A félév során előkerülő témakörök
|
|
- Csenge Dudás
- 6 évvel ezelőtt
- Látták:
Átírás
1 A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok keresőfák Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot eredményezi. Számítási Probléma A számítási probléma bemenet/kimenet feltételpárral meghatározott követelmény. Azt írja elő, hogy a bemeneti feltételt teljesítő adatra a kimeneti feltételt teljesítő adatot kell kiszámítani. Probléma bemenete: egy olyan (esetleg összetett) adat, amely teljesíti a bemeneti feltételt. Például, a rendezési probléma a következőt jelenti. Bemenet: Azonos típusú adatok H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció. Kimenet: A H halmaz elemeinek egy rendezéstartó felsorolása, tehát olyan {b 1,...,b n } sorozat, amelyre b 1 b 2 b n, és H = {b 1,...,b n }. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik. Specifikáció {B}A{K} Az A algoritmus helyes a {B}A{K} specifikációra nézve, ha minden X bemeneti adatra, amelyre teljesül a B bemeneti feltétel, az algoritmus végrehajtása véges sok elemi művelet végrehajtása után befejeződik, és a keletkezett kimeneti adatra teljesül a K kimeneti feltétel. Beszúró Rendezés BESZÚRÓ-RENDEZÉS (A) For j= 2 to hossz(a) {kulcs:=a[j] i:=j-1 while i>0 és A[i]>kulcs {A[i+1]:=A[i] i:=i-1} A[i+1]:=kulcs} 1
2 Példa (5,2,4,6,1,3) (5,2 j,4,6,1,3) (2,5,4,6,1,3) (2,5,4 j,6,1,3) (2,4,5,6,1,3) (2,4,5,6 j,1,3) (2,4,5,6,1 j,3) (1,2,4,5,6,3) (1,2,4,5,6,3 j ) (1,2,3,4,5,6) További példa: Futási idő elemzése Legyen A az e 1,...,e m elemi műveletekből felépített algoritmus, és jelölje t i az e i művelet futási idejét (konkrét, vagy hipotetikus gépen). A t i futási idő függhet az e i művelet argumentumaitól. A továbbiakban feltételezzük, hogy minden e i elemi művelet futási ideje c i konstans. Adott x bemenetre jelölje T (A,x) az A algoritmus tényleges futási idejét, ami az x bemeneti adatra ténylegesen végrehajtott elemi műveletek futási idejének az összege. Jelölje x az x bemeneti adat méretét. Ez a méret összetett adat (pl. halmaz, vagy sorozat) esetén általában az adatok száma. Nem összetett adat esetén pedig általában az adat értéke. Az e i elemi műveletek t i futási ideje és az x méret függvény együttesen adja a bonyolultsági mértéket. Algoritmusnak más költsége is van, nevezetesen a memóriaigény, és elosztott algoritmusok esetén fontos a kommunikációs költség is. Legjobb eset: T l j (A,n) = min{t (A,x) : x = n} Legrosszabb eset: T lr (A,n) = max{t (A,x) : x = n} Átlagos eset: Jelölje Pr(x) annak valószínűségét, hogy x bemeneti adata lesz az A algoritmusnak. T a (A,n) = x =n Pr(x)T (A,x) Elemzés Legyen t j a for ciklus j-edik végrehajtásában a while ciklus tesztelések száma. BESZÚRÓ-RENDEZÉS (A) költség végrehajtások száma For j= 2 to hossz(a) c1 n {kulcs:=a[j] c2 n-1 i:=j-1 c3 n-1 while i>0 és A[i]>kulcs c4 t2+t3+...+tn {A[i+1]:=A[i] c5 (t2-1)+...+(tn-1) i:=i-1} c6 (t2-1)+...+(tn-1) A[i+1]:=kulcs} c7 n-1 A teljes költség: n n n c 1 n + c 2 (n 1) + c 3 (n 1) + c 4 t j + c 5 (t j 1) + c 6 j 1) + c 7 (n 1) j=2 j=2 j=2(t 2
3 Legjobb eset: Ha a tömb már rendezett, akkor minden j-re t j = 1, tehát Ez n lineáris függvénye. T l j (A,n) = c 1 n + c 2 (n 1) + c 3 (n 1) + c 4 (n 1) + c 7 (n 1) Legrosszabb eset: Ha a tömb már fordított sorrendben rendezett, akkor minden j-re t j = j, tehát T lr (A,n) = c 1 n + c 2 (n 1) + c 3 (n 1) + c 4 (n(n + 1)/2 1)+ mivel n j=2 j = n(n + 1)/2 1. A legrosszabb eset n négyzetes függvénye. Az f (n) = O(g(n)) jelentése: f (n) O(g(n)). Az f (n) = Ω(g(n)) jelentése: f (n) Ω(g(n)). c 5 ((n 1)n/2 1) + c 6 ((n 1)n/2 1) + c 7 (n 1), Aszimptotikus jelölések O-jelölés O(g(n)) = { f (n) : ( c,n 0 0)( n n 0 )(0 f (n) cg(n))} Ω-jelölés Ω(g(n)) = { f (n) : ( c,n 0 > 0)( n n 0 )(cg(n) f (n))} Θ-jelölés Θ(g(n)) = { f (n) : ( d 1,d 2,n 0 > 0)( n n 0 )(d 1 g(n) f (n) d 2 g(n))} Az f (n) = Θ(g(n)) jelentése: f (n) Θ(g(n)). Aszimptotikus jelölések o-jelölés o(g(n)) = { f (n) : ( c > 0)( n 0 0)( n n 0 )(0 f (n) cg(n))} Az f (n) = o(g(n)) jelentése: f (n) o(g(n)), ekkor f (n)/g(n) 0. ω-jelölés ω(g(n)) = { f (n) : ( c > 0)( n 0 0)( n n 0 )(cg(n) f (n))} Az f (n) = ω(g(n)) jelentése: f (n) ω(g(n)), akkor f (n)/g(n). Példák 2n + 20 = Θ(n) 3
