Sapientia Egyetem, Matematika-Informatika Tanszék.
|
|
- Ágoston Pásztor
- 6 évvel ezelőtt
- Látták:
Átírás
1 Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018
2 Miről volt szó az elmúlt előadáson? Kriptográfiai könyvtárcsomagok: a Crypto++ könyvtárcsomag, C++ projektekhez a security csomag és a Cipher osztály Java projektekhez kripto modul a Python projektekhez a OpenSSL könyvtárcsomag Nagy számok kezelés különböző programozási nyelvekben: C++, C#, Java Nyilvános-kulcsú, aszimmetrikus (public-key, asymmetric cryptography) rendszerek: alapfogalmak követelmények matematikai modell az RSA titkosító rendszer: specifikáció, példa, helyesség
3 Miről lesz szó? Az RSA titkosító rendszer (baby, textbook változat): specifikáció, példa RSA, biztonsági problémák RSA a gyakorlatban Az RSA-OAEP rendszer Valószínűségi prímtesztek Az RSA gyorsítása
4 Az RSA titkosító rendszer RSA (Rivest, Shamir, Adleman), 1976-ban publikálták, aszimmetrikus titkosító az RSA-OAEP (Bellare, Rogaway) verziót 1995-ben publikálták, mai napig standard a titkosítás és visszafejtés nem ugyanazzal a kulccsal történik: van egy privát-kulcs és van egy publikus-kulcs a publikus-kulccsal titkosítunk, a privát-kulccsal fejtjük vissza az üzenetet a publikus-kulcs ismeretében, ha ez megfelelő bit-méretű (> 1024), nem tudjuk meghatározni a privát-kulcsot
5 Az RSA titkosító rendszer Khan-academy - videó anyag! hatékony algoritmussal ki lehet generálni a kulcsokat a titkosító algoritmus nagy számok titkosítására képes, a kulcsok is nagy számok lesznek a szöveget (bájt-szekvenciát), amit titkosítani akarunk át kell alakítani számmá a titkosított számot vissza kell alakítani szöveggé (bájt-szekvenciává) legyen egy szöveg, 16-os számrendszerben: 0x3f 0xa9 0x4b 0xd2 0xb8 a szöveghez tartozó szám: =
6 Az RSA algoritmus, - baby változat választunk két prímszámot, legyenek ezek: p, q, majd meghatározzuk n = p q kiszámoljuk: phi = (p 1) (q 1), majd kiválasztjuk azt a legkisebb e számot, amelynek nincs közös osztója phi-vel meghatározzuk azt a d számot, amelyre teljesül: e d = 1 (mod phi) a titkosításnál az (e, n) értékpárt használjuk, a visszafejtésnél a (d, n)-t ha az m számot szeretnék titkosítani, akkor kiszámoljuk: m e ahol a kapott értéket jelöljük c-vel (mod n), ha a c számot szeretnék visszafejteni, akkor kiszámoljuk: c d (mod n), ha helyesen számoltunk, akkor visszakapjuk m-t.
7 Példa, kulcsgenerálás - baby változat legyenek: p = , q = , 32 bites prímszámok meghatározzuk: n = = , φ = (p 1) (q 1) = = legyen e = 7, ahol lnko(7, φ) = 1. meghatározzuk: d = , ahol fennáll: = 1 (mod ). A publikus-kulcs : (7, ). A privát-kulcs : ( , )
8 Példa, titkosítás, visszafejtés, - baby változat legyen az üzenet 0x3f 0xa9 0x4b 0xd2 0xb8, ekkor a szöveghez tartozó szám a következő: = titkosítás: (mod ) = visszafejtés: (mod ) = a kapott számot visszaalakítjuk bájtokká: meghatározzuk a szám 256-al való osztási maradékait.
9 RSA, biztonsági problémák az n faktorizálásához kapcsolódó problémák a k nagyságrendje: min 1024 bit Fermat féle faktorizáció: a p és a q ne legyenek túl közel egymáshoz Pollard ρ féle faktorizáció: p 1, illetve p + 1-nek legyen legalább egy nagy prímosztója, legjobb módszer: ha véletlenszerűen választjuk meg a prímeket,... ugyanannak a p, vagy q prímnek a többszöri felhasználása a modulus többszöri felhasználása, különböző e értékekre az e, d megválasztása: e kicsi kell legyen, d azonban az n nagyságrendjével kell egyenlő legyen az RSA-textbook (baby) nem biztonságos, mert a titkosító algoritmus nem véletlenszerűsített választott nyílt-szöveg típusú támadás. az RSA titkosító multiplikatív tulajdonságú választott rejtjelezett-szöveg típusú támadás.
10 Az RSA multiplikatív tulajdonsága Az RSA multiplikatív tulajdonsága azt jelenti, hogy fennáll: Példa: (a e b e ) = (a b) e legyen p = 60077, q = két primszám meghatározzuk az n, phi, e, d értékeket: n = p q = phi = (p 1) (q 1) = e = 5 d = , ahol e d = 1 (mod phi) legyen a = 10000, b = fennáll A B = (a b) e, ahol: A = a e (mod n) = B = b e (mod n) = (A B) (mod n) = (a b) e (mod n) =
11 RSA a gyakorlatban az RSA visszafejtési algoritmus gyorsításának problémája a standardként elfogadott módszer az RSA-OAEP a gyakorlatban szinte soha nem használják titkosító algoritmusként, leggyakrabban kulcscsere protokollokban, a szimmetrikus rendszerek kulcsainak a megosztására használják, az alábbi forráskód mini kliens/szerver alkalmazásokat tartalmaz Pythonban, ahol a szerver.py/kliens.py felhasználva az RSA-t egyetlen egy klienssel oszt meg egy közös értéket (a szesszió kulcsot) a másik alkalmazásban (szerverrsa RC4.py/kliensRSA RC4.py) felhasználva a megosztott szesszió kulcsot (ez lesz az RC4-kulcs) a szerver titkos üzeneteket tud küldeni a kliensnek, ahol az üzenetek titkosítását RC4-el végeztük forráskód
12 Az RSA-OAEP rendszer 1995-ben Bellare és Rogaway publikálja, az RSA CCA-biztonságú változatát helyes paraméterezés esetében az RSA-OAEP a jelenlegi standardnak megfelelő biztonságot garantálja standardizált leírása megtalálható a PKCS#1 v2.0. egy véletlen bit-generátort és egy hash függvényt használ az RSA-függvény elveszíti multiplikatív tulajdonságát és probabilisztikus lesz az e = 3 publikus kulcs esetében is megfelelően biztonságos lesz egyszerűsített változata: az SAEP rendszer, David Boneh publikálta 2001-ben, az RSA-függvény helyett a Rabin-függvényt használjuk: R n : {Z n Z n, x x 2 (mod n)},
13 Az RSA-OAEP rendszer Titkosítás: A nyílt-szöveg P = (Z 2 ) l P, a titkos szöveg C = (Z 2 ) l H +l G halmazon van értelmezve, az m nyílt szöveget szeretnénk titkosítani, legyen r {0, 1} k véletlenszerű bitsorozat, x = m 0 l G l P, (m-et kiegészítjük nullásokkal), meghatározzuk y = (x G(r)) (r H(x G(r)))), a titkosított érték: Enc pk (y) = y e (mod n) c Visszafejtés: meghatározzuk az y = c d (mod n) értéket felosztjuk y-t y 1 y 2 -re úgy, hogy y 1 = l G és y 2 = l H, meghatározzuk r = H(y 1 ) y 2, meghatározzuk x = y 1 G(r), ellenőrizzük, hogy x utolsó l G l P bitje nulla-e: ha nem, akkor REJECT kimeneti értékkel leállunk, ellenkező esetben vissza térítjük x első l P bitjét.
14 Az RSA-OAEP rendszer Jelöljük a véletlen bit-generátort: jelöljük a hash függvényt: G : {0, 1} l H {0, 1} l G, H : {0, 1} l G {0, 1} l H. a standardban H függvénynek az SHA újabb verzióját használják (min 160 bites), a G függvény szerkesztéséhez szintén az SHA újabb verzióját használják, G(r) = SHA j (r < 0 >) SHA j (r < 1 >)..., ahol r véletlen bitsorozat és az < i > jelölés az i kettes számrendszerbeli értékét jelenti 4 bájton ábrázolva, az SHA j jelölés azt jelenti, az SHA függvény első j, legnagyobb helyértékű bájtjait használjuk fel. Tipikus esetben, ha a modulus 1024 bites, azaz 128 bájtos, akkor l H = 20 bájt, l G = 108 bájt, j = 10 bájt.
15 Valószínűségi prímtesztek Az algoritmusok kimenete olyan számot ad, amely csak nagy valószínűséggel prím: a Fermat prímteszt: a kis Fermat-tételen alapszik, nagy a tévedési aránya a Miller-Rabin prímteszt: ezt használják a legtöbb kriptográfiai protokollban, a Solovay-Strassen prímteszt: gyakorlati haszna kisebb, mint a Miller-Rabin tesztnek, mert nagyobb a tévedési aránya,...
16 Az RSA gyorsítása Alkalmazható a kínai maradéktétel a visszafejtés időigényének javítása érdekében. Alkalmazásával a rendszer nem veszít biztonságából. Ahelyett hogy az n nagyságrendjével megegyező d hatványkitevővel számolnánk, elvégzünk két kisebb (a p nagyságrendjével megegyező) hatványkitevővel való hatványozást. Meghatározzuk dp, dq, Mq, Mp értékeket a következő módon: dp = d (mod p 1) dq = d (mod q 1) q Mq = 1 (mod p) p Mp = 1 (mod q). A c d (mod n) értéket megadja az x értéke, ahol x = (Mq q xp + Mp p xq) (mod n) xp = c dp (mod p) xq = c dq (mod q).
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító
Sapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? AES (Advanced
2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények
2018, Diszkre t matematika. 8. elo ada s
Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
2016, Diszkrét matematika
Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös
2017, Diszkrét matematika
Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,
2016, Diszkrét matematika
Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat
Data Security: Public key
Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 3. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019 Miről volt szó az elmúlt előadáson? Klasszikus kriptográfiai
Emlékeztet! matematikából
Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod
1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:
Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,
Sapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 2 előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@mssapientiaro 2016 Miről volt szó az elmúlt előadáson? Félévi áttekintő
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
Kriptográfiai alapfogalmak
Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig
Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás
2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális
Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens
A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási
Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA
30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus
RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem
RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok
Információs társadalom alapismeretek
Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 2. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Követelmények,
4. Előadás Titkosítás, RSA algoritmus
4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)
Webalkalmazás-biztonság. Kriptográfiai alapok
Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):
Titkosítás NetWare környezetben
1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt
Prímtesztelés, Nyilvános kulcsú titkosítás
Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála
2016, Diszkrét matematika
Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények
Waldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
Nyilvános kulcsú titkosítás RSA algoritmus
Nyilvános kulcsú titkosítás RSA algoritmus OpenPGP NYILVÁNOS KULCSÚ TITKOSÍTÁS Legyen D a titkosítandó üzenetek halmaza. Tegyük fel, hogy Bob titkosítottan szeretné elküldeni Aliznak az M D üzenetet. A
IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:
IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Algoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
Hírek kriptográfiai algoritmusok biztonságáról
Hírek kriptográfiai algoritmusok biztonságáról Dr. Berta István Zsolt K+F igazgató Microsec Kft. http://www.microsec.hu Mirıl fogok beszélni? Bevezetés Szimmetrikus kulcsú algoritmusok
Titkosítási rendszerek CCA-biztonsága
Titkosítási rendszerek CCA-biztonsága Doktori (PhD) értekezés szerző: MÁRTON Gyöngyvér témavezető: Dr. Pethő Attila Debreceni Egyetem Természettudományi Doktori Tanács Informatikai Tudományok Doktori Iskola
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 1. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016 Követelmények, osztályozás Jelenlét: A laborgyakorlat
SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába
SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record
Hálózati biztonság (772-775) Kriptográfia (775-782)
Területei: titkosság (secrecy/ confidentality) hitelesség (authentication) letagadhatatlanság (nonrepudiation) sértetlenség (integrity control) Hálózati biztonság (772-775) Melyik protokoll réteg jöhet
Elektronikus aláírás. Gaidosch Tamás. Állami Számvevőszék
Elektronikus aláírás Gaidosch Tamás Állami Számvevőszék 2016.05.24 Tartalom Mit tekintünk elektronikus aláírásnak? Hogyan működik? Kérdések 2 Egyszerű elektronikus aláírás 3 Demo: valódi elektronikus aláírás
Kriptográfia I. Kriptorendszerek
Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás
Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...
Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus
Minden egész szám osztója önmagának, azaz a a minden egész a-ra.
1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz
TANTÁRGYI ADATLAP. 2.7 A tantárgy jellege DI
TANTÁRGYI ADATLAP 1. Programadatok 1.1 Intézmény Sapientia, Erdélyi Magyar Tudományegyetem 1.2 Kar Műszaki és Humántudományok 1.3 Intézet Matematika Informatika 1.4 Szak Informatika 1.5 Tanulmányi típus
Data Security: Access Control
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált
2018, Diszkrét matematika
Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek
Adatbiztonság. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013 1 / 22
Adatbiztonság Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013 1 / 22 Tartalomjegyzék 1 Bevezetés 2 Titkosítás 3 Security Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Fábián Zoltán Hálózatok elmélet
Fábián Zoltán Hálózatok elmélet Információ fajtái Analóg az információ folytonos és felvesz minden értéket a minimális és maximális érték között Digitális az információ az idő adott pontjaiban létezik.
PRÍMSZÁMOK ÉS A TITKOSÍRÁS
PRÍMSZÁMOK ÉS A TITKOSÍRÁS Meszéna Tamás Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma, Pécs, meszena.tamas@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Úgy tapasztaltam,
Kriptográfiai protokollok
Kriptográfiai protokollok Protokollosztályok - partnerhitelesítés - kulcskiosztás - üzenetintegritás - digitális aláírás - egyéb(titokmegosztás, zero knowledge...) 1 Shamir "háromlépéses" protokollja Titok
Data Security: Protocols Integrity
Integrity Az üzenethitelesítés (integritásvédelem) feladata az, hogy a vételi oldalon detektálhatóvá tegyük azon eseményeket, amelyek során az átviteli úton az üzenet valamilyen módosulást szenvedett el.
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
2018, Diszkrét matematika
Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Digitális aláírás és kriptográfiai hash függvények. 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X)
Digitális aláírás és kriptográfiai hash függvények A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
6. előadás Faktorizációs technikák közepes méretű osztókra
6. előadás Faktorizációs technikák közepes méretű osztókra Dr. Kallós Gábor 2016 2017 1 Tartalom Fermat algoritmusa A Pollard-ró algoritmus Pollard (p 1) algoritmusa Feladatok, megjegyzések Irodalom 2
Mintafeladat az RSA algoritmus szemléltetésére
Mintafeladat az RSA algoritmus szemléltetésére Feladat Adottak a p = 269 és q = 24 prímszámok, továbbá az e = 5320 nyilvános kulcs és az x = 48055 nyílt szöveg. Számolja ki n = p q és ϕ(n) értékét! Igazolja
6. előadás Faktorizációs technikák közepes méretű osztókra
6. előadás Faktorizációs technikák közepes méretű osztókra Dr. Kallós Gábor 2016 2017 1 Tartalom Feladatok, megjegyzések Irodalom 2 Eml.: Próbaosztásos algoritmus (teljes felbontás) 14-18 jegyű számokig
Adat és információvédelem Informatikai biztonság. Dr. Beinschróth József CISA
Adat és információvédelem Informatikai biztonság Dr. Beinschróth József CISA Tematika Hol tartunk? Alapfogalmak, az IT biztonság problematikái Nemzetközi és hazai ajánlások Az IT rendszerek fenyegetettsége
2018, Diszkrét matematika
Diszkrét matematika 5. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? Python alapfogalmak:
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
Az adatfeldolgozás és adatátvitel biztonsága. Az adatfeldolgozás biztonsága. Adatbiztonság. Automatikus adatazonosítás, adattovábbítás, adatbiztonság
Az adatfeldolgozás és adatátvitel biztonsága Automatikus adatazonosítás, adattovábbítás, adatbiztonság Az adatfeldolgozás biztonsága A védekezés célja Védelem a hamisítás és megszemélyesítés ellen Biztosított
Elektronikus hitelesítés a gyakorlatban
Elektronikus hitelesítés a gyakorlatban Tapasztó Balázs Vezető termékmenedzser Matáv Üzleti Szolgáltatások Üzletág 2005. április 1. 1 Elektronikus hitelesítés a gyakorlatban 1. Az elektronikus aláírás
A nyilvános kulcsú algoritmusokról. Hálózati biztonság II. A nyilvános kulcsú algoritmusokról (folyt.) Az RSA. Más nyilvános kulcsú algoritmusok
Hálózati biztonság II. Mihalik Gáspár D(E(P))=P A nyilvános kulcsú algoritmusokról A két mővelet (D és E) ezeknél az algoritmusoknál ugyanaz: D(E(P))=P=E(D(P)), viszont más kulcsokkal végzik(!), ami azt
Kvantumkriptográfia II.
LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket
Hálózatbiztonság Androidon. Tamas Balogh Tech AutSoft
Tamas Balogh Tech lead @ AutSoft Key Reinstallation AttaCK 2017 őszi sérülékenység Biztonsági rés a WPA2 (Wi-Fi Protected Access) protokollban Nem csak Androidon - más platform is Minden Android eszköz,
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
IT biztonság Hozzáférés-ellenőrzés és digitális aláírás I. 2016/2017 tanév
IT biztonság Hozzáférés-ellenőrzés és digitális aláírás I. 2016/2017 tanév 2016.11.24. ELTE IT Biztonság Speci 1 Agenda Kriptográfiai alapok Elektronikus aláírás és aláírás ellenőrzés Tanúsítvány tartalma,
Data Security: Access Control
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált
Dicsőségtabló Beadós programozási feladatok
Dicsőségtabló Beadós programozási feladatok Hallgatói munkák 2017 2018 Készítő: Maurer Márton (GI, nappali, 2017) Elméleti háttér A szita a neves ókori görög matematikus, Eratoszthenész módszere, amelynek
IP alapú távközlés. Virtuális magánhálózatok (VPN)
IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,
Dr. Bakonyi Péter c.docens
Elektronikus aláírás Dr. Bakonyi Péter c.docens Mi az aláírás? Formailag valamilyen szöveg alatt, azt jelenti, hogy valamit elfogadok valamit elismerek valamirıl kötelezettséget vállalok Azonosítja az
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
TANÚSÍTVÁNY. tanúsítja, hogy a Utimaco Safeware AG által kifejlesztett és forgalmazott
TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Fizikai támadások HSM-ek ellen. Pintér Olivér
Fizikai támadások HSM-ek ellen Pintér Olivér Mi az a HSM? Hardware Security Modules TPM chipek PCI(-X,-E) kártyák smart card-ok USB tokenek távoli interface-ek (Ethernet, X25,...)
IT biztonság Hozzáférés-ellenőrzés és digitális aláírás I. 2014/2015 tanév
IT biztonság Hozzáférés-ellenőrzés és digitális aláírás I. 2014/2015 tanév 2014.11.08. ELTE IT Biztonság Speci 1 Agenda Kriptográfiai alapok Elektronikus aláírás és aláírás ellenőrzés Tanúsítvány tartalma,
Diszkrét matematika 2.
Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális
Módszerek és eszközök a kriptográfia oktatásakor
Módszerek és eszközök a kriptográfia oktatásakor Márton Gyöngyvér mgyongyi@ms.sapientia.ro Sapientia Erdélyi Magyar Tudományegyetem, Románia Absztrakt. Digitális világunkban naponta találkozunk olyan alkalmazásokkal
Számelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
Informatikai biztonság alapjai
Informatikai biztonság alapjai 4. Algoritmikus adatvédelem Pethő Attila 2008/9 II. félév A digitális aláírás felfedezői Dr. Whitfield Diffie és Martin E. Hellman (1976) a nyilvános kulcsú titkosítás elvének
A NYILVÁNOS KULCSÚ INFRASTRUKTÚRA ALAPJAI ÉS ÖSSZETEVŐI BASICS AND COMPONENTS OF PUBLIC KEY INFRASTRUCTURE SPISÁK ANDOR
SPISÁK ANDOR A NYILVÁNOS KULCSÚ INFRASTRUKTÚRA ALAPJAI ÉS ÖSSZETEVŐI BASICS AND COMPONENTS OF PUBLIC KEY INFRASTRUCTURE A cikk bevezetést nyújt a Nyilvános Kulcsú Infrastruktúrába és kriptográfiába, valamint
Modern titkosírások és a matematika
Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások
Adatbiztonság 1. KisZH (2010/11 tavaszi félév)
Adatbiztonság 1. KisZH (2010/11 tavaszi félév) Ez a dokumentum a Vajda Tanár úr által közzétett fogalomlista teljes kidolgozása az első kiszárthelyire. A tartalomért felelősséget nem vállalok, mindenki
Nemzeti Közszolgálati Egyetem. Vezető-és Továbbképzési Intézet. Bérczes Attila Pethő Attila. Kriptográfia
Nemzeti Közszolgálati Egyetem Vezető-és Továbbképzési Intézet Bérczes Attila Pethő Attila Kriptográfia Budapest, 2014 A tananyag az ÁROP 2.2.21 Tudásalapú közszolgálati előmenetel című projekt keretében
Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben
Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Verziószám 2.0 Objektum azonosító (OID) Hatálybalépés dátuma 2013. november 6. 1 Változáskövetés Verzió Dátum Változás leírása
Kriptográai protokollok
Eötvös Loránd Tudományegyetem Természettudományi Kar Operációkutatási tanszék Kriptográai protokollok Villányi Viktória Ildikó Egyetemi adjunktus Szabó Zsuzsanna Elemz matematikus BSc Budapest, 2017 Tartalomjegyzék
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
Alaptechnológiák BCE 2006. E-Business - Internet Mellékszakirány 2006
Alaptechnológiák BCE 2006 Alaptechnológiák Biztonság, titkosítás, hitelesítés RSA algoritmus Digitális aláírás, CA használata PGP SSL kapcsolat Biztonságpolitika - Alapfogalmak Adatvédelem Az adatvédelem
Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)
Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.
Távközlési informatika Kriptográfia. Dr. Beinschróth József
Távközlési informatika Kriptográfia Dr. Beinschróth József Fogalmak, alapelvek A biztonság összetevőinek egy része kriptográfián alapul de a kriptográfia önmagában nem oldja meg a biztonság problémáját
2016, Diszkrét matematika
Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,