Programozási Módszertan definíciók, stb.
|
|
- Nikolett Ballané
- 9 évvel ezelőtt
- Látták:
Átírás
1 Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen határozzák meg (vagy más szóval specifikálják). Természetes szám típus ( 0, ); Egész szám típus (, +, ); Valós szám (, +, ); Logikai típus ( ); Karakter típus (, műv: (x), (x)); Halmaz típus (TÉ: véges elemszámú halmazok E alaphalmazból, ez fölött: 2 E ); Sorozat típus (TÉ: véges sorozatok, E alaphalmazból: E*, műv: s, s i ); Vektor típus, 1D tömb (véges sorozatok n től m ig cimkézve E alaphalmazból: E n m=1); Mátrix típus (azonos méretű téglalapba rendezett elem együttesek E elemi halmaz fölött: E mxn kxl=1x1)... Állapottér (ÁT): Legyenek A 1,A 2,,A n tetszőleges véges vagy megszámlálható nem üres halmazok: ezek a típusértékhalmazok (TÉH). Rendeljük hozzájuk egyértelmű módon a páronként különböző c 1,..., c n címkéket. Ekkor a {{c 1 : a 1,..., c n : a n } a i A i (i= 1,...,n)} halmazt az A 1,A 2,...,A n TÉH okból képzett állapottérnek nevezzük, amit a továbbiakban a (c 1 : A 1,..., c n : A n ) szimbólummal jelölünk. Ha a cimkéknek rögzítjük a sorrendjét, akkor az A= A 1 A 2... A n halmazt (Descart szorzatot) is állapottérnek nevezzük. Állapotok: az ÁT elemei. Ezek maguk is halmazt alkotnak: a cimkézett értékek halmazát. Feladatnak nevezzük az F A A relációt. Az F reláció ÉT a ( F ) a feladat kezdőállapotait jelöli ki. Egy adott F re az F( ) képhalmaz az kezdőállapothoz tartozó célállapotokat tartalmazza. A ** : az A halmaz elemeiből képzett összes (véges és végtelen hosszú) sorozatot tartalmazóhalmaz A : a végtelen hosszúsorozatok halmaza red(α): az α sorozat redukáltja (azaz az eredeti sorozat minden azonos elemekből álló részsorozatát az ismétlődő egyetlen elemmel helyettesítjük) τ (α): a véges sorozat utolsó eleme Program: az S A A** reláció, ha S = A A: α S( ) : α 1 = α S : α = red(α). Programfüggvény, (hatásreláció): p(s) A A reláció az S A A** program PrFv e, ha: D p(s) = { A S( ) A*} D p(s) p(s)(a) = { b A α S( ) : ( ) = b }. Megoldás: Az S program megoldja az F feladatot, ha F p(s) F : p(s)( ) F( ). 1
2 :megoldás LGyEF: Leggyengébb előfeltétel: Legyen S A A** program, R: A állítás. Ekkor az S program R utófeltételhez tartozó LGyEF e az az állítás, amelyre: (S, R) = { p(s) p(s)( ) R }. A leggyengébb előfeltétel tehát pontosan azokban a pontokban igaz, ahonnét kiindulva az S program biztosan terminál, és az összes lehetséges végállapotra igaz R. Néhány fontos tulajdonság: Legyen S A A** program, R 1, R 2 : A állítások. Ekkor:. (S, HAMIS) = HAMIS (a csoda kizárásának elve). Ha R 1 R 2, akkor (S, R 1 ) (S, R 2 ) (monotonitási tulajdonság). (S, R 1 ) ^ (S, R 2 ) = (S, R 1^R 2 ). (S, R 1 ) v (S, R 2 ) (S, R 1 v R 2 ) A feladat specifikációja: Általában a feladat nem függ az ÁT összes komponensétől, azaz az ÁT több pontjához is ugyanazt rendeli. Ezeket a pontokat fogjuk össze egy ponttá a paramétertér segítségével. Paraméter: Legyen F A A feladat. A B halmazt a feladat pm ének nevezzük, ha van olyan F1 és F2 reláció, hogy F1 A B F2 B A F = F2 F1, ahol az ún. reláció kompozicióművelet. Specifikáció tétele: Legyen F A A feladat, B az F egy paramétertere, F1 A B, F2 B A, F=F2 F1. Jelölje B, és definiáljuk a következő állításokat az F feladat Q b előfeltételére, ill. R b utófeltételére): Q b = { A (, ) F1} = F1 ( 1) ( ) R b = { A (, ) F2} = F2( ) Ekkor ha B: Q b (S,R b ), akkor az S program megoldja az F feladatot. 2. Elemi programok Elemi program: egy A állapottéren egy S program, ha: A : S( ) {< >,<,,,...>,<, > }. Üres program, SKIP: nem csinál semmit: A : SKIP( ) = {< >}. Rossz program, törlődés, ABORT: soha sem terminál: A : ABORT( ) = {<,,,... >}. Értékadás (ÉA): programváltozó (~az akt. állapot egy komponense) új értéket kap (~megváltozik). Új állapot: ezzel az egy komponenssel tér el az előző állapottól. Az ÁT en 1 lépést: 2 állapotból álló végrehajtási sorozatot eredményez. ÉA: S program, ami az ÁT bármelyik állapotához a belőle kiinduló 2elemű állapotsorozatot rendeli. 2
3 Szimultán ÉA: Egy időben több változónak is új értéket adunk (állapotkülönbség több komponensű ) Egyszerű ÉA: csak egy változó értékét változtatja meg. Értékkiválasztás: az ÉA nem determinisztikus. Jelölés: : F( ) ( legyen eleme ) Értékadás: az F reláció függvény determinisztikus. Jelölés: := F( ) ( legyen egyenlő ) Parciális értékkiválasztás: F A és az ÉA nem determinisztikus. Parciális ÉA: F A és az F determinisztikus (F parciális függvény) Általános ÉA: Legyen A = A 1... A n, F = (F 1,..., F n ), ahol F i A A i. Az S program általános értékadás, ha: I n i=1 S = { (, red(<, >)), A ^ D Fi ^ F( ) } { (,<,,,...>) A ^ }. Elemi pr. ok programfüggvénye: p(skip)=id A, p(abort)=, p( :=F( )) = F, p( : F( )) = F. El.pr. ok LGyEF e: (SKIP,R) = R ; (ABORT,R) = hamis ; ÉA ok: F:A A globális fv: ( :=F( ),R) = { A F( ) R } = F ( 1) ( R )= R F F: parciális fv: ( :=F( ),R) = { A F( ) R } F = F ( 1) ( R ) F I n D Fi i=1 3. Programkonstrukciók 2 : α A * és β A **. 2 (α, β) = red( kon(α, β) ). Szekvencia: Legyenek S 1, S 2 A A ** programok. Az S A A ** relációt az S 1 és S 2 szekvenciájának nevezzük, és (S 1 ; S 2 ) vel jelöljük, ha A: S( ) = { α A α S 1 ( ) } { 2 (α, β) A ** α S 1 ( ) A * ^ β S 2 (τ(α)) }. Elágazás: Legyenek π 1,..., π n : A feltételek, S 1,..., S n programok A n. Ekkor az IF A A ** relációt az S i kből képzett π i k által meghatározott elágazásnak nevezzük és (π 1 :S 1,..., π n :S n ) el jelöljük, ha A: IF( ) = U n i= 1 i ( ) 0 ( ) ahol [1.. ]: n : α 1,,α n 1 A * és α n A **. n (α 1,,α n ) = red( kon(α 1,,α n ) ). : α A * ( ). (α 1,α 2, ) = red( kon(α 1,α 2, ) ). 3
4 Ciklus: Legyen π feltétel és S 0 program A n. A DO A A ** relációt az S 0 ból a π feltétellel képzett ciklusnak nevezzük, és (π, S 0 ) lal jelöljük, ha π : DO( ) = {< >}, és π : { α A ** α 1,, α n A ** : α= n (α 1,, α n ) ^ α 1 S 0 ( ) ^ [1.. 1]:(α i A * ^ α i+1 S 0 (τ(α i )) ^ π(τ(α i ))) ^ (α n A v (α n A * ^ π(τ(α n )) )) } { α A : α i A * : α= (α 1,α 2, ) ^ α 1 S 0 ( ) ^ α i+1 S 0 (τ(α i )) ^ π(τ(α i )) }. Levezetési szabályok: Szekvencia lev.sz.: Legyen S = (S 1 ; S 2 ), és adott Q, R és Q' állítás A n. Ha Q (S 1,Q') és Q' (S 2,R) akkor: Q (S, R). Elágazás lev.sz.: Legyen IF =(π 1 :S 1,..., π n :S n ), és adott Q, R állítás A n. Ha, és [1.. ]: Q ^ π i (S i, R), akkor: Q (IF, R). Ciklus lev.sz.: Legyen DO =(π, S 0 ), és adott I (invariáns), Q, R állítás A n, valamint t:a (termináló) függvény. Ha: Q I ; I^π (S 0,I) ; I^ π R ; I^π t>0 ; I^π^t=t 0 (S 0, t<t 0 ) : akkor: Q (DO, R). 4. Levezetés Megengedett program: az üres program; a megengedett F relációjú : F( ) értékadás; valamint a szekvencia, a megengedett feltételeket használó elágazás és a megengedett ciklusfeltételű ciklus programszerkezeteinek segítségével az üres programból és megengedett értékadásokból felépített program. Megengedett elemek: megengedett típusok (bevezetett és kiegészített) ; megengedett relációk (+eng. típ.műveletek kompoz. jával) ; megengedett értékadás ( : F( ) ban F +eng.) ; megengedett feltételek (+eng. műv. log.kif.) A programtervezés célja az, hogy egy feladatot egy megengedett programmal oldjunk meg. Ha a triviális megoldás nem megengedett, részfeladatokra kell bontani, finomítani, újra részletezni, amíg csupa +eng. nem lesz. Finomítás: Egy (rész)fa. ot triviálisan megoldó nem megengedett ÉA t: vagy egy bonyolultabb szerkezetű programmal helyettesítjük (procedurális programtervezés) ; vagy pedig az ÉA. jobboldali kifejezésének kiszámításánál használt, nem +eng. típusműveleteket valósítjuk meg (típus orientális programtervezés). Procedurális programtervezés: Levezetés: top down módszer; a feladatból (azaz a triviálisan megoldó nem megengedett értékadásból) indulunk ki, és azt a programszerkezetek levezetési szabályainak segítségével bontjuk részfeladatokra. 4
5 Visszavezetés: korábbi megoldás (minta) alapján, azaz analóg módon oldjuk meg; a mintafeladat és az új feladat eltéréseit a mintaprogram megoldására átvezetjük. példák 5. Visszavezetés Analóg programozás: Ha egy FA. megoldását egy hozzá hasonló, már korábban megoldott FA. megoldása alapján, a két FA. hasonlóságára építve készítjük el, ezt analóg programozásnak nevezzük. Ez sokféle módon valósulhat meg. Analóg levezetés: A mintafeladatot megoldó program előállítási folyamatát másoljuk le az adott feladat levezetésének elkészítéséhez; azaz egy kitaposott út mentén hozott korábbi döntéseket (mi legyen a programszerkezet, a ciklus invariáns, stb.) kölcsönözzük. Analóg visszavezetés: Közvetlenül a mintafeladatot megoldó programot nem pedig előállításának folyamatát használjuk fel; azaz a mintaprogramot módosítjuk a kitűzött és a mintafeladat közötti különbségek alapján. Összegzés: Legyen adott az : függvény. Feladatunk az, hogy egy adott [.. ] intervallumban összegezzük az függvény értékeit.: A = ( :, :, : ) Q = ( = ^ = ) R = (Q ^ = ) Bővítsük ki az állapotteret k komponenssel: A' = ( :, :, :, : ) Ekkor az invariáns: I = (Q ^ [.. +1] ^ = ) Az összegzés programozási A levezetési szabályok vizsgálata: tétele: Q I Ez nem teljesül, csak ha egy értékadást (k, s := m, 0) beteszünk a ciklus elé: Q (, :=, 0, I) =(Q ^ [.. +1] ^ 0 = ) I^ π R I^π t>0 Ebből meghatározhatjuk a ciklus feltételét: π = ( 1 = ), azaz π = ( +1) Legyen = +1; ez pozitív lesz P és π miatt. I^π ^ = 0 (S 0, < 0 ) A ciklusmag csökkenti a terminálófüggvényt, ha növeli értékét ( := +1). I^π ^ +1= 0 ( := +1, +1< 0 ) = < 0 I^π (S 0,I) Vizsgáljuk meg I leggyengébb feltételét, ha (k := k+1) et végrehajtjuk. ( := +1, I) = (Q ^ +1 [.. +1] ^ = ) = Q.Kell még egy utasítás ( := + ( )) a ciklusmagba: I ^π ( := + ( ), Q ) = (Q ^ [.. +1] ^ + ( )= ) példák analóg levezetéssel, visszavezetéssel, behelyettesítéssel 5
6 6. Programozási tételek Számlálás: Adott egy β: [m..n] feltétel. Határozzuk meg, hogy az [m..n] intervallumon a β feltétel hányszor veszi fel az értéket. Levezetése: Kibővítjük az ÁT. ünket: Így az invariáns: Analóg levezetéshez az összegzés használható. Maximumkeresés: Adott egy : [.. ] függvény, amelynek értékkészletén definiáltunk egy teljes rendezési relációt. Határozzuk meg, hogy az függvény hol veszi fel az [.. ] nem üres intervallumon a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték! _ ÁT et kibővítjük egy komponenssel. Az invariáns: Itt nem engedjük meg az üres intervallumot (mint az előbb), mivel nincs értelme annak maximumát keresni. Lineáris keresés: Adott az β: [.. ] feltétel. Keressük meg az [.. ] intervallumban balról az első olyan számot, amely kielégíti a β feltételt! Most nincs szükség állapottérbővítésre, az változó megteszi. Az invariáns: 6
7 Kiválasztás: Adott az β: feltétel, valamint egy egész szám. Keressük meg az számtól jobbra eső (az et is beleértve) az első olyan számot, amely kielégíti a β feltételt, ha tudjuk, hogy van ilyen szám! (Ez egy spec. keresés.) Az invariáns: Feltételes maximumkeresés: Adott egy : [.. ] függvény, amelynek értékkészletén definiáltunk egy teljes rendezési relációt és adott egy β: [.. ] feltétel. Határozzuk meg, hogy az függvény hol veszi fel az [.. ] intervallum β t kielégítő elemei közül a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték! Feltétel fennállásáig tartó keresés: Adott egy egész szám, és egy olyan δ: feltétel, amely az egészek számegyenesén től jobbra valahol biztosan felvesz egy értéket. Legyen az egész számokon től jobbra értelmezve egy β : feltétel. Keressük meg az számtól jobbra eső (az et is beleértve) az első olyan számot, amely kielégíti a β feltételt azon az [.. ] intervallumon, ahol [.. ]:δ( ), de δ( +1) teljesül! Kibővitjük az állapotteret egy : komponenssel, amely mindaddig értékű lesz, amig az től jobbfelé haladva csak olyan számokkal találkozunk, amelyekre a δ feltétel teljesül. 7
5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás
Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:
RészletesebbenALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
RészletesebbenElőfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
RészletesebbenProgramkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.
Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]
RészletesebbenBevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Részletesebben9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
RészletesebbenProgramozási módszertan
1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása
RészletesebbenTérinformatikai algoritmusok Elemi algoritmusok
Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot
RészletesebbenTérinformatikai algoritmusok Elemi algoritmusok
Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,
RészletesebbenBevezetés a programozáshoz I. Feladatok
Bevezetés a programozáshoz I. Feladatok 2006. szeptember 15. 1. Alapfogalmak 1.1. példa: Írjuk fel az A B, A C, (A B) C, és A B C halmazok elemeit, ha A = {0, 1}, B = {1, 2, 3}, C = {p, q}! 1.2. példa:
RészletesebbenNEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere
Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett
Részletesebben7.4. A programkonstrukciók és a kiszámíthatóság
H @ tj 68 7 PROGRAMKONSTRUKCIÓK 74 A programkonstrukciók és a kiszámíthatóság Ebben az alfejezetben kis kitérőt teszünk a kiszámíthatóság-elmélet felé, és megmutatjuk, hog az imént bevezetett három programkonstrukció
RészletesebbenBEVEZETÉS A PROGRAMOZÁSHOZ
FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................
RészletesebbenBevezetés a programozásba 1
Bevezetés a programozásba 1 Fóthi Ákos, Horváth Zoltán 2005. április 22. ý 1 Az ELTE IK Elektronikus Könyvtár által közvetített digitális tartalmat a felhasználó a szerzői jogról szóló 1999. évi LXXVI.
Részletesebben3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
RészletesebbenBánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
RészletesebbenS0-01 Szintézis és verifikáció (Programozás elmélet)
S0-01 Szintézis és verifikáció (Programozás elmélet) Tartalom 1. Programozási alapfogalmak 2. Elemi programok és program konstrukciók definíciói 3. Nem-determinisztikus strukturált programok formális verifikációja
RészletesebbenProgramozási tételek. PPT 2007/2008 tavasz.
Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási
RészletesebbenPROGRAM STATIKUS FOGALMA DINAMIKUSAN VÁLTOZÓ ÁLLAPOTTÉRBEN 1
PROGRAM STATIKUS FOGALMA DINAMIKUSAN VÁLTOZÓ ÁLLAPOTTÉRBEN 1 Az ELTE IK programozó informatikus képzésében egy statikus szemléletű, matematikai relációk fogalmára épülő modell keretében tanítjuk a programozást.
RészletesebbenBEVEZETÉS A PROGRAMOZÁSHOZ
FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
RészletesebbenA = fx j P (x) igazg ; A = fx j 1 x 7; x prímszámg : A [ B = fx j x 2 A, vagy x 2 Bg ; [a::b] := [a; b] \ Z
1 Alapfogalmak Halmaz: Azonos tulajdonságú elemek összessége. Halmaz jelölése: Latin ABC nagybet½ui (általában). Halmaz elemeinek jelölése: Latin kisbet½uk (általában). Halmaz megadása: a) elemeinek felsorolásával,
RészletesebbenProgramozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
Részletesebben... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.
Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat
RészletesebbenKiterjesztések sek szemantikája
Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból
RészletesebbenModellezés Gregorics Tibor Mesterséges intelligencia
Modellezés 1. Állapottér-reprezentáció Állapottér: a probléma leírásához szükséges adatok által felvett érték-együttesek (azaz állapotok) halmaza az állapot többnyire egy összetett szerkezetű érték gyakran
RészletesebbenELEMI PROGRAMOZÁSI TÉTELEK
ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk
RészletesebbenFormális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
RészletesebbenPROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK
PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK Szerkesztette: Bókay Csongor 2012 tavaszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. június
RészletesebbenRendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:
RészletesebbenProgramozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.
Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /
RészletesebbenA valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
Részletesebben1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
RészletesebbenA fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Részletesebben2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
RészletesebbenAlgoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
RészletesebbenProgramozás alapjai (ANSI C)
Programozás alapjai (ANSI C) 1. Előadás vázlat A számítógép és programozása Dr. Baksáné dr. Varga Erika adjunktus Miskolci Egyetem, Informatikai Intézet Általános Informatikai Intézeti Tanszék www.iit.uni-miskolc.hu
RészletesebbenAlgoritmizálás, adatmodellezés tanítása 6. előadás
Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér
RészletesebbenAlgoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
RészletesebbenBevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok
Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 3. gyakorlat PLanG: 2011.09.27. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
RészletesebbenDiszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
RészletesebbenPROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar
PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
RészletesebbenProgramozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.
Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /
RészletesebbenAnalízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
RészletesebbenFunkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
RészletesebbenA 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.
RészletesebbenAlgoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
RészletesebbenI. RÉSZ PROGRAMOZÁSI FOGALMAK
I. RÉSZ PROGRAMOZÁSI FOGALMAK Azokat a gondolkodási formákat, alapelveket, valamint az érvényesítésükhöz szükséges eszközöket, amelyeket rendszeresen alkalmazunk a programozási feladatok megoldásánál,
RészletesebbenSorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
RészletesebbenBevezetés a programozásba I.
Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy
RészletesebbenStruktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
RészletesebbenRelációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
RészletesebbenA Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
RészletesebbenGauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Részletesebben8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.
8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója
RészletesebbenAlkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek
RészletesebbenEdényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Részletesebben1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
RészletesebbenAlgoritmizálás és adatmodellezés tanítása 2. előadás
Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás
RészletesebbenProgramozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
RészletesebbenTrigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
RészletesebbenKészítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19.
Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Programkészítés Megrendelői igények begyűjtése Megoldás megtervezése (algoritmuskészítés)
RészletesebbenRE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
Részletesebben10. gyakorlat Tömb, mint függvény argumentum
10. gyakorlat Tömb, mint függvény argumentum 1. feladat: A 6. gyakorlat 1. feladatát oldja meg a strukturált programtervezési alapelv betartásával, azaz minden végrehajtandó funkciót külön függvényben
Részletesebben4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Részletesebben3. Strukturált programok
Ha egy S program egyszerű, akkor nem lehet túl nehéz eldönteni róla, hogy megold-e egy (A,Ef,Uf) specifikációval megadott feladatot, azaz Ef-ből (Ef által leírt állapotból indulva) Uf-ben (Uf által leírt
RészletesebbenÖsszetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
RészletesebbenLogika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
RészletesebbenProgramozási nyelvek a közoktatásban alapfogalmak I. előadás
Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)
RészletesebbenInformációk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
RészletesebbenKészítette: Ernyei Kitti. Halmazok
Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer
RészletesebbenA félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
RészletesebbenA C# programozási nyelv alapjai
A C# programozási nyelv alapjai Tisztán objektum-orientált Kis- és nagybetűket megkülönbözteti Ötvözi a C++, Delphi, Java programozási nyelvek pozitívumait.net futtatókörnyezet Visual Studio fejlesztőkörnyezet
RészletesebbenPROGRAMOZÁS VISSZAVEZETÉSSEL
Gregorics Tibor PROGRAMOZÁS VISSZAVEZETÉSSEL egyetemi jegyzet 1 2011 1 A jegyzet tananyagának kialakítása az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg (a
RészletesebbenAdatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
Részletesebben2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
RészletesebbenMATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
RészletesebbenEmlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)
Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok
Részletesebben2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
RészletesebbenPásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez
Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 3. ADATTÍPUSOK...26 3.1. AZ ADATOK LEGFONTOSABB JELLEMZŐI:...26 3.2. ELEMI ADATTÍPUSOK...27 3.3. ÖSSZETETT ADATTÍPUSOK...28
RészletesebbenEgyszerű programozási tételek
Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.
RészletesebbenAlkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
RészletesebbenVáltozók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):
Python Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása alatt
RészletesebbenSorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Részletesebben5. A kiterjesztési elv, nyelvi változók
5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A
RészletesebbenSzámláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenBevezetés a programozásba. 5. Előadás: Tömbök
Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és
RészletesebbenLogika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?
,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,
RészletesebbenModellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
RészletesebbenAlkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
RészletesebbenALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK
ALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK 1. ELÁGAZÁSOK ÉS CIKLUSOK SZERVEZÉSE Az adatszerkezetek mellett a programok másik alapvető fontosságú építőkövei az ún. algoritmikus szerkezetek.
RészletesebbenAlgoritmizálás és adatmodellezés tanítása 6. előadás
Algoritmizálás és adatmodellezés tanítása 6. előadás Összetett típusok 1. Rekord 2. Halmaz (+multihalmaz, intervallumhalmaz) 3. Tömb (vektor, mátrix) 4. Szekvenciális file (input, output) Pap Gáborné,
RészletesebbenOccam 1. Készítette: Szabó Éva
Occam 1. Készítette: Szabó Éva Párhuzamos programozás Egyes folyamatok (processzek) párhuzamosan futnak. Több processzor -> tényleges párhuzamosság Egy processzor -> Időosztásos szimuláció Folyamatok közötti
RészletesebbenProgramozási tételek. Dr. Iványi Péter
Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,
RészletesebbenSzámjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
RészletesebbenProgramozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double
Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,
Részletesebben