4 n 2 = ω(nlogn) log 2 (n) = Θ(log 10 n) n n + 10 = Θ(n 2 ) 2 n = ω(n ) A konstans költségű elemi műveletek mindegyikét számolhatjuk egységnyi költségűnek. Fő tulajdonságok A Θ reláció tranzitív, reflexív és szimmetrikus, így egy osztályozás tartozik hozzá. A Θ, O, Ω, o, ω relációk mindegyike tranzitív. Ha f (n) = O(g(n)), akkor g(n) = Ω( f (n)). Ha f (n) = o(g(n), akkor f (n) = O(g(n)). Ha f (n) = ω(g(n)), akkor f (n) = Ω(g(n)). Rekurzív algoritmusok Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának a P eljárásnak a hívása. Faktor(n) If n=1 return 1 Else return n*faktor(n-1) Példa: Faktor(5)=5*Faktor(4) Faktor(4)=4*Faktor(3) Faktor(3)=3*Faktor(2) Faktor(2)=2*Faktor(1) Faktor(1)=1 Hatványozás Hatvany(a,n) If n=0 return 1 else return a*hatvany(a,n-1) 4
5 Hatvany2(a,n) If n=0 return 1 else If odd(n) return a*hatvany2(a,(n-1)/2)*hatvany2(a,(n-1)/2) else return Hatvany2(a,n/2)*Hatvany2(a,n/2) Euklideszi algoritmus Ha b=0, akkor lnko(a, b) = a. Egyébként ha a b, akkor lnko(a, b) = lnko(b, a mod b). Tehát, ha a b, akkor az alábbi algoritmus kiszámolja a legnagyobb közös osztót. Euklidesz(a,b) If b=0 return a Else return Euklidesz(b, a mod b) Euklidesz(64, 28) = Euklidesz(28, 8) = Euklidesz(8, 4) = Euklidesz(4, 0) = 4 Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik egy újabb nyúlpárt hoz létre; a nyulak a születésük után a következő két évben egyszer-egyszer szaporodnak Fibonacci(n) If n=1 or n=2 return 1 Else return Fibonacci(n-1)+Fibonacci(n-2) A hanoi torony probléma Három pálca egyikén n korong van a többi üres. A korongok nagyság szerinti sorrendben helyezkednek el, alul van a legnagyobb. Át akarjuk helyezni a korongokat egy másik pálcára a következő szabályok alapján. Egyszerre csak egy korong mozgatható. A korong vagy üres pálcára vagy egy nála nagyobb korongra helyezhető. Oldjuk meg a feladatot egy rekurzív algoritmussal! Legyen a hanoi eljárás egy olyan algoritmus, amelynek három argumentuma van, az első argumentum azt adja meg, hogy hány korongot helyezünk át, a második megadja, hogy melyik toronyról a harmadik, hogy melyik toronyra. Ekkor az eljárás az (n,1,2) argumentummal megoldja a feladatot. Amennyiben i 1 korongot már át tudunk helyezni, i korongot a következőképpen helyezhetünk át. Elsőként i 1 korongot áthelyezünk az oszlopról egy másik oszlopra. Utána az i-edik korongot rárakjuk a kimaradó üres oszlopra. Végül ezen korong tetejére felrakjuk az i 1 korongot. Ezt a rekurziót írja le a következő eljárás (a megengedett lépést a mozgat függvény írja le). 5
6 Hanoi(n, rol, ra) If n=1 Then mozgat(rol, ra) Else {hanoi(n-1, rol, 6-rol-ra) mozgat(rol, ra) Hanoi(n-1, 6-rol-ra, ra)} Lépések száma: Az i-edik korong átrakásához kétszer kell i 1 korongot áthelyezni és egy további mozgatás szükséges. Tehát T (i)-vel jelölve az i korong átrakásához szükséges mozgatások számát a T (i) = 2T (i 1) + 1 rekurzív összefüggés áll fenn. T (1) = 1, így T (2) = 3, T (3) = 7. Azt sejthetjük, hogy T (i) = 2 i 1 egyenlőség, amely teljes indukcióval egyszerűen igazolható. 6
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Dr. Schuster György február / 32
Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI schuster.gyorgy@kvk.uni-obuda.hu 2015. február 10. 2015. február 10. 1 / 32 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Függvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1
2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának
Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer
PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek
Nagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
Fibonacci számok. Dinamikus programozással
Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik
Számláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:
Rekurzív algoritmusok
Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
14. Mediánok és rendezett minták
14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma
Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok
Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Számjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem }
Funkcionális és logikai programozás { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi ` 1 Jelenlét: Követelmények, osztályozás Az első 4 előadáson
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Bonyolultságelmélet. Monday 26 th September, 2016, 18:28
Bonyolultságelmélet Monday 26 th September, 2016, 18:28 A kurzus teljesítési követelményei 2 Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE
Algoritmusokfelülnézetből 1. ELŐADÁS Sapientia-EMTE 2015-16 Algoritmus Az algoritmus kifejezés a bagdadi arab tudós, al-hvárizmi(780-845) nevének eltorzított, rosszul latinra fordított változatából ered.
Térinformatikai algoritmusok Elemi algoritmusok
Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
Bonyolultságelmélet. Monday 26 th September, 2016, 18:27. Bonyolultságelmélet
Monday 26 th September, 2016, 18:27 A kurzus teljesítési követelményei Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten előadáson Pontszám:
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
Térinformatikai algoritmusok Elemi algoritmusok
Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:
Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,
Algoritmuselmélet 1. előadás
Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források
Ordó, omega, theta, rekurzió :15 11:45. Megoldás. A nagyságrendi sorra tekintve nyilvánvalóan igaz pl., hogy: 1
Algoritmuselmélet 1. gyakorlat megoldások Gyakorlatvezető: Engedy Balázs Ordó, omega, theta, rekurzió 01.0.08. 10:15 11:45 Bemelegítés 1. Az f(n) = O(g(n)) jelölés egyenletnek tekinthető-e? Mi fejezi ki
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
2. Logika gyakorlat Függvények és a teljes indukció
2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció
Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.
Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 2. Rekurzió 2.1. Feladat: Sorbaállítások száma Hány féleképpen lehet sorbaállítani az
BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy
1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,
Algoritmuselmélet 1. előadás
Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források
Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális
Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
A programozás alapjai 1 Rekurzió
A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder
Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.
Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /
Egyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
2016, Diszkrét matematika
Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat
Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás
Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
2016, Diszkrét matematika
Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,
Erdélyi Magyar TudományEgyetem (EMTE
TARTALOM: Általánosságok Algoritmusok ábrázolása: Matematikai-logikai nyelvezet Pszeudokód Függőleges logikai sémák Vízszintes logikai sémák Fastruktúrák Döntési táblák 1 Általánosságok 1. Algoritmizálunk
2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
Logika és számításelmélet. 7. előadás
Logika és számításelmélet 7. előadás Elérhetőség, fóliasorok, ajánlott irodalom Előadó: Kolonits Gábor Elérhetőség: 2-708, kolomax@inf.elte.hu Előadások innen tölthetők le: www.cs.elte.hu/ tichlerk Ajánlott
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
Információs Technológia
Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport
10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)
Haladó rendezések. PPT 2007/2008 tavasz.
Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés
Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása
PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.
15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
Matlab alapok. Baran Ágnes. Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15
Matlab alapok Baran Ágnes Elágazások, függvények Baran Ágnes Matlab alapok Elágazások, függvények 1 / 15 Logikai kifejezések =, ==, = (két mátrixra is alkalmazhatóak, ilyenkor elemenként történik
BABEŞ-BOLYAI TUDOMÁNYEGYETEM MATEMATIKA-INFORMATIKA KAR Felvételi verseny - minta Informatika írásbeli
BABEŞ-BOLYAI TUDOMÁNYEGYETEM MATEMATIKA-INFORMATIKA KAR Felvételi verseny - minta Informatika írásbeli A versenyzők figyelmébe: 1. Minden tömböt 1-től kezdődően indexelünk. 2. A rácstesztekre (A rész)
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.
Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
2015, Diszkrét matematika
Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:
Algoritmusok pszeudókód... 1
Tartalomjegyzék Algoritmusok pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 2 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 3 Minimum
Algoritmizálás, adatmodellezés 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből
Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.
Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös
Partíció probléma rekurzíómemorizálással
Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott
Gyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
7. előadás. Gyorsrendezés, rendezés lineáris lépésszámmal. Adatszerkezetek és algoritmusok előadás március 6.
7. előadás, rendezés lineáris lépésszámmal Adatszerkezetek és algoritmusok előadás 2018. március 6.,, és Debreceni Egyetem Informatikai Kar 7.1 Általános tudnivalók Ajánlott irodalom: Thomas H. Cormen,
Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Tartalomjegyzék Algoritmusok - pszeudókód... 1 42
Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok...2 Orosz szorzás...3 Minimum
Algoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet