 1 ;S 2 ), R)] Monotonítási szabály Szekvencia definíciója Kevésbé formálisan: Az (S 1 ;S 2 ) szekvencia összes végrehajtása (ld. szekvencia definíciója) az S 1 -beli végrehajtással indul. Egy Q-ból induló végrehajtásnak az első szakasza ezért a Q lf(s 1, Q ) miatt véges lépésben eljut Q -be, ahonnan az S 2 folytatja a végrehajtást (ld. szekvencia definíciója). Ez a második szakasz a Q lf(s 2, R) miatt R-ben fog megállni, tehát a szekvencia Q-ból induló végrehajtása R-ben áll meg, azaz Q lf((s 1 ;S 2 ), R). Elágazás levezetési szabályának Bizonyítás: Vegyünk egy Q-beli q állapotot. A q az elágazás valamelyik feltételét biztosan kielégíti a Q 1 n miatt, ezért az elágazás definíciója szerint belőle csak olyan végrehajtások indulnak, amelyeket azok az ágak adják, amelyek feltételét a q állapot kielégíti. Mivel i {1.. n}: Q i lf(s i, R) ezért mindegyik q-ból induló végrehajtás R-ben áll meg, azaz Q lf(if 1 S 1 n S n fi, R)

5 Ciklus levezetési szabályának Bizonyítás: Egy ciklus minden végrehajtása felbontható a ciklusmag végrehajtásaiból áll szakaszokra (kivéve a -beli állapotból induló végrehajtásokat). ezek a szakaszok mindig egy -beli állapotból indulnak (hiszen S 0 csak ekkor kap szerepet) az I-ből induló szakaszok az I lf(s 0, I) miatt I-ben állnak meg (eredményesen). A ciklus eredményesen megálló végrehajtásai -beli állapotban végződnek vagy -beli állapotból induló egyelemű végrehajtás vagy a végrehajtás legutolsó szakasza -beli állapot kell legyen Ciklus levezetési szabályának Bizonyítás folytatása: A Q-ból induló és eredményesen (-ban) leálló végrehajtások a Q I miatt I-ből indulnak, így aztán minden szakasz határa I-ben lesz, tehát a végrehajtás végállapota is, ami az I R miatt R-ben lesz. A Q-ból induló végrehajtások mind eredményesek, mert az I-ből induló szakaszai mind eredményesek, és végtelen sok szakasz nem lehet. Ez utóbbi esetén ugyanis I t>0 és t 0 Z: I t=t 0 lf(s 0, t<t 0 ) miatt egy szigorúan monoton csökkenő természetes számokból álló sorozatot rendelne a t a szakaszok kezdőállapotaihoz, ami lehetetlen. Tehát Q lf(while do S 0 od), R) A módszer helyes, de nem teljes Az előbbi bizonyítások alapján a módszer helyes A bizonyított állításoknak egy kivételével a megfordítása is igaz. o A ciklus levezetési szabályának megfordítása viszont csak akkor igaz, ha a ciklusmag iterációinak száma a feladat kezdőállapotaiban felülről becsülhető. o Van olyan nem-determinisztikus ciklus (program), amely megold egy problémát, de a ciklus levezetési szabályának (leállási) feltételei nem teljesülnek rá. A = Z n Q = (igaz) R = (n=0) n 0 n : N n < 0 n := n

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6. Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

S0-01 Szintézis és verifikáció (Programozás elmélet)

S0-01 Szintézis és verifikáció (Programozás elmélet) S0-01 Szintézis és verifikáció (Programozás elmélet) Tartalom 1. Programozási alapfogalmak 2. Elemi programok és program konstrukciók definíciói 3. Nem-determinisztikus strukturált programok formális verifikációja

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Programok értelmezése

Programok értelmezése Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése

Részletesebben

6. Közös változóval rendelkező párhuzamos program, Közös változó,

6. Közös változóval rendelkező párhuzamos program, Közös változó, 6. Közös változóval rendelkező párhuzamos program, Közös változó, Reynold kritérium. Atomi művelet, atomi utasítás. szintaxis, szemantika, tulajdonságok. Szinkronizációs párhuzamos program, szintaxis,

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. 8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója

Részletesebben

Osztott rendszer. Osztott rendszer informális definíciója

Osztott rendszer. Osztott rendszer informális definíciója Osztott rendszer Osztott rendszer informális definíciója Egymástól elkülönülten létező program-komponensek egy halmaza. A komponensek egymástól függetlenül dolgoznak saját erőforrásukkal. A komponensek

Részletesebben

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája? ,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,

Részletesebben

Véges automaták, reguláris nyelvek

Véges automaták, reguláris nyelvek Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata

Részletesebben

A C# programozási nyelv alapjai

A C# programozási nyelv alapjai A C# programozási nyelv alapjai Tisztán objektum-orientált Kis- és nagybetűket megkülönbözteti Ötvözi a C++, Delphi, Java programozási nyelvek pozitívumait.net futtatókörnyezet Visual Studio fejlesztőkörnyezet

Részletesebben

Bevezetés a programozáshoz I. Feladatok

Bevezetés a programozáshoz I. Feladatok Bevezetés a programozáshoz I. Feladatok 2006. szeptember 15. 1. Alapfogalmak 1.1. példa: Írjuk fel az A B, A C, (A B) C, és A B C halmazok elemeit, ha A = {0, 1}, B = {1, 2, 3}, C = {p, q}! 1.2. példa:

Részletesebben

Algoritmizálás és adatmodellezés tanítása 1. előadás

Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az

Részletesebben

Java programozási nyelv

Java programozási nyelv Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék

Részletesebben

Algoritmizálás, adatmodellezés tanítása 6. előadás

Algoritmizálás, adatmodellezés tanítása 6. előadás Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L

Részletesebben

7.4. A programkonstrukciók és a kiszámíthatóság

7.4. A programkonstrukciók és a kiszámíthatóság H @ tj 68 7 PROGRAMKONSTRUKCIÓK 74 A programkonstrukciók és a kiszámíthatóság Ebben az alfejezetben kis kitérőt teszünk a kiszámíthatóság-elmélet felé, és megmutatjuk, hog az imént bevezetett három programkonstrukció

Részletesebben

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Javascript Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

Formális nyelvek - 9.

Formális nyelvek - 9. Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges

Részletesebben

Algoritmizálás, adatmodellezés 1. előadás

Algoritmizálás, adatmodellezés 1. előadás Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből

Részletesebben

A helyességbizonyítás klasszikus módszerei

A helyességbizonyítás klasszikus módszerei A helyességbizonyítás klasszikus módszerei Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Motiváció Kritikus

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 1. előadás szept. 19. Determinisztikus véges automaták 1. Példa: Fotocellás ajtó m m m k b s = mindkét helyen = kint = bent = sehol k k b s m csukva b nyitva csukva nyitva

Részletesebben

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA

Részletesebben

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Python Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása alatt

Részletesebben

Számításelmélet. Második előadás

Számításelmélet. Második előadás Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi

Részletesebben

Analízis ZH konzultáció

Analízis ZH konzultáció Analízis ZH konzultáció 1. Teljes indukció Elméleti segítség: n=1-re bebizonyítani (vagy arra az n-re, ahonnan az állítást igazolni szeretnénk) feltesszük, hogy n-re igaz az állítás -> n+1-re is igaz lesz?

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK Szerkesztette: Bókay Csongor 2012 tavaszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. június

Részletesebben

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje 1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Adminisztrációs feladatok Strukturált programok A C programnyelv elemei

Adminisztrációs feladatok Strukturált programok A C programnyelv elemei Strukturált C-Strukturált Egyéb elemek Strukturált C-Strukturált Egyéb elemek Adminisztrációs feladatok Strukturált programok A C programnyelv elemei A programozás alapjai. álózati Rendszerek és Szolgáltatások

Részletesebben

A = fx j P (x) igazg ; A = fx j 1 x 7; x prímszámg : A [ B = fx j x 2 A, vagy x 2 Bg ; [a::b] := [a; b] \ Z

A = fx j P (x) igazg ; A = fx j 1 x 7; x prímszámg : A [ B = fx j x 2 A, vagy x 2 Bg ; [a::b] := [a; b] \ Z 1 Alapfogalmak Halmaz: Azonos tulajdonságú elemek összessége. Halmaz jelölése: Latin ABC nagybet½ui (általában). Halmaz elemeinek jelölése: Latin kisbet½uk (általában). Halmaz megadása: a) elemeinek felsorolásával,

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Fordítás Kódoptimalizálás

Fordítás Kódoptimalizálás Fordítás Kódoptimalizálás Kód visszafejtés. Izsó Tamás 2016. október 20. Izsó Tamás Fordítás Kódoptimalizálás / 1 Aktív változók Angol irodalomban a Live Variables kifejezést használják, míg az azt felhasználó

Részletesebben

Deníciók és tételek a beugró vizsgára

Deníciók és tételek a beugró vizsgára Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Gyakorló feladatok Gyakorló feladatok

Gyakorló feladatok Gyakorló feladatok Gyakorló feladatok előző foglalkozás összefoglalása, gyakorlató feladatok a feltételes elágazásra, a while ciklusra, és sokminden másra amit eddig tanultunk Változók elnevezése a változók nevét a programozó

Részletesebben

3. Strukturált programok

3. Strukturált programok Ha egy S program egyszerű, akkor nem lehet túl nehéz eldönteni róla, hogy megold-e egy (A,Ef,Uf) specifikációval megadott feladatot, azaz Ef-ből (Ef által leírt állapotból indulva) Uf-ben (Uf által leírt

Részletesebben

Szkriptnyelvek. 1. UNIX shell

Szkriptnyelvek. 1. UNIX shell Szkriptnyelvek 1. UNIX shell Szkriptek futtatása Parancsértelmez ő shell script neve paraméterek shell script neve paraméterek Ebben az esetben a szkript tartalmazza a parancsértelmezőt: #!/bin/bash Szkriptek

Részletesebben

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit. Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen

Részletesebben

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra) 6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban

Részletesebben

Programozási nyelvek (ADA)

Programozási nyelvek (ADA) Programozási nyelvek (ADA) Kozsik Tamás előadása alapján Készítette: Nagy Krisztián 1. előadás Hasznos weboldal http://kto.web.elte.hu Program felépítése Programegységek (program unit) eljárások (procedure)

Részletesebben

BASH script programozás II. Vezérlési szerkezetek

BASH script programozás II. Vezérlési szerkezetek 06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van

Részletesebben

definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.

definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként. Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Algoritmizálás + kódolás C++ nyelven és Pascalban

Algoritmizálás + kódolás C++ nyelven és Pascalban Algoritmizálás + kódolás nyelven és ban Motiváció A Programozási alapismeretek tárgyban az algoritmizáláshoz struktogramot, a kódoláshoz nyelvet használunk, a Közismereti informatikában (a közoktatásban

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Formális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar

Formális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar Formális szemantika Kifejezések szemantikája Horpácsi Dániel ELTE Informatikai Kar 2016-2017-2 Az előadás témája Egyszerű kifejezések formális szemantikája Az első lépés a programozási nyelvek szemantikájának

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

2. Visszalépéses keresés

2. Visszalépéses keresés 2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel

Részletesebben

Haladók III. kategória 2. (dönt ) forduló

Haladók III. kategória 2. (dönt ) forduló Haladók III. kategória 2. (dönt ) forduló 1. Tetsz leges n pozitív egész számra jelölje f (n) az olyan 2n-jegy számok számát, amelyek megegyeznek az utolsó n számjegyükb l alkotott szám négyzetével. Határozzuk

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok. Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1

2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1 2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának

Részletesebben

Operációs rendszerek. 11. gyakorlat. AWK - szintaxis, vezérlési szerkezetek UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Operációs rendszerek. 11. gyakorlat. AWK - szintaxis, vezérlési szerkezetek UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED AWK - szintaxis, vezérlési szerkezetek Operációs rendszerek 11. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Csuvik

Részletesebben

Programozási módszertan

Programozási módszertan 1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

BEVEZETÉS A PROGRAMOZÁSHOZ

BEVEZETÉS A PROGRAMOZÁSHOZ FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................

Részletesebben

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Programozás BMEKOKAA146. Dr. Bécsi Tamás 3. előadás

Programozás BMEKOKAA146. Dr. Bécsi Tamás 3. előadás Programozás BMEKOKAA146 Dr. Bécsi Tamás 3. előadás Vezérlési szerkezetek Elágazás Gyakran előfordul, hogy meg kell vizsgálnunk egy állítást, és attól függően, hogy igaz vagy hamis, a programnak más-más

Részletesebben

Folyamatok specifikációja:

Folyamatok specifikációja: Folyamatok specifikációja: A specifikációs feltételek a programra fogalmaznak meg kikötéseket. Fontos különbséget tenni a specifikációs feltételek és a programtulajdonságok között: míg az előbbiek a program

Részletesebben

A PROGRAMOZÁS ALAPJAI 3. Készítette: Vénné Meskó Katalin

A PROGRAMOZÁS ALAPJAI 3. Készítette: Vénné Meskó Katalin 1 A PROGRAMOZÁS ALAPJAI 3 Készítette: Vénné Meskó Katalin Információk 2 Elérhetőség meskokatalin@tfkkefohu Fogadóóra: szerda 10:45-11:30 Számonkérés Időpontok Dec 19 9:00, Jan 05 9:00, Jan 18 9:00 egy

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Turing-gép május 31. Turing-gép 1. 1

Turing-gép május 31. Turing-gép 1. 1 Turing-gép 2007. május 31. Turing-gép 1. 1 Témavázlat Turing-gép Determinisztikus, 1-szalagos Turing-gép A gép leírása, példák k-szalagos Turing-gép Univerzális Turing-gép Egyéb Turing-gépek Nemdeterminisztikus

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben