2016, Diszkrét matematika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2016, Diszkrét matematika"

Átírás

1 Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia 2016, őszi félév

2 Miről volt szó az elmúlt előadáson? Követelmények, könyvészet Áttekintő Számtartományok: természetes számok, egész számok, Alapműveletek, típusok, algoritmusok Python-ban

3 Miről lesz szó? A gyorshatványozás algoritmusa - iteratív, rekurzív változatok. Számtartományok: racionális számok, irracionális számok Racionális számok sorozatba rendezése legnagyobb közös osztó algoritmusa, rekurzív változat Lánctörtek racionális számok lánctört jegyei

4 1. feladat: határozzuk meg értékét. ** operátorral, az eredmény long típusú érték lesz, ami a Pythonban végtelen precizitású egész értéket jelent, ezt az eredmény végén megjelenő L szimbólum jelzi. >>> 2** L Hány szorzást végez az algoritmus az eredmény meghatározásához?

5 Létezik olyan algoritmus, amely meghatározásakor 9 darab szorzást végez. Hogyan?? A gyorshatványozás algoritmusával, amely logaritmikus futási idejű. Mit jelent ez? 2. feladat: határozzuk meg x n értékét. def my_pow (x, n): res = 1 while n <> 0: if n % 2 == 1: res = res * x x = x * x n = n / 2 return res >>> my_pow(2, 100) L

6 3. feladat: a gyorshatványozás, rekurzív (1)változat def my_pow1 (x, n): if n == 0: return 1 if n % 2 == 0: return my_pow1 (x * x, n / 2) return x * my_pow1 (x * x, n / 2) >>> my_pow1(2, 100) L A gyorshatványozás, rekurzív (2)változat: def my_pow2 (x, n): if n == 0: return 1 temp = my_pow2 (x, n/2) if n % 2 == 1: return x * temp * temp else: return temp * temp

7 Racionális számok halmazjelölés: Q = { a : a, b Z, b 0}, b egész számok rendezett párjaként is felfoghatóak, tulajdonságok: kommutatívitás, asszociatívítás, disztributívítás, a racionális számok halmaza zárt az összeadásra, kivonásra, szorzásra, osztásra nézve, összeadásra, szorzásra nézve minden elemnek lesz inverz eleme, sűrűn rendezett halmazt alkotnak: bármely két racionális szám között van egy harmadik, végtelen sok alakban feĺırhatóak irreducibilis tört, sorozatba rendezhetőek, tizedes tört alak: véges vagy végtelen szakaszos törtek.

8 4. feladat: határozzuk meg egy adott racionális szám irreducibilis alakját. a x y racionális számot az (x, y) számpárral fogjuk jelölni, egy tört irreducibilis, ha a számláló és nevező legnagyobb közös osztója 1 meg kell határozni két szám legnagyobb közös osztóját: eukleidészi algoritmus (rekurzív változat) def ialak (a, b): l = lnko(a, b) return (a/l, b/l) # két szám legnagyobb közös osztója, eukleideszi algoritmus def lnko(a, b): temp = a % b if temp == 0: return b return lnko(b, temp)

9 Racionális számok A racionális számok halmaza megszámlálható: a racionális számok halmaza felsorolható, azaz létezik egy számsorozat, amelyet a racionális számok alkotnak : r 1, r 2,..., r n,..., bármelyik racionális szám feĺırható p/q alakba:

10 5. feladat: Az előző oldalon megadott sorrend szerint írassuk ki az első 55 racionális számot, I. módszer. def aracionalis (k): for j in range(1, k+1): print (j, k+1-j), print def racionalis (n): for k in range(1, n+1): aracionalis (k) >>> racionalis (10) (1, 1) (1, 2) (2, 1) (1, 3) (2, 2) (3, 1) (3, 8) (4, 7) (5, 6) (6, 5) (7, 4) (8, 3) (9, 2) (10, 1)

11 Az 5. feladat segédfüggvény nélkül, egymásba ágyazott for ciklus-sal: def racionalis1 (n): for k in range(1, n+1): for j in range(1, k+1): print (j, k+1-j), print Lesznek olyan racionális számok, amelyek többször is megjelennek a generált számok között?! Ha egy számpárból képezhető racionális szám nem irreducubilis, akkor azt jelenti, hogy már egyszer ki volt generálva az 5. feladat befejezése házi feladat.

12 Az 5. feladat lista adatszerkezettel, a listába számpárok kerülnek: def aracionalisl (k): #az L listát üres listaként inicializáljuk: L = [] for j in range(1, k+1): #az L lista végéhez hozzáfuzunk egy számpárt: L = L + [(j, k+1-j)] return L Megjegyzések, kommentek használata: egysoros megjegyzés: #ez egy egysoros megjegyzés többsoros megjegyzés: """ez egy többsoros megjegyzés"""

13 6. feladat: Írassuk ki az első n racionális számot, alkalmazva a következő algoritmust: az x után következő racionális szám: 2 x + 1 x reciproka, y y y ahol alsó egész részt jelent, II. módszer. pl: pl: = = = (10 5) 2 = = = (9 5) 3 = Ezzel a módszerrel a következő listát kapjuk: (1, 1) (1, 2), (2, 1) (1, 3), (3, 2), (2, 3), (3, 1) (1, 4), (4, 3), (3, 5), (5, 2), (2, 5), (5, 3), (3, 4), (4, 1)...

14 6. feladat: a feladat megoldásához több függvényt is meg kell írni Az x y racionális szám utáni racionális szám meghatározása: def nextrac (x, y): nrx = (2 * (x/y) + 1) * y - x nry = y g = lnko (nrx, nry) return (nry / g, nrx / g)

15 6. feladat: A számpárok kíıratása: def lista1 (x, y, n): print(x, y) for i in range (0, n): (x, y) = nextrac(x, y) print (x, y), meghívás: lista1 (1, 1, 7)

16 6. feladat: A számpárok listában való eltárolása: def lista2 (x, y, n): L = [(x, y)] for i in range (0, n): (x, y) = nextrac(x, y) L = L + [(x, y)] return L meghívás: lista2 (1, 1, 7)

17 Irracionális számok halmazjelölés: Q, azok a számok, melyek nem írhatóak fel két egész szám hányadosaként, azaz a végtelen, nem szakaszos tizedes törtek, híresebb irracionális számok: 2 = , π = , e = , φ = 1+ 5 = , az aranyarány. 2 a számítástechnika az irracionális számok közeĺıtett értékét tudja meghatározni lánctörtek segítségével könnyedén meglehet határozni a közeĺıtett érték tízedesjegyeit

18 Lánctörtek (Continued fraction) A lánctört egy emeletes tört, amely kétféle alakban is megadható, ahol a két alak átalakítható egymásba: a 0 + a 1 + b 1 a 2 + b 2 b 3 a 3 + b4... d 0 + d d d A második alak esetében a [d 0, d 1, d 2, d 3,... ] számsorozatot a lánctört jegyeinek hívják. Megállapíthajuk, hogy: a racionális számok véges lánctörtek, az irracionális számok végtelen lánctörtek.

19 Lánctörtek, példa Alakítsuk át 37 -t lánctörtté: = = [2, 1, 5, 2] = 2.(846153) Alakítsuk át 41 -t lánctörtté: = = [3, 1, 2, 1, 2] = 3.(72)

20 7. feladat: határozzuk meg az x y def lanct(x, y): L = [] while 1: L += [x / y] r = x % y if r == 0: break x = y y = r return L racionális számnak megfelelő lánctört jegyeit >>> lanct(89, 63) [1, 2, 2, 2, 1, 3] >>> lanct(89, 55) [1, 1, 1, 1, 1, 1, 1, 1, 2]

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 3. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? A gyorshatványozás

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 5. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? Python alapfogalmak:

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények

Részletesebben

2017, Diszkrét matematika

2017, Diszkrét matematika Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét: Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

INFORMATIKA javítókulcs 2016

INFORMATIKA javítókulcs 2016 INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? számtani, mértani,

Részletesebben

Imperatív programozás

Imperatív programozás Imperatív programozás 6. Előadás Python típusok (folytatás) Függvények Típusok + műveleteik Listák - mutable (változtatható) - heterogén lista >>> lista = ["szo", 12, 3.5] >>> lista[1] 12 >>> lista[1:3]

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

2018, Diszkre t matematika. 8. elo ada s

2018, Diszkre t matematika. 8. elo ada s Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 6. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? Haskell modulok, kompilálás a

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

2016, Funkcionális programozás

2016, Funkcionális programozás Funkcionális programozás 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, tavaszi félév Miről volt szó? Haskell I/O műveletek, feladatok:

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga

BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem }

Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } Funkcionális és logikai programozás { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi ` 1 Jelenlét: Követelmények, osztályozás Az első 4 előadáson

Részletesebben

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást? 1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

1. Halmazok, számhalmazok, alapműveletek

1. Halmazok, számhalmazok, alapműveletek 1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza

Részletesebben

2019, Funkcionális programozás. 5. el adás. MÁRTON Gyöngyvér

2019, Funkcionális programozás. 5. el adás. MÁRTON Gyöngyvér Funkcionális programozás 5. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? a Haskell kiértékelési stratégiája

Részletesebben

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van. HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

2019, Diszkrét matematika. 1. el adás

2019, Diszkrét matematika. 1. el adás Diszkrét matematika 1. el adás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2019, szi félév Követelmények, osztályozás Végs jegy: (írásbeli jegy +

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra Algebra Műveletek tulajdonságai: kommutativitás (felcserélhetőség): a b = b a; a b = b a asszociativitás (átcsoportosíthatóság): (a b) c = a (b c); a (b c) = (a b) c disztributivitás (széttagolhatóság):

Részletesebben

Algoritmuselmélet gyakorlat (MMN111G)

Algoritmuselmélet gyakorlat (MMN111G) Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy

Részletesebben

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom

Részletesebben

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ; . A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

Imperatív programozás

Imperatív programozás Imperatív programozás 2. Előadás Python alapok Elérhetőség Tejfel Máté Déli épület, 2.616 matej@elte.hu http://matej.web.elte.hu Python Script nyelv Értelmezett (interpretált) Dinamikus típusrendszer Gyors

Részletesebben

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14. Informatika 1 2011 Második előadás, vezérlési szerkezetek Szabó Adrienn 2011. szeptember 14. Tartalom Algoritmusok, vezérlési szerkezetek If - else: elágazás While ciklus For ciklus Egyszerű típusok Összetett

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

KISLEXIKON : HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK. Tárgymutató: I.

KISLEXIKON : HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK. Tárgymutató: I. Matematika érettségi kislexikon I. 1 Huszk@ Jenő I. \ \ KISLEXIKON : HLMZOK, SZÁMHLMZOK, PONTHLMZOK Tárgymutató: I. oldal sorszám téma oldal sorszám téma 3 12 Halmazok ábrázolása 4 14 Halmazok metszete

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? a foldl és foldr függvények lista

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Programozás C nyelven 5. ELŐADÁS. Sapientia EMTE

Programozás C nyelven 5. ELŐADÁS. Sapientia EMTE Programozás C nyelven. ELŐADÁS Sapientia EMTE 201-16 1 while vs. for int szam, s; cin >> szam; s = 0; while ( szam > 0 ){ s += szam%10; szam /= 10; cout szam;

Részletesebben

Halmazok, intervallumok

Halmazok, intervallumok Halmazok, intervallumok Alapfogalmak (nem definiált fogalmak): Halmaz, elem, eleme. Jelölés: x A (ejtsd: az x eleme az A halmaznak). Halmaz megadása: A vizsgálatok során mindig feltesszük, hogy a figyelembe

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Imperatív programozás

Imperatív programozás Imperatív programozás 7. Előadás Függvények, láthatóság (folytatás) Modulok Kivételkezelés Beágyazott függvény def lnko(x, y): def kivon(m, n): return m - n while not (x == y) : if x > y : x = kivon(x,y)

Részletesebben

Typotex Kiadó. Bevezetés

Typotex Kiadó. Bevezetés Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban

Részletesebben

Pótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek

Pótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek Pótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek 1. Hatványozás 2. Normálalak. Mértékegységek. Műveletek racionális számokkal (tört, tizedes tört) 5. Középpontos tükrözés 6.

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 2 előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@mssapientiaro 2016 Miről volt szó az elmúlt előadáson? Félévi áttekintő

Részletesebben

INFORMATIKA tétel 2019

INFORMATIKA tétel 2019 INFORMATIKA tétel 2019 ELIGAZÍTÁS: 1 pont hivatalból; Az 1-4 feladatokban (a pszeudokód programrészletekben): (1) a kiír \n utasítás újsorba ugratja a képernyőn a kurzort; (2) a / operátor osztási hányadost

Részletesebben

Megoldott programozási feladatok standard C-ben

Megoldott programozási feladatok standard C-ben Megoldott programozási feladatok standard C-ben MÁRTON Gyöngyvér Sapientia Erdélyi Magyar Tudományegyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro Tartalomjegyzék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Amikor számhalmazokat ábrázolunk, az alaphalmaz sokszor a tanult sz mok halmaza, vagyisazoka számok, amelyekről már tanultunk.

Amikor számhalmazokat ábrázolunk, az alaphalmaz sokszor a tanult sz mok halmaza, vagyisazoka számok, amelyekről már tanultunk. A racion lis sz mok A tanult sz mok halmaza Amikor számhalmazokat ábrázolunk, az alaphalmaz sokszor a tanult sz mok halmaza, vagyisazoka számok, amelyekről már tanultunk Milyen számokat ismersz? Nevezd

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? összefésüléses rendezés (merge

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Komputeralgebra Rendszerek

Komputeralgebra Rendszerek Komputeralgebra Rendszerek Polinomok Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 80 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Egyváltozós polinomok Alapfogalmak

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N

Részletesebben

Racionális és irracionális kifejezések

Racionális és irracionális kifejezések Racionális és irracionális kifejezések a + b a + ac a_ a+ ci a 77. A feltétel szerint b ac, ezért b c. + ac + c c_ a+ ci c ab ac bc 78. A feltétel szerint: ab+ ac+ bc- b, ezért + + + + a b c abc b -b -,

Részletesebben

MATEMATIKA A 10. évfolyam

MATEMATIKA A 10. évfolyam MATEMATIKA A 10 évfolyam modul A négyzetgyök fogalma, azonosságai Készítette: Gidófalvi Zsuzsa MATEMATIKA A 10 ÉVFOLYAM modul: A NÉGYZETGYÖK FOGALMA, AZONOSSÁGAI TANÁRI ÚTMUTATÓ MODULVÁZLAT A modul célja

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++

Részletesebben