2016, Diszkrét matematika
|
|
- Emma Borosné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia 2016, őszi félév
2 Miről volt szó az elmúlt előadáson? legnagyobb közös osztó az eukleidészi algoritmus és változatai lineáris kongruenciák moduláris inverz az RSA titkosító, baby változat
3 Miről lesz szó? megjegyzések az előző előadáshoz: inverz függvény, videó, animáció megjegyzések a 6. labor 4-es feladatához az RSA szöveg, bájtsorozat titkosítása, baby változat legkisebb közös többszörös diofantoszi egyenletek a kínai maradéktétel
4 Az RSA, számpélda Kulcsgenerálás Legyen p = 61, q = 97 két prímszám. Meghatározzuk: n = = 5917, φ = (p 1) (q 1) = = Legyen e = 7, ahol lnko(7, φ) = 1. Meghatározzuk e inverzét (mod φ) szerint, kapjuk: d = 823, mert = 1 (mod 5760). A nyilvános-kulcs : (7, 5917). A titkos-kulcs : (823, 5917). Titkosítás (bárki titkosíthat) Az x = 2014 értéket szeretnék titkosítani, ekkor a titkosított érték: cx = (mod 5917). Visszafejtés (csak a titkos-kulcs birtokosa tud visszafejteni) x = (mod 5917).
5 Az RSA, bájtsorozat titkosítása bájtsorozat: [0,255] közötti értékből álló sorozat, azaz 256-os számrendszerbeli számjegyeket tartalmazó sorozat, ezt fogjuk titkosítani az RSA algoritmus egy nagy számot titkosít: a bájtsorozatot át kell alakítani nagy számmá, azaz a 256-os számrendszerbeli számjegyeket át kell alakítani 256 l számrenszerbe, ahol l a bájtsorozat hossza az alakit, függvény, a bemeneti l hosszúságú stringet átalakítja egész számmá, (256-os számrendszerből alakít 256 l számrendszerbe), a string elemeire alkalmazzuk a ord() könyvtárfüggvényt, az valakit, függvény, egy egész számot átalakít egy l hosszúságú stringgé, (256 l -es számrendszerből alakít 256-os számrendszerbe), alkalmazzuk a chr() könyvtárfüggvényt.
6 Az RSA, szöveg-rejtjelező def alakit(szoveg, l): szam = 0 pr = 1 for i in range(l): temp = ord(szoveg[i]) szam += temp * pr pr = pr << 8 return szam def valakit(szam, l): szoveg = for i in range(l): temp = szam & 255 szoveg += chr(temp) szam = szam >> 8 return szoveg
7 Az RSA, szöveg-rejtjelező A feladat konstans kulcsokkal dolgozik, a kulcsgenerálás az előző előadáson volt tárgyalva. A függvény paramétere az a karakterlánc amit titkosítani szeretnénk. from random import randint import base64 def RSA_main (szoveg): k = 256 e = 3 p = q = n = p * q phi = (p-1) * (q-1) d = inverz(e, phi) l = len(szoveg) if l > k/8: print "nagyobb kulcs meret kell!" return print "encryption..." cszoveg = RSA_cryptS(e, n, l, k/8, szoveg) print "encrypted text: ", cszoveg print "encrypted text in base64: ",, base64.b64encode(cszoveg) print print "decryption..." nszoveg = RSA_decryptS(d, n, l, k/8, cszoveg) print "decrypted text: ", nszoveg
8 Az RSA, szöveg-rejtjelező def RSA_cryptS(e, n, l1, l2, szoveg): x = alakit (szoveg, l1) cx = pow (x, e, n) cszoveg = valakit (cx, l2) return cszoveg def RSA_decryptS(d, n, l1, l2, cszoveg): cx = alakit (cszoveg, l2) nx = pow(cx, d, n) nszoveg = valakit (nx, l1) return nszoveg
9 A legkisebb közös többszörös Az a és b egész számok legkisebb közös többszöröse, az a legkisebb szám amely osztható a-val és b-vel is. Jelölése: lkkt(a, b), vagy [a, b]. Kapcsolat a legnagyobb közös osztóval: (a, b) [a, b] = a b. Ha a = p a i i Ha a = p a i i Megjegyzések: és b = p b i i, akkor lnko(a, b) = p min{a i,b i } i. és b = p b i i, akkor lkkt(a, b) = p max{a i,b i } i. két szám prímtényezős felbontása alapján meghatározható, tehát a két szám legnagyobb közös osztója, legkisebb közös többszöröse nagy számok esetében, a prímtényezős felbontás meghatározására nem ismert hatékony eljárás, ekkor az eukleidészi algoritmust kell használni
10 Diofantoszi egyenletek 1. tétel egész együtthatós többismeretlenes algebrai egyenletek, amelyeknek megoldásai egész számok (ritkán természetes vagy racionális számok), elnevezése Diophantosz (3. század), görög matematikus után, csak elsőfokú kétismeretlenes diofantoszi egyenletekkel fogunk foglalkozni: a x + b y = c, Legyenek a, b egész számok, úgy hogy d = lnko(a, b). Az a x + b y = c egyenletnek nincs megoldása az egész számok körében, ha d nem osztja c-t. Ha d c, akkor az egyenletnek végtelen sok megoldása van: x = x 0 + (b/d) n, y = y 0 (a/d) n, ahol n egész szám és x 0, y 0 az egyenlet egy partikuláris megoldása.
11 Diofantoszi egyenletek, példa Egy elárusító 1676 ron értékben rendelt almát és körtét. Minden láda alma 36 ronba, és minden láda körte 50 ronba kerül. Hány láda almát és hány láda körtét rendelt? 1. megoldás: 16 láda almát és 22 láda körtét rendelt, = megoldás: 41 láda almát és 4 láda körtét rendelt, = A megoldás menete: Meghatározzuk 36, 50 legnagyobb közös osztóját: d = 2. Megvizsgáljuk, hogy d = 2 osztja-e 1676-ot. A kiterjesztett eukleidészi algoritmussal meghatározzuk: x = 7, y = 5 értékeket: ( 5) 50 = 2. Megszorozzuk az egyenletet 1676 = 838 -cal. d Egy partikuláris megoldás x 0 = 5866, y 0 = 4190: = 1676 a feladat megoldásához a pozitív megoldások kellenek
12 Diofantoszi egyenletek Keressük a pozitív megoldásokat, fenn kell álljon: d d n = n 0 n n = n 0 n n = 234 x 1 = ( 234) = 16 y 1 = ( 234) = 22 n = 233 x 2 = ( 233) = 41 y 2 = ( 233) = 4
13 Diofantoszi egyenletek, példa Egy elárusító 549 ron értékben rendelt almát és körtét. Minden láda alma 18 ronba, és minden láda körte 33 ronba kerül. Mennyi az a minimális ládaszám amit az elárusító rendelhetett? Megoldások: 25 láda alma és 3 láda körte, összesen 28 láda 14 láda alma és 9 láda körte, összesen 23 láda 3 láda alma és 15 láda körte, összesen 18 láda Az elárusító 18 láda gyümölcsöt rendelt.
14 Diofantoszi egyenletek A megoldás menete: Meghatározzuk 18 és 33 legnagyobb közös osztóját: d = 3. Megvizsgáljuk, hogy d = 3 osztja-e 549-et. A kiterjesztett eukleidészi algoritmussal meghatározzuk: x = 2, y = 1 értékeket: ( 1) 33 = 3. Megszorozzuk az egyenletet 549 = mal. d Egy partikuláris megoldás x 0 = 366, y 0 = 183. Keressük a pozitív megoldásokat, fenn kell álljon: d d n = n 0 n 33.2 n = n 0 n 30.5
15 Diofantoszi egyenletek n = 33 x 1 = ( 33) = 3 y 1 = ( 33) = 15 n = 32 x 2 = ( 32) = 14 y 2 = ( 32) = 9 n = 31 x 3 = ( 31) = 25 y 3 = ( 31) = 3 A minimumot az x 1 = 3, y 1 = 15 megoldás adja, ami összesen 18 ládát jelent.
16 Egy kétismeretlenes diofantikus egyenlet pozitív megoldásai from math import ceil, floor def diofant (a, b, c): (d, x, y) = exteuclid (a, b) if c % d <> 0: print "no solution" return x *= c/d y *= c/d bd = b/d ad = a/d n1 = int (ceil(-x / float(bd))) n2 = int (floor(y / float(ad))) for i in range(n1, n2 + 1): print x + bd * i, y - ad * i
17 A kínai maradéktétel Feladat: Ha egy tojásokkal teli kosárból kivesszük a tojásokat 2, 3, 4, 5, majd 6 -osával, akkor rendre 1, 2, 3, 4, 5 tojás marad mindig a kosárban. Ha 7-esével vesszük ki nem marad egy tojás sem. Hány tojás van a kosárban? A feladat az alábbi kongruencia rendszerrel modellezhető: Mi a fenti rendszer megoldása? x 1 (mod 2) x 2 (mod 3) x 3 (mod 4) x 4 (mod 5) x 5 (mod 6) x 0 (mod 7)
18 A kínai maradéktétel 2. tétel Legyenek m 1, m 2,..., m r pozitív, páronként relatív prímek. Ekkor az x a 1 (mod m 1) x a 2 (mod m 2). x a r (mod m r ) kongruencia rendszernek M = m 1 m 2... m r modulus szerint egy megoldása van. A megoldás meghatározásának menete: meghatározzuk: M k = M/m k = m 1 m 2... m k 1 m k+1... m r, meghatározzuk az M k értékek inverzét ˆM k -val, (mod m k ) szerint, jelöljük ezeket x = a 1 M 1 ˆM 1 + a 2 M 2 ˆM a r M r ˆM r lesz a rendszer megoldása.
19 A kínai maradéktétel A tojásos feladat az alábbi kongruencia rendszerre vezethető vissza: mert x 4 (mod 5) x 11 (mod 12) x 0 (mod 7) az x 3 (mod 4) egyenlet megoldásai kielégítik az x 1 (mod 2) egyenlet megoldásait, az x 5 (mod 6) egyenlet megoldásai kielégítik az x 2 (mod 3) egyenlet megoldásait, az x 11 (mod 12) egyenlet megoldásai kielégítik az x 3 (mod 4) és x 5 (mod 6) egyenletek megoldásait.
20 A kínai maradéktétel A megoldás menete: a 1 = 4, a 2 = 11, a 3 = 0, m 1 = 5, m 2 = 12, m 3 = 7, M = 420, M 1 = 84, M 2 = 35, M 3 = 60, ˆM 1 = 4, ˆM 2 = 11, ˆM 3 = 2, vegyük észre, hogy fennáll: M 1 ˆM1 = 1 (mod m 1) M 2 ˆM2 = 1 (mod m 2) M 3 ˆM3 = 1 (mod m 3) 84 4 = 1 (mod 5) = 1 (mod 12) 60 2 = 1 (mod 7) x = = 119 (mod 420).
2017, Diszkrét matematika
Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,
2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
2016, Diszkrét matematika
Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat
1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:
Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,
2018, Diszkre t matematika. 8. elo ada s
Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
2018, Diszkrét matematika
Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális
2016, Diszkrét matematika
Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító
Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Sapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++
2018, Diszkrét matematika
Diszkrét matematika 5. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? Python alapfogalmak:
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Számelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
2016, Diszkrét matematika
Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,
2015, Diszkrét matematika
Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? AES (Advanced
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
Minden egész szám osztója önmagának, azaz a a minden egész a-ra.
1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
illetve a n 3 illetve a 2n 5
BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek
Bevezetés az algebrába az egész számok 2
Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december
Sapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 2 előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@mssapientiaro 2016 Miről volt szó az elmúlt előadáson? Félévi áttekintő
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
2016, Diszkrét matematika
Diszkrét matematika 3. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? A gyorshatványozás
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
2015, Diszkrét matematika
Diszkrét matematika 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? számtani, mértani,
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér
Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
2018, Diszkrét matematika
Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
2018, Funkcionális programozás
Funkcionális programozás 6. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? Haskell modulok, kompilálás a
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
2018, Diszkrét matematika
Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,
Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):
Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.
Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:
Diszkrét matematika II. gyakorlat
Név: EHA-kód: 1. 2. 3. 4. 5. Diszkrét matematika II. gyakorlat 1. ZH 2014. március 19. Uruk-hai csoport 1. Feladat. 4 pont) Oldja meg az 5 122 x mod 72) kongruenciát? Érdekesség: az 5 122 szám 86 számjegyű.)
SzA XIII. gyakorlat, december. 3/5.
SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?
2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}
2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
Matematika 7. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály III. rész: Számelmélet Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III.
Szakács Lili Kata megoldása
1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok 2 H406 2016-09-13,15,18 Wettl Ferenc
Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
Polinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem
RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok
Algoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
2016, Funkcionális programozás
Funkcionális programozás 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, tavaszi félév Miről volt szó? Haskell I/O műveletek, feladatok:
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok H406 2017-09-04,06,08,11 Wettl Ferenc
2019, Diszkrét matematika. 1. el adás
Diszkrét matematika 1. el adás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2019, szi félév Követelmények, osztályozás Végs jegy: (írásbeli jegy +
Polinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
2018, Funkcionális programozás
Funkcionális programozás 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? a foldl és foldr függvények lista
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom
SZÁMELMÉLETI FELADATOK
SZÁMELMÉLETI FELADATOK 1. Az 1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4 számokat a pitagoreusok háromszög számoknak nevezték, mert az összeadandóknak megfelelő számú pont szabályos háromszög alakban
Bevezetés az algebrába az egész számok
Bevezetés az algebrába az egész számok Wettl Ferenc V. 15-09-11 Wettl Ferenc Bevezetés az algebrába az egész számok V. 15-09-11 1 / 32 Jelölések 1 Egész számok és sorozataik 2 Oszthatóság 3 Közös osztók
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
2018, Funkcionális programozás
Funkcionális programozás 3. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? A Haskell programozási nyelv főbb
Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.
Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,
Pótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek
Pótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek 1. Hatványozás 2. Normálalak. Mértékegységek. Műveletek racionális számokkal (tört, tizedes tört) 5. Középpontos tükrözés 6.
2. Tétel (Az oszthatóság tulajdonságai). : 2. Nullát minden elem osztja, de. 3. a nulla csak a nullának osztója.
Számelmélet és rejtjelezési eljárások. (Számelméleti alapok. RSA és alkalmazásai, Die- Hellman-Merkle kulcscsere.) A számelméletben speciálisan az egész számok, általánosan a egységelemes integritási tartomány
Waldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 2. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Követelmények,
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem }
Funkcionális és logikai programozás { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi ` 1 Jelenlét: Követelmények, osztályozás Az első 4 előadáson
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Prímtesztelés, Nyilvános kulcsú titkosítás
Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens
A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Emlékeztet! matematikából
Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod
megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
Matematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
Gyakorló feladatok Gyakorló feladatok
Gyakorló feladatok előző foglalkozás összefoglalása, gyakorlató feladatok a feltételes elágazásra, a while ciklusra, és sokminden másra amit eddig tanultunk Változók elnevezése a változók nevét a programozó
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis
I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek