Programozási Módszertan definíciók, stb.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Programozási Módszertan definíciók, stb."

Átírás

1 Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen határozzák meg (vagy más szóval specifikálják). Természetes szám típus ( 0, ); Egész szám típus (, +, ); Valós szám (, +, ); Logikai típus ( ); Karakter típus (, műv: (x), (x)); Halmaz típus (TÉ: véges elemszámú halmazok E alaphalmazból, ez fölött: 2 E ); Sorozat típus (TÉ: véges sorozatok, E alaphalmazból: E*, műv: s, s i ); Vektor típus, 1D tömb (véges sorozatok n től m ig cimkézve E alaphalmazból: E n m=1); Mátrix típus (azonos méretű téglalapba rendezett elem együttesek E elemi halmaz fölött: E mxn kxl=1x1)... Állapottér (ÁT): Legyenek A 1,A 2,,A n tetszőleges véges vagy megszámlálható nem üres halmazok: ezek a típusértékhalmazok (TÉH). Rendeljük hozzájuk egyértelmű módon a páronként különböző c 1,..., c n címkéket. Ekkor a {{c 1 : a 1,..., c n : a n } a i A i (i= 1,...,n)} halmazt az A 1,A 2,...,A n TÉH okból képzett állapottérnek nevezzük, amit a továbbiakban a (c 1 : A 1,..., c n : A n ) szimbólummal jelölünk. Ha a cimkéknek rögzítjük a sorrendjét, akkor az A= A 1 A 2... A n halmazt (Descart szorzatot) is állapottérnek nevezzük. Állapotok: az ÁT elemei. Ezek maguk is halmazt alkotnak: a cimkézett értékek halmazát. Feladatnak nevezzük az F A A relációt. Az F reláció ÉT a ( F ) a feladat kezdőállapotait jelöli ki. Egy adott F re az F( ) képhalmaz az kezdőállapothoz tartozó célállapotokat tartalmazza. A ** : az A halmaz elemeiből képzett összes (véges és végtelen hosszú) sorozatot tartalmazóhalmaz A : a végtelen hosszúsorozatok halmaza red(α): az α sorozat redukáltja (azaz az eredeti sorozat minden azonos elemekből álló részsorozatát az ismétlődő egyetlen elemmel helyettesítjük) τ (α): a véges sorozat utolsó eleme Program: az S A A** reláció, ha S = A A: α S( ) : α 1 = α S : α = red(α). Programfüggvény, (hatásreláció): p(s) A A reláció az S A A** program PrFv e, ha: D p(s) = { A S( ) A*} D p(s) p(s)(a) = { b A α S( ) : ( ) = b }. Megoldás: Az S program megoldja az F feladatot, ha F p(s) F : p(s)( ) F( ). 1

2 :megoldás LGyEF: Leggyengébb előfeltétel: Legyen S A A** program, R: A állítás. Ekkor az S program R utófeltételhez tartozó LGyEF e az az állítás, amelyre: (S, R) = { p(s) p(s)( ) R }. A leggyengébb előfeltétel tehát pontosan azokban a pontokban igaz, ahonnét kiindulva az S program biztosan terminál, és az összes lehetséges végállapotra igaz R. Néhány fontos tulajdonság: Legyen S A A** program, R 1, R 2 : A állítások. Ekkor:. (S, HAMIS) = HAMIS (a csoda kizárásának elve). Ha R 1 R 2, akkor (S, R 1 ) (S, R 2 ) (monotonitási tulajdonság). (S, R 1 ) ^ (S, R 2 ) = (S, R 1^R 2 ). (S, R 1 ) v (S, R 2 ) (S, R 1 v R 2 ) A feladat specifikációja: Általában a feladat nem függ az ÁT összes komponensétől, azaz az ÁT több pontjához is ugyanazt rendeli. Ezeket a pontokat fogjuk össze egy ponttá a paramétertér segítségével. Paraméter: Legyen F A A feladat. A B halmazt a feladat pm ének nevezzük, ha van olyan F1 és F2 reláció, hogy F1 A B F2 B A F = F2 F1, ahol az ún. reláció kompozicióművelet. Specifikáció tétele: Legyen F A A feladat, B az F egy paramétertere, F1 A B, F2 B A, F=F2 F1. Jelölje B, és definiáljuk a következő állításokat az F feladat Q b előfeltételére, ill. R b utófeltételére): Q b = { A (, ) F1} = F1 ( 1) ( ) R b = { A (, ) F2} = F2( ) Ekkor ha B: Q b (S,R b ), akkor az S program megoldja az F feladatot. 2. Elemi programok Elemi program: egy A állapottéren egy S program, ha: A : S( ) {< >,<,,,...>,<, > }. Üres program, SKIP: nem csinál semmit: A : SKIP( ) = {< >}. Rossz program, törlődés, ABORT: soha sem terminál: A : ABORT( ) = {<,,,... >}. Értékadás (ÉA): programváltozó (~az akt. állapot egy komponense) új értéket kap (~megváltozik). Új állapot: ezzel az egy komponenssel tér el az előző állapottól. Az ÁT en 1 lépést: 2 állapotból álló végrehajtási sorozatot eredményez. ÉA: S program, ami az ÁT bármelyik állapotához a belőle kiinduló 2elemű állapotsorozatot rendeli. 2

3 Szimultán ÉA: Egy időben több változónak is új értéket adunk (állapotkülönbség több komponensű ) Egyszerű ÉA: csak egy változó értékét változtatja meg. Értékkiválasztás: az ÉA nem determinisztikus. Jelölés: : F( ) ( legyen eleme ) Értékadás: az F reláció függvény determinisztikus. Jelölés: := F( ) ( legyen egyenlő ) Parciális értékkiválasztás: F A és az ÉA nem determinisztikus. Parciális ÉA: F A és az F determinisztikus (F parciális függvény) Általános ÉA: Legyen A = A 1... A n, F = (F 1,..., F n ), ahol F i A A i. Az S program általános értékadás, ha: I n i=1 S = { (, red(<, >)), A ^ D Fi ^ F( ) } { (,<,,,...>) A ^ }. Elemi pr. ok programfüggvénye: p(skip)=id A, p(abort)=, p( :=F( )) = F, p( : F( )) = F. El.pr. ok LGyEF e: (SKIP,R) = R ; (ABORT,R) = hamis ; ÉA ok: F:A A globális fv: ( :=F( ),R) = { A F( ) R } = F ( 1) ( R )= R F F: parciális fv: ( :=F( ),R) = { A F( ) R } F = F ( 1) ( R ) F I n D Fi i=1 3. Programkonstrukciók 2 : α A * és β A **. 2 (α, β) = red( kon(α, β) ). Szekvencia: Legyenek S 1, S 2 A A ** programok. Az S A A ** relációt az S 1 és S 2 szekvenciájának nevezzük, és (S 1 ; S 2 ) vel jelöljük, ha A: S( ) = { α A α S 1 ( ) } { 2 (α, β) A ** α S 1 ( ) A * ^ β S 2 (τ(α)) }. Elágazás: Legyenek π 1,..., π n : A feltételek, S 1,..., S n programok A n. Ekkor az IF A A ** relációt az S i kből képzett π i k által meghatározott elágazásnak nevezzük és (π 1 :S 1,..., π n :S n ) el jelöljük, ha A: IF( ) = U n i= 1 i ( ) 0 ( ) ahol [1.. ]: n : α 1,,α n 1 A * és α n A **. n (α 1,,α n ) = red( kon(α 1,,α n ) ). : α A * ( ). (α 1,α 2, ) = red( kon(α 1,α 2, ) ). 3

4 Ciklus: Legyen π feltétel és S 0 program A n. A DO A A ** relációt az S 0 ból a π feltétellel képzett ciklusnak nevezzük, és (π, S 0 ) lal jelöljük, ha π : DO( ) = {< >}, és π : { α A ** α 1,, α n A ** : α= n (α 1,, α n ) ^ α 1 S 0 ( ) ^ [1.. 1]:(α i A * ^ α i+1 S 0 (τ(α i )) ^ π(τ(α i ))) ^ (α n A v (α n A * ^ π(τ(α n )) )) } { α A : α i A * : α= (α 1,α 2, ) ^ α 1 S 0 ( ) ^ α i+1 S 0 (τ(α i )) ^ π(τ(α i )) }. Levezetési szabályok: Szekvencia lev.sz.: Legyen S = (S 1 ; S 2 ), és adott Q, R és Q' állítás A n. Ha Q (S 1,Q') és Q' (S 2,R) akkor: Q (S, R). Elágazás lev.sz.: Legyen IF =(π 1 :S 1,..., π n :S n ), és adott Q, R állítás A n. Ha, és [1.. ]: Q ^ π i (S i, R), akkor: Q (IF, R). Ciklus lev.sz.: Legyen DO =(π, S 0 ), és adott I (invariáns), Q, R állítás A n, valamint t:a (termináló) függvény. Ha: Q I ; I^π (S 0,I) ; I^ π R ; I^π t>0 ; I^π^t=t 0 (S 0, t<t 0 ) : akkor: Q (DO, R). 4. Levezetés Megengedett program: az üres program; a megengedett F relációjú : F( ) értékadás; valamint a szekvencia, a megengedett feltételeket használó elágazás és a megengedett ciklusfeltételű ciklus programszerkezeteinek segítségével az üres programból és megengedett értékadásokból felépített program. Megengedett elemek: megengedett típusok (bevezetett és kiegészített) ; megengedett relációk (+eng. típ.műveletek kompoz. jával) ; megengedett értékadás ( : F( ) ban F +eng.) ; megengedett feltételek (+eng. műv. log.kif.) A programtervezés célja az, hogy egy feladatot egy megengedett programmal oldjunk meg. Ha a triviális megoldás nem megengedett, részfeladatokra kell bontani, finomítani, újra részletezni, amíg csupa +eng. nem lesz. Finomítás: Egy (rész)fa. ot triviálisan megoldó nem megengedett ÉA t: vagy egy bonyolultabb szerkezetű programmal helyettesítjük (procedurális programtervezés) ; vagy pedig az ÉA. jobboldali kifejezésének kiszámításánál használt, nem +eng. típusműveleteket valósítjuk meg (típus orientális programtervezés). Procedurális programtervezés: Levezetés: top down módszer; a feladatból (azaz a triviálisan megoldó nem megengedett értékadásból) indulunk ki, és azt a programszerkezetek levezetési szabályainak segítségével bontjuk részfeladatokra. 4

5 Visszavezetés: korábbi megoldás (minta) alapján, azaz analóg módon oldjuk meg; a mintafeladat és az új feladat eltéréseit a mintaprogram megoldására átvezetjük. példák 5. Visszavezetés Analóg programozás: Ha egy FA. megoldását egy hozzá hasonló, már korábban megoldott FA. megoldása alapján, a két FA. hasonlóságára építve készítjük el, ezt analóg programozásnak nevezzük. Ez sokféle módon valósulhat meg. Analóg levezetés: A mintafeladatot megoldó program előállítási folyamatát másoljuk le az adott feladat levezetésének elkészítéséhez; azaz egy kitaposott út mentén hozott korábbi döntéseket (mi legyen a programszerkezet, a ciklus invariáns, stb.) kölcsönözzük. Analóg visszavezetés: Közvetlenül a mintafeladatot megoldó programot nem pedig előállításának folyamatát használjuk fel; azaz a mintaprogramot módosítjuk a kitűzött és a mintafeladat közötti különbségek alapján. Összegzés: Legyen adott az : függvény. Feladatunk az, hogy egy adott [.. ] intervallumban összegezzük az függvény értékeit.: A = ( :, :, : ) Q = ( = ^ = ) R = (Q ^ = ) Bővítsük ki az állapotteret k komponenssel: A' = ( :, :, :, : ) Ekkor az invariáns: I = (Q ^ [.. +1] ^ = ) Az összegzés programozási A levezetési szabályok vizsgálata: tétele: Q I Ez nem teljesül, csak ha egy értékadást (k, s := m, 0) beteszünk a ciklus elé: Q (, :=, 0, I) =(Q ^ [.. +1] ^ 0 = ) I^ π R I^π t>0 Ebből meghatározhatjuk a ciklus feltételét: π = ( 1 = ), azaz π = ( +1) Legyen = +1; ez pozitív lesz P és π miatt. I^π ^ = 0 (S 0, < 0 ) A ciklusmag csökkenti a terminálófüggvényt, ha növeli értékét ( := +1). I^π ^ +1= 0 ( := +1, +1< 0 ) = < 0 I^π (S 0,I) Vizsgáljuk meg I leggyengébb feltételét, ha (k := k+1) et végrehajtjuk. ( := +1, I) = (Q ^ +1 [.. +1] ^ = ) = Q.Kell még egy utasítás ( := + ( )) a ciklusmagba: I ^π ( := + ( ), Q ) = (Q ^ [.. +1] ^ + ( )= ) példák analóg levezetéssel, visszavezetéssel, behelyettesítéssel 5

6 6. Programozási tételek Számlálás: Adott egy β: [m..n] feltétel. Határozzuk meg, hogy az [m..n] intervallumon a β feltétel hányszor veszi fel az értéket. Levezetése: Kibővítjük az ÁT. ünket: Így az invariáns: Analóg levezetéshez az összegzés használható. Maximumkeresés: Adott egy : [.. ] függvény, amelynek értékkészletén definiáltunk egy teljes rendezési relációt. Határozzuk meg, hogy az függvény hol veszi fel az [.. ] nem üres intervallumon a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték! _ ÁT et kibővítjük egy komponenssel. Az invariáns: Itt nem engedjük meg az üres intervallumot (mint az előbb), mivel nincs értelme annak maximumát keresni. Lineáris keresés: Adott az β: [.. ] feltétel. Keressük meg az [.. ] intervallumban balról az első olyan számot, amely kielégíti a β feltételt! Most nincs szükség állapottérbővítésre, az változó megteszi. Az invariáns: 6

7 Kiválasztás: Adott az β: feltétel, valamint egy egész szám. Keressük meg az számtól jobbra eső (az et is beleértve) az első olyan számot, amely kielégíti a β feltételt, ha tudjuk, hogy van ilyen szám! (Ez egy spec. keresés.) Az invariáns: Feltételes maximumkeresés: Adott egy : [.. ] függvény, amelynek értékkészletén definiáltunk egy teljes rendezési relációt és adott egy β: [.. ] feltétel. Határozzuk meg, hogy az függvény hol veszi fel az [.. ] intervallum β t kielégítő elemei közül a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték! Feltétel fennállásáig tartó keresés: Adott egy egész szám, és egy olyan δ: feltétel, amely az egészek számegyenesén től jobbra valahol biztosan felvesz egy értéket. Legyen az egész számokon től jobbra értelmezve egy β : feltétel. Keressük meg az számtól jobbra eső (az et is beleértve) az első olyan számot, amely kielégíti a β feltételt azon az [.. ] intervallumon, ahol [.. ]:δ( ), de δ( +1) teljesül! Kibővitjük az állapotteret egy : komponenssel, amely mindaddig értékű lesz, amig az től jobbfelé haladva csak olyan számokkal találkozunk, amelyekre a δ feltétel teljesül. 7

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6. Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Programozási módszertan

Programozási módszertan 1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,

Részletesebben

Bevezetés a programozáshoz I. Feladatok

Bevezetés a programozáshoz I. Feladatok Bevezetés a programozáshoz I. Feladatok 2006. szeptember 15. 1. Alapfogalmak 1.1. példa: Írjuk fel az A B, A C, (A B) C, és A B C halmazok elemeit, ha A = {0, 1}, B = {1, 2, 3}, C = {p, q}! 1.2. példa:

Részletesebben

NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere

NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett

Részletesebben

7.4. A programkonstrukciók és a kiszámíthatóság

7.4. A programkonstrukciók és a kiszámíthatóság H @ tj 68 7 PROGRAMKONSTRUKCIÓK 74 A programkonstrukciók és a kiszámíthatóság Ebben az alfejezetben kis kitérőt teszünk a kiszámíthatóság-elmélet felé, és megmutatjuk, hog az imént bevezetett három programkonstrukció

Részletesebben

BEVEZETÉS A PROGRAMOZÁSHOZ

BEVEZETÉS A PROGRAMOZÁSHOZ FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................

Részletesebben

Bevezetés a programozásba 1

Bevezetés a programozásba 1 Bevezetés a programozásba 1 Fóthi Ákos, Horváth Zoltán 2005. április 22. ý 1 Az ELTE IK Elektronikus Könyvtár által közvetített digitális tartalmat a felhasználó a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa

3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

S0-01 Szintézis és verifikáció (Programozás elmélet)

S0-01 Szintézis és verifikáció (Programozás elmélet) S0-01 Szintézis és verifikáció (Programozás elmélet) Tartalom 1. Programozási alapfogalmak 2. Elemi programok és program konstrukciók definíciói 3. Nem-determinisztikus strukturált programok formális verifikációja

Részletesebben

Programozási tételek. PPT 2007/2008 tavasz.

Programozási tételek. PPT 2007/2008 tavasz. Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási

Részletesebben

PROGRAM STATIKUS FOGALMA DINAMIKUSAN VÁLTOZÓ ÁLLAPOTTÉRBEN 1

PROGRAM STATIKUS FOGALMA DINAMIKUSAN VÁLTOZÓ ÁLLAPOTTÉRBEN 1 PROGRAM STATIKUS FOGALMA DINAMIKUSAN VÁLTOZÓ ÁLLAPOTTÉRBEN 1 Az ELTE IK programozó informatikus képzésében egy statikus szemléletű, matematikai relációk fogalmára épülő modell keretében tanítjuk a programozást.

Részletesebben

BEVEZETÉS A PROGRAMOZÁSHOZ

BEVEZETÉS A PROGRAMOZÁSHOZ FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

A = fx j P (x) igazg ; A = fx j 1 x 7; x prímszámg : A [ B = fx j x 2 A, vagy x 2 Bg ; [a::b] := [a; b] \ Z

A = fx j P (x) igazg ; A = fx j 1 x 7; x prímszámg : A [ B = fx j x 2 A, vagy x 2 Bg ; [a::b] := [a; b] \ Z 1 Alapfogalmak Halmaz: Azonos tulajdonságú elemek összessége. Halmaz jelölése: Latin ABC nagybet½ui (általában). Halmaz elemeinek jelölése: Latin kisbet½uk (általában). Halmaz megadása: a) elemeinek felsorolásával,

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

Modellezés Gregorics Tibor Mesterséges intelligencia

Modellezés Gregorics Tibor Mesterséges intelligencia Modellezés 1. Állapottér-reprezentáció Állapottér: a probléma leírásához szükséges adatok által felvett érték-együttesek (azaz állapotok) halmaza az állapot többnyire egy összetett szerkezetű érték gyakran

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK Szerkesztette: Bókay Csongor 2012 tavaszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. június

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje 1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

Algoritmizálás, adatmodellezés tanítása 7. előadás

Algoritmizálás, adatmodellezés tanítása 7. előadás Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk

Részletesebben

Programozás alapjai (ANSI C)

Programozás alapjai (ANSI C) Programozás alapjai (ANSI C) 1. Előadás vázlat A számítógép és programozása Dr. Baksáné dr. Varga Erika adjunktus Miskolci Egyetem, Informatikai Intézet Általános Informatikai Intézeti Tanszék www.iit.uni-miskolc.hu

Részletesebben

Algoritmizálás, adatmodellezés tanítása 6. előadás

Algoritmizálás, adatmodellezés tanítása 6. előadás Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok

Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 3. gyakorlat PLanG: 2011.09.27. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

I. RÉSZ PROGRAMOZÁSI FOGALMAK

I. RÉSZ PROGRAMOZÁSI FOGALMAK I. RÉSZ PROGRAMOZÁSI FOGALMAK Azokat a gondolkodási formákat, alapelveket, valamint az érvényesítésükhöz szükséges eszközöket, amelyeket rendszeresen alkalmazunk a programozási feladatok megoldásánál,

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. 8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n). Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Algoritmizálás és adatmodellezés tanítása 2. előadás

Algoritmizálás és adatmodellezés tanítása 2. előadás Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19.

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Programkészítés Megrendelői igények begyűjtése Megoldás megtervezése (algoritmuskészítés)

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

10. gyakorlat Tömb, mint függvény argumentum

10. gyakorlat Tömb, mint függvény argumentum 10. gyakorlat Tömb, mint függvény argumentum 1. feladat: A 6. gyakorlat 1. feladatát oldja meg a strukturált programtervezési alapelv betartásával, azaz minden végrehajtandó funkciót külön függvényben

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

3. Strukturált programok

3. Strukturált programok Ha egy S program egyszerű, akkor nem lehet túl nehéz eldönteni róla, hogy megold-e egy (A,Ef,Uf) specifikációval megadott feladatot, azaz Ef-ből (Ef által leírt állapotból indulva) Uf-ben (Uf által leírt

Részletesebben

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10. Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

A C# programozási nyelv alapjai

A C# programozási nyelv alapjai A C# programozási nyelv alapjai Tisztán objektum-orientált Kis- és nagybetűket megkülönbözteti Ötvözi a C++, Delphi, Java programozási nyelvek pozitívumait.net futtatókörnyezet Visual Studio fejlesztőkörnyezet

Részletesebben

PROGRAMOZÁS VISSZAVEZETÉSSEL

PROGRAMOZÁS VISSZAVEZETÉSSEL Gregorics Tibor PROGRAMOZÁS VISSZAVEZETÉSSEL egyetemi jegyzet 1 2011 1 A jegyzet tananyagának kialakítása az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg (a

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 3. ADATTÍPUSOK...26 3.1. AZ ADATOK LEGFONTOSABB JELLEMZŐI:...26 3.2. ELEMI ADATTÍPUSOK...27 3.3. ÖSSZETETT ADATTÍPUSOK...28

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok. Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):

Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Python Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása alatt

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája? ,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,

Részletesebben

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

ALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK

ALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK ALGORITMIKUS SZERKEZETEK ELÁGAZÁSOK, CIKLUSOK, FÜGGVÉNYEK 1. ELÁGAZÁSOK ÉS CIKLUSOK SZERVEZÉSE Az adatszerkezetek mellett a programok másik alapvető fontosságú építőkövei az ún. algoritmikus szerkezetek.

Részletesebben

Algoritmizálás és adatmodellezés tanítása 6. előadás

Algoritmizálás és adatmodellezés tanítása 6. előadás Algoritmizálás és adatmodellezés tanítása 6. előadás Összetett típusok 1. Rekord 2. Halmaz (+multihalmaz, intervallumhalmaz) 3. Tömb (vektor, mátrix) 4. Szekvenciális file (input, output) Pap Gáborné,

Részletesebben

Occam 1. Készítette: Szabó Éva

Occam 1. Készítette: Szabó Éva Occam 1. Készítette: Szabó Éva Párhuzamos programozás Egyes folyamatok (processzek) párhuzamosan futnak. Több processzor -> tényleges párhuzamosság Egy processzor -> Időosztásos szimuláció Folyamatok közötti

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

Számjegyes vagy radix rendezés

Számjegyes vagy radix rendezés Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben

Részletesebben

Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double

Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,

Részletesebben