2016, Diszkrét matematika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2016, Diszkrét matematika"

Átírás

1 Diszkrét matematika 3. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia 2016, őszi félév

2 Miről volt szó az elmúlt előadáson? A gyorshatványozás algoritmusa - iteratív, rekurzív változatok. Számtartományok: racionális számok, irracionális számok Racionális számok sorozatba rendezése legnagyobb közös osztó algoritmusa, rekurzív változat Lánctörtek racionális számok lánctört jegyei

3 Miről lesz szó? Számtartományok: valós számok, komplex számok racionális számok lánctört jegyei valós számok lánctört jegyei híresebb irracionális számok számjegyeinek a kigenerálása k-ik gyök meghatározása: Newton módszerrel logaritmus maghatározása másodfokú egyenlet komplex gyökei fraktálok: Mandelbrot, Julia

4 Lánctörtek (Continued fraction) A lánctört egy emeletes tört, amely kétféle alakban is megadható, ahol a két alak átalakítható egymásba: a 0 + a 1 + b 1 b 2 b3 a 2 + a d 0 + d d d A második alak esetében a [d 0, d 1, d 2, d 3,... ] számsorozatot a lánctört jegyeinek hívják. Megállapíthajuk, hogy: a racionális számok véges lánctörtek, az irracionális számok végtelen lánctörtek.

5 Algoritmusok Pythonban 1. feladat: határozzuk meg az x y def lanct(x, y): L = [] while 1: L += [x / y] r = x % y if r == 0: break x = y y = r return L racionális számnak megfelelő lánctört jegyeit >>> lanct(89, 63) [1, 2, 2, 2, 1, 3] >>> lanct(89, 55) [1, 1, 1, 1, 1, 1, 1, 1, 2]

6 Algoritmusok Pythonban 2. feladat: határozzuk meg az x y átírjuk a maradékos osztást!! def lanct1(x, y): L = [] while 1: temp = x / y L += [temp] r = x - temp * y if r == 0: break x = y y = r return L racionális számnak megfelelő lánctört jegyeit, >>> lanct(61, 47) [1, 3, 2, 1, 4]

7 Valós számok a racionális és irracionális számok halmaza halmazjelölés: R = Q Q, egy szám egyszerre nem lehet racionális és irracionális is, a valós számokhoz hozzárendelhető, egy mindkét irányban végtelen egyenes egy-egy pontja, kommutatívitás, asszociatívítás, disztributívítás, az egész számokkal ellentétben a valós számok halmaza nem megszámlálható, a számítástechnikában nem valós mennyiségekkel dolgozunk, ezek egy közeĺıtő értéke lesz eltárolva: lebegőpontos ábrázolás,

8 Valós számok A valós számok halmaza nem megszámlálható: feltételezzük, az ellenkezőjét, ha a valós számok halmaza megszámlálható lenne, akkor, a 0 és 1 közötti valós számok halmaza is megszámlálható lenne, létezik egy számsorozat, amelyet a 0 és 1 közötti valós számok alkotnak : r 1, r 2,..., r n,..., alkalmazzuk a következő ábrázolási módot: r 1 = 0.d 11d 12d 13d r 2 = 0.d 21d 22d 23d r 3 = 0.d 31d 32d 33d r 4 = 0.d 41d 42d 43d ahol d ij {0, 1, 2,..., 9} ekkor az r = 0.d 1d 2d 3d 4... egy új valós szám lesz, { amely nem szerepel a 4 ha dii 4, fenti szabály szerint megadott listában, ahol d i = 5 ha d ii = 4.

9 Valós számok Példa: r 1 = r 2 = r 3 = r 4 = A listában nem szereplő valós szám: , mert d 11 4, d 22 4, d 33 = 4, d 44 4,....

10 Algoritmusok Pythonban 3. feladat: határozzuk meg az a valós számnak megfelelő lánctört jegyeit from math import floor def lanctreal(a, prec): temp = floor(a) L = [int(temp)] i = 0 while i < prec and a!= temp: a = 1.0 / (a - temp) temp = floor(a) L += [int (temp)] i += 1 return L >>> lanctreal(61/47.0, 5) [1, 3, 2, 1, 3, 1]

11 Algoritmusok Pythonban 3. feladat: >>> import math >>> lanctreal(math.sqrt(2), 10) [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] >>> lanctreal(math.sqrt(6), 10) [2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4] >>> lanctreal(math.pi, 15) [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3, 3, 23] >>> lanctreal(math.e, 15) [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1]

12 Python sintaxis A Decimal típus: a Decimal típus a decimal modulban van definiálva, a felhasználó által óhajtott pontossággal ábrázolja a lebegőpontos (valós) számokat, a getcontext.prec() segítségével a tizedes jegyek számát adhatjuk meg, Az int, a float, a string típusokból egyaránt létre lehet hozni Decimal típusú értéket. >>> >>> e-17

13 Python sintaxis >>> Decimal(0.1) Decimal( ) >>> Decimal( 0.1 ) Decimal( 0.1 ) >>> Decimal( 0.1 ) + Decimal( 0.1 ) + Decimal( 0.1 ) - Decimal( 0.3 ) Decimal( 0.0 )

14 Algoritmusok Pythonban 4. feladat: a n érték meghatározása lánctörtek segítségével A kiinduló képlet a következő, ahol a értéke egy akármilyen szám: ha a = 1, akkor: n = n = a + n a n 1 n 1 a+ n n n

15 Algoritmusok Pythonban 5. feladat: a 2 értékének meghatározása lánctörtek segítségével: 2 = from decimal import Decimal, getcontext def lanct_sqrt(): p = 500 getcontext().prec = 30 # 30 szamjegy temp = Decimal(0) for x in range (0, p): temp = 1 / (2 + temp) return 1 + temp >>> lanct_sqrt() Decimal( )

16 A π szám a kör kerületének és átmérőjének hányadosa az eukleidészi geometriában más definíciók is léteznek, melyek kihagyják a kört irracionális és transzcendens szám (nincs olyan egész együtthatós polinom amelynek gyöke lenne) 6. feladat: a π értékének meghatározása lánctörtek segítségével π = π =

17 A π szám def lanct_pi(): p = 1000 getcontext().prec = 100 # 100 szamjegy temp = Decimal(0) for x in range (p + 1, 0, -1): a = x * x b = 2 * x + 1 temp = a / (b + temp) return 4 / (1 + temp) >>> lanct_pi() Decimal( )

18 Az e szám irracionális és transzcendens szám többféleképpen lehet értelmezni: ( e = lim ) n. n n Az e értékének meghatározása lánctörtek segítségével: e =

19 Algoritmusok Pythonban 7. feladat: a log e z értékének meghatározása lánctörtek segítségével log(1 + z) = 1 + def lanct_log(z, p, szj): z -= 1 getcontext().prec = szj temp = Decimal(0) for x in range (p, 0, -1): t = (x + 1) / 2 a = x + 1 b = t * t * z temp = b / (a + temp) return z / (1 + temp) z 1 2 z z 2 2 z 2 2 z z

20 Algoritmusok Pythonban 7. feladat: >>> lanct_log(2, 500, 20) Decimal( ) >>> import math >>> math.log(2) >>> lanct_log(decimal(math.e), 1000, 20) Decimal( ) >>> math.log(math.e) 1.0

21 Algoritmusok Pythonban 8. feladat: a sin(z) értékének meghatározása lánctörtek segítségével z sin(z) = z z z z z z def lanct_sin(z): p = 300 getcontext().prec = 50 temp = Decimal(0) for x in range (2*p, 0, -2): a = (x+2) * (x+3) - z*z b = x * (x+1) * z * z temp = b / (a + temp) temp = z*z / (2*3-z*z + temp) return z / (1 + temp)

22 Algoritmusok Pythonban 8. feladat: >>> lanct_sin(60) Decimal( ) >>> import math >>> math.sin(60) >>> math.sqrt(3)/ >>> math.sin(60 * math.pi/180)

23 Algoritmusok Pythonban 8. feladat: def lanct_sinr(z): p = 300 getcontext().prec = 50 z = Decimal(z * math.pi/180) temp = Decimal(0) for x in range (2*p, 0, -2): a = (x+2) * (x+3) - z*z b = x * (x+1) * z * z temp = b / (a + temp) temp = z*z / (2*3-z*z + temp) return z / (1 + temp) #atalakitjuk a szoget radianna >>> lanct_sinr(60) Decimal( )

24 Aranymetszés, aranyarány (Golden Ratio), a ϕ szám két mennyiség, a, b, a > b az aranymetszés szerint aránylik egymáshoz, ha fennáll: a b = a + b def = ϕ a a ϕ meghatározása érdekében feĺırhatjuk: a + b a = a, azaz fennáll: b ϕ = ϕ ϕ2 = ϕ + 1 megoldva a fenti egyenletet kapjuk, hogy ϕ = a ϕ irracionális szám = és ˆϕ = =

25 Aranymetszés, aranyarány (Golden Ratio), a ϕ szám építészet: Parthenon homlokzatának arányértékei: logok: Toyota, Mercedesz, stb. Pentagramma (szabályos ötszög): természet: napraforgó spirlajai piros zold = zold kek = kek lila = ϕ

26 Aranymetszés, aranyarány (Golden Ratio), a ϕ szám Kiindulva az alábbi összefüggésből: ϕ = 1 + 1, lánctörtek segítségével is ϕ feĺırhatjuk a ϕ értékét: ϕ =

27 Algoritmusok Pythonban 9. feladat: gyökvonás, a k-ik gyök meghatározása, Newton féle módszer alapján k n meghatározása: xi+1 = 1 [ (k 1) x i + n ], ahol x k x k 1 0 = 1 egy i kezdeti érték. ha k = 2, akkor a négyzetgyök meghatározásának képlete: x i+1 = 1 (x 2 i + n ) x i a beépített operátorral: >>> 10 ** >>> from decimal import Decimal, getcontext >>> getcontext().prec = 100 >>> 10 ** Decimal( 0.5 ) Decimal( )

28 Algoritmusok Pythonban 10. feladat: négyzetgyökvonás x i+1 = 1 (x 2 i + n ) x i x 0 = 1 from decimal import Decimal, getcontext def my_sqrt(n): getcontext().prec = 100 n = Decimal(n) x0 = 1 while True: xi = (x0 + n/x0)/2 if xi == x0: return xi x0 = xi

29 Algoritmusok Pythonban 11. feladat: természetes alapú logaritmus meghatározása. Használható összefüggések: ln (x) = (x 1) (x 1)2 2 ln (x) = lim n n (x 1/n 1) + (x 1)3 3 (x 1)4 4 = ( 1) n+1 (x 1) n n n=1 def ln(x): n = return n * ((x ** (1/n)) - 1)

30 Komplex számok A komplex számok a valós számhalmaz egy olyan bővítése, melyben negatív számok esetén is értelmezett a gyökvonás. halmazjelölés: C, és három modell alapján is értelmezhető: halmazelméleti, geometriai, algebrai modellek halmazelméleti modell: C = {(a, b) a R, b R}, azaz a számhalmazt rendezett számpárok alkotják, ahol az elemek valós számok, imaginárius rész: az a komplex szám amelynek négyzete -1, jele az i a komplex számok a + bi alakban írhatóak fel, ahol a valós rész, b az imarinárius rész ha b = 0, akkor valós számot kapunk a valós számok körében megismert műveleti tulajdonságok megmaradnak additív semleges elem: z = 0 + 0i multiplikatív semleges elem: z = 1 + 0i additív inverz elem: z = a bi, multiplikatív inverz elem: 1/z = a/(a 2 + b 2 ) b/(a 2 + b 2 )i, z 0

31 Műveletek komplex számokkal Műveleti szabályok: a = a 1 + a 2i abs(a) = a1 2 + a2 2 b = b 1 + b 2i a + b = (a 1 + b 1) + (a 2 + b 2)i a b = (a 1 + b 1) (a 2 + b 2)i a b = (a 1 b 1 a 2 b 2) + (a 2 b 1 + a 1 b 2)i 1 b 1 = b (b1 2 + b2 2 ) b 2 (b1 2 + b2 2 ) i a b = a 1 b (1)

32 Komplex számok Pythonban >>> a = complex(2, 4) >>> a.imag 4.0 >>> a.real 2.0 >>> abs(a) >>> b = complex(1,10) >>> a + b (3 + 14j) >>> a - b (1-6j) >>> a * b ( j) >>> a / b ( j)

33 Algoritmusok Pythonban 12. feladat: Határozzuk meg egy másodfokú egyenlet gyökeit def megyenlet2 (a, b, c): if a == 0: return egyenlet(b, c) delta = b*b - 4*a*c if delta < 0: valosr = -b / (2*a) imagr = math.sqrt( abs (delta)) / (2 * a) gy1 = complex(valosr, imagr) gy2 = complex(valosr, -imagr) return (gy1, gy2) if delta == 0: gy = -b/(2*a) return (gy, gy) if delta > 0: gy1 = (-b + math.sqrt(delta)) / (2*a) gy2 = (-b - math.sqrt(delta)) / (2*a) return ( gy1, gy2 )

34 Mandelbrot fraktál Fraktálok: kiindulva egy komplex számból, egy iterációs folyamat eredményeként a képernyőre kirajzolt pontok fraktál alakzatokat hozhatnak létre minél nagyobb az iteráció szám, annál jobb a kirajzolt kép minősége a Mandelbrot halmaz iterációs képlete: z n+1 = (z n) 2 + c, ahol a kezdeti z 0 értéket és a c értéket a programozó álĺıtja be a Mandelbrot halmaz azokat a c komplex számokat fogja tartalmazni, amelyekre a z n sorozat nem tart a végtelenbe, és z 0 = 0 a z n sorozat a végtelenbe tart, ha az abszolútértéke nagyobb lesz mint 2.

35 Algoritmusok Pythonban 13. feladat: Határozzuk meg a Mandelbrot halmaz elemeit. Egy halmazbeli elem esetén rajzoljunk #-t a képernyőre, másképp space-t. def fman(): L1 = [a*0.07 for a in range (-15, 16)] L2 = [a*0.04 for a in range (-50, 26)] for y in L1: L = "" for x in L2: z = 0 c = complex(x, y) for i in range (40): z = z ** 2 + c if abs(z) > 2: L += " " break if abs(z) <= 2: L += "#" print L

36 Julia fraktál 14. feladat: Határozzuk meg a Julia halmaz elemeit. A Julia halmaz iterációs képlete ugyanaz, mint a Mandelbrot halmazé, azzal a különbséggel, hogy a c értéke itt konstans, legyen c = i def fjulia(): L1 = [a*0.07 for a in range (-15, 16)] L2 = [a*0.04 for a in range (-40, 36)] c = complex (-1, -0.25) for y in L1: L = "" for x in L2: z = complex(x, y) for i in range (40): z = z ** 2 + c if abs(z) > 2: L += " " break if abs(z) <= 2: L += "#" print L

37 Megjegyzések az L1, L2 intervallumokat módosíthatjuk, a kirajzolt alakzat nagyobb lesz: L1 = [a*0.05 for a in range (-20, 21)] L2 = [a*0.02 for a in range (-80, 31)] a grafikus megjelenítéshez használjuk a pygmae csomagot (lehet mást is): a grafikus megjelenítés forrása:

38 Mandelbrot fraktál, grafikus megjelenítés from pygame.locals import * import pygame def mainma(): width, height = 800, 800 screen = pygame.display.set_mode((width,height),doublebuf) xaxis = width/1.5 yaxis = height/2 scale = iterations = 40 for iy in range(height/2+1): for ix in range(width): z = 0 c = complex((ix - xaxis)/scale, (iy - yaxis)/scale)

39 Mandelbrot fraktál, grafikus megjelenítés for i in range(iterations): z = z**2 + c if abs(z) > 2: v = 765*i/iterations if v > 510: color = (255, 255, v%255) elif v > 255: color = (255, v%255, 0) else: color = (v%255, 0, 0) break if abs(z) <= 2: color = (0, 0, 0) #end for screen.set_at((ix, iy), color) screen.set_at((ix, height-iy), color) #end for, for

40 Mandelbrot fraktál, grafikus megjelenítés pygame.display.update() while True: event = pygame.event.poll() if (event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE)): break #end def mainma() pygame.quit()

41 Mandelbrot fraktál

42 Julia fraktál, grafikus megjelenítés from pygame.locals import * import pygame def mainju(): width, height = 800,1000 #width, height = 320, 320 screen = pygame.display.set_mode((width,height),doublebuf) xaxis = width/2.0 yaxis = height/3.7 scale = iterations = 40 c = complex (-0.824, ) for iy in range(height/2 + 1): for ix in range(width): z = complex((ix - xaxis)/scale, (iy-yaxis)/scale) for i in range(iterations): z = z**2 + c if abs(z) > 2.0: color = (i % 8 * 32, i % 16 * 16, i % 32 * 8) break

43 Julia fraktál, grafikus megjelenítés if abs(z) <= 2: color = (0, 0, 0) screen.set_at((ix, iy), color) screen.set_at((width, height), color) #end for, for pygame.display.update() while True: event = pygame.event.poll() if (event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE)): break #end def mainju() pygame.quit()

44 Julia fraktál c = complex (-0.824, )

45 Julia fraktál További c értékek a Julia fraktálhoz: c = complex (0.285, 0.013) c = complex (-0.295, -0.55) c = complex (-0.63, ) c = complex (-0.624, 0.435) c = complex (-1, -0.25) c = complex (-1, -0)

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 5. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? Python alapfogalmak:

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? számtani, mértani,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

2017, Diszkrét matematika

2017, Diszkrét matematika Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét: Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

2018, Diszkre t matematika. 8. elo ada s

2018, Diszkre t matematika. 8. elo ada s Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés

Részletesebben

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14. Informatika 1 2011 Második előadás, vezérlési szerkezetek Szabó Adrienn 2011. szeptember 14. Tartalom Algoritmusok, vezérlési szerkezetek If - else: elágazás While ciklus For ciklus Egyszerű típusok Összetett

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Osztályozó- és javítóvizsga. Matematika tantárgyból

Osztályozó- és javítóvizsga. Matematika tantárgyból Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,

Részletesebben

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11. ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23 Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet

Részletesebben

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Polinomok (el adásvázlat, április 15.) Maróti Miklós Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal. Komplex számok Komplex számok és alakjaik, számolás komplex számokkal. 1. Komplex számok A komplex számokra a valós számok kiterjesztéseként van szükség. Ugyanis már középiskolában el kerülnek olyan másodfokú

Részletesebben

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok H406 2017-09-04,06,08,11 Wettl Ferenc

Részletesebben

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu

Részletesebben

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük: . Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van. HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

Typotex Kiadó. Bevezetés

Typotex Kiadó. Bevezetés Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

Bevezetés az algebrába az egész számok

Bevezetés az algebrába az egész számok Bevezetés az algebrába az egész számok Wettl Ferenc V. 15-09-11 Wettl Ferenc Bevezetés az algebrába az egész számok V. 15-09-11 1 / 32 Jelölések 1 Egész számok és sorozataik 2 Oszthatóság 3 Közös osztók

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam 01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek

Részletesebben

A Newton-Raphson iteráció kezdeti értéktől való érzékenysége

A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Szénási Eszter SZTE TTIK Matematika BSc, Numerikus matematika projekt 2015. november 30. A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Medencék (attraktorok) színezése 2 Newton_project-szenasi.nb

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

TARTALOM. Előszó 9 HALMAZOK

TARTALOM. Előszó 9 HALMAZOK TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási

Részletesebben

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN MATEMATIK A 9. évfolyam 4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN Tanári útmutató 2 A modul célja Időkeret

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14 Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Imperatív programozás

Imperatív programozás Imperatív programozás 2. Előadás Python alapok Elérhetőség Tejfel Máté Déli épület, 2.616 matej@elte.hu http://matej.web.elte.hu Python Script nyelv Értelmezett (interpretált) Dinamikus típusrendszer Gyors

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9 Komplex számok Wettl Ferenc 2010-09-10 Wettl Ferenc () Komplex számok 2010-09-10 1 / 9 Tartalom 1 Számok Egy kis történelem A megoldóképlet egy speciális esetre Lehet számolni negatív szám gyökével Műveletek

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012 2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett! nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési

Részletesebben

2019, Funkcionális programozás. 5. el adás. MÁRTON Gyöngyvér

2019, Funkcionális programozás. 5. el adás. MÁRTON Gyöngyvér Funkcionális programozás 5. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? a Haskell kiértékelési stratégiája

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben