4. Előadás Titkosítás, RSA algoritmus

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "4. Előadás Titkosítás, RSA algoritmus"

Átírás

1 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor

2 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános) kulcsú titkosítás Az RSA algoritmus Alapötlet Lépések Alkalmazási példák Feladatok Irodalom 2

3 Számítástudomány Titkosítás Kriptográfia Több ezer éves tudomány (művészet) Írások és üzenetek olyan (titkos anyagba történő) átalakításával/rejtjelezésével foglalkozik, amely illetéktelen személyek számára megakadályozza a visszafejtést Titkosító rendszer/módszer (kriptográfiai protokoll) Szövegek rejtjelezésére szolgáló eljárás, úgy, hogy a jogosult fogadó képes legyen hatékonyan és egyértelműen visszafejteni a szöveget Kriptoanalízis Szintén több ezer éves tudomány (művészet) Rejtjelezett üzenetek (illetéktelen) visszafejtésével/feltörésével foglalkozik A kriptográfia tipikus alaphelyzete: Kommunikáció két szereplő között (Alice és Bob) nem biztonságos csatornán, amelyet lehallgathat egy külső szereplő (Eve) Ezért az üzenetküldés egy kulcs segítségével kódolva (titkosítva) történik (encoding E függvény), a titkosított üzenet pedig egy (másik) kulccsal visszafejthető (decoding D függvény) A titkosítás lehet szimmetrikus (titkos) kulcsú és aszimmetrikus (nyilvános) kulcsú 3

4 Szimmetrikus (titkos) kulcsú titkosítás Itt a titkosításhoz és a visszafejtéshez használt kulcs megegyezik, vagy az egyik könnyen kiszámolható a másikból A kulcsot feltétlenül titokban kell tartani! Amennyiben valaki hozzáfér a kulcshoz, úgy képes az összes korábbi üzenetet dekódolni, illetve bármelyik fél nevében üzenetet hamisítani A régi korok titkosító eljárásai mind ilyenek voltak Pl. betűeltolásos titkosítás (a nyílt szöveg minden betűjének ugyanaz a betű felel meg a titkosított szövegben) egyszerű feltörni Javított változatok: a szövegbeli elhelyezkedéstől függően más és más a kódkarakter de ezek is feltörhetők voltak A módszer napjainkban is jól alkalmazható sok esetben (pl. ott, ahol a küldés és a fogadás egy helyen történik titkosító fájlrendszer) Hátrányok/nehézségek (két vagy több kommunikáló partner esetén): A kulcsot az adatátvitel előtt valahogy el kell juttatni egyik féltől a másikig Minden kommunikációs partnerhez különböző kulcsot kell használni, hisz közös kulcs esetén el tudnák olvasni egymás üzeneteit 4

5 Szimmetrikus kulcsú titkosítás Klasszikus titkosító eljárások szemléltetése Feltörés lehetősége a 2. esetben: periódus meghatározása, majd utána gyakorisági elemzés (sokszor nehéz végrehajtani, időigényes!) Betűk, betűpárok, betűhármasok, stb. előfordulását vizsgálják Lényegében ezen az elven (csak jóval bonyolultabban, csavarosabban több tárcsa) működött az Enigma titkosító eljárása 5

6 Aszimmetrikus (nyilvános) kulcsú titkosítás A nagyobb teljesítményű számítógépek korszakában már nem voltak megfelelőek a hagyományos, klasszikus titkosító eljárások Felkészült, jó eszközökkel (szuperszg.) rendelkező feltörő Forradalmian új ötlet (Diffie és Hellman, 1976): nyilvános kulcsú titkosítás e nyilvános kulcs, d titkos/privát kulcs Itt d e, a titkosítás és a visszafejtés a kulcsokkal gyors, de csak nagyon nehezen végezhető el az a feladat, hogy d-t e-ből kiszámítsuk (feltörés) A visszafejtő függvény/eljárás a titkosító inverze Mit jelent az, hogy nagyon nehezen végezhető el? Néhány válaszlehetőség: A kriptorendszer kialakítója nem ismer polinomiális megoldó algoritmust Senki sem ismer polinomiális megoldó algoritmust Aki feltöri a kriptorendszert, valószínűleg megoldott már jól ismert nehéz problémát Aki feltöri a kriptorendszert, biztosan megoldott már jól ismert nehéz problémát Aki feltöri a kriptorendszert, biztosan megoldott már egy NP-teljes problémát Bizonyítottan nem létezik (valószínűségi) polinomiális megoldó algoritmus Jelen pillanatban senki sem ismer olyan kriptorendszert, amely kielégíti az utolsó három feltétel valamelyikét is, de a nagyon nehezen végezhető el az ilyen esetekben matematikailag jól leírható 6

7 Aszimmetrikus (nyilvános) kulcsú titkosítás Lépések: Egy nyilvánosan elérhető, megbízható forrásból (pl. magától a címzettől, vagy kulcsszerverről) megszerezzük a címzett nyilvános kulcsát Az üzenetet kódoljuk ezzel a kulccsal, majd elküldjük A kódolt üzenet csakis a címzett privát kulcsával nyitható (!) A megkapott üzenetet a címzett saját privát kulcsával visszafejti, a végeredmény az eredeti, titkosítatlan szöveg lesz A legtöbb ma használt kommunikációs protokoll (pl. SSL, SSH) ilyen típusú megoldást alkalmaz a biztonságos adatcseréhez Ugyanezen a módon digitális aláírás is készíthető és ellenőrizhető 7

8 Az RSA titkosítás Az RSA az egyik leggyakrabban használt nyilvános kulcsú algoritmus Alapötlet Rövidítés: Ron Rivest, Adi Shamir, Leonard Adleman; ők találták ki, ban (MIT) Itt szerepelt először nyilvános kulcs (!) (jól alkalmazható módon) Legyenek p és q különböző nagy prímek és n = p q. Tfh. van két egészünk, d (decryption) és e (encryption) úgy, hogy d e 1 (modφ(n)). Az n és e számok nyilvánosak, p, q és d pedig titkosak. Legyen M a küldendő üzenet (pozitív egész szám, kódolás után). [A módszer akkor biztonságos, ha M < p és q, de a gyakorlatban megfelel, ha M < n és annak esélye, hogy p M vagy q M, elhanyagolható.] [Az üzenet könnyen számmá alakítható, pl. A = 10, B = 11,, Z = 35, space = 99, így HELLO = ] A küldő kiszámolja és elküldi az E = M e mod n számot. A fogadó kiszámítja az E d mod n számot. Euler-tétele (b φ(n) 1 (mod n)) miatt E d (M e ) d M e d M φ(n) többszöröse M M(mod n). Mivel M és E d mod n egyaránt 0 és n között van, ezért megegyeznek. Kérdés: Hogyan válasszuk meg e-t és d-t? 8

9 Az RSA titkosítás Alapötlet (folyt.) Ha e-t úgy választjuk, hogy lnko(e, φ(n)) = 1, akkor található megfelelő d. Segédállítás 1.: Legyenek a és m relatív prím egészek. Ekkor található olyan mod m egyértelmű b egész, hogy a b 1 (mod m). [Definíció: Ha a b 1 (mod m), akkor azt mondjuk, hogy b az a inverze mod m. Feladat: Írjuk fel Z 5 -ben az elemek összeadási és szorzási tábláját. Ellenőrizzük a táblázat segítségével az inverzek létezését!] Bizonyítás: A kiterjesztett Euklideszi algoritmussal tudunk találni olyan b és c egészeket, hogy a b + m c = 1. Ez azt jelenti, hogy a b 1 (mod m). Legyen e tetszőleges másik egész, amelyre a e 1 (mod m). Ekkor e e (a b) (a e) b b(mod m). Ahogy láttuk, ha ismerjük n felbontását (n = p q, p és q különböző prímek), akkor könnyen kiszámíthatóφ(n) = (p 1)(q 1). Ennél egyszerűbb módon φ(n) nem állítható elő. Továbbá, ha ismerjük φ(n)-t, akkor n felbontását is, mert p + q előáll: p + q = n φ(n) + 1 = p q (p q p q + 1) + 1, és így p q is megkapható: p q = ( p + q) 4n = p + 2 p q + q 4 p q = p 2 p q q végül pedig: p = ((p + q) + (p q))/2, q = ((p + q) (p q))/2. A d titkos kulcs megtalálásának problémáját visszavezettük n felbontására. 9

10 Az RSA titkosítás Az algoritmus lépései Kulcsgenerálás Rejtjelezés Visszafejtés Bob választ véletlenszerűen két (nagy) prímszámot, p-t és q-t (itt p q), és kiszámítja az N = p q számot A következő lépésben választ egy e kitevőt úgy, hogy 1 < e < φ(n) = (p 1)(q 1) és lnko(e, φ(n)) = 1 Ezután meghatározza azt az egyértelmű d számot, amelyre 1 < d < φ(n) és e d 1 (modφ(n)) (d itt az e inverze moduloφ(n)) Az (N, e) pár Bob nyilvános kulcsa, d pedig Bob titkos kulcsa [Legyen m < N az üzenet egyik blokkjának megfelelő szám, amelyet Alice szeretne Bobnak elküldeni] Alice ismeri Bob nyilvános kulcsát, így m-et a következő módon rejtjelezi: E(m) = m e mod N [Legyen c < N a rejtjelezett üzenet egyik blokkjának a kódja, amit Bob megkapott] Bob vissza tudja fejteni az üzenetet a következő módon: D(c) = c d mod N D(E(m)) = m, azaz a visszafejtéskor az eredeti üzenetet kapjuk vissza 10

11 Az RSA titkosítás Egyszerű RSA példa 11

12 Az RSA titkosítás Az RSA lépéseinek alkalmazásával kapcsolatos fontos kérdések Hogyan válasszuk meg a p és q prímszámokat? Ezeknek nagyoknak kell lenniük, hiszen különben az üzenetet elcsípő Eve az n számot faktorizálni tudná, és így meg tudná határozni a d titkos kulcsot (d az e-ből a kiterjesztett euklideszi algoritmussal meghatározható) Ezért a gyakorlatban (a mostani nagy gépek teljesítményét és a feltörő algoritmusok tudását figyelembe véve) p-t és q-t legalább (decimális) jegyű számnak kell választani Hol/hogy találunk ilyen nagy prímeket? Javaslat: véletlenül generálunk ilyen sok jegyű számokat, és teszteljük, hogy prímek-e A prímek elég sűrűn helyezkednek el ahhoz, hogy az eljárás működhessen (tudjuk: N/ln N darab N-nél kisebb prímszám van) De: a prímtulajdonság biztos/pontos tesztelése nehéz feladat (!) Ugyanakkor ismertek elég gyors valószínűségi prímtesztek, amelyek gyakorlati szempontból teljesen megbízhatóan igazolják, hogy a jelölt prím (pl. Miller-Rabin-féle teszt) Hogyan tudunk hatékonyan nagy hatványra emelni számokat? Elég modulo N dolgozni, és 2 hatványok szerinti csoportokat képezhetünk, azaz Pl =

13 Az RSA titkosítás Az RSA lépéseinek alkalmazásával kapcsolatos fontos kérdések (folyt.) Mennyire biztonságos az RSA kódolás? A biztonság döntő módon azon alapszik, hogy a nagy számok faktorizációja igen nehéz feladat Így az algoritmus feltörése általános esetben, megfelelően nagy p és q választásával olyan sok ideig tartana, hogy nem érdemes megpróbálni (!) Ez a tulajdonság általánosan igaz, de egyes speciális esetekben ( ügyetlen prímválasztás) meg lehet találni az osztókat, nagy N (összetett szám) esetében is Egy példa: Pollard-(p 1) algoritmusa azon alapulva találja meg az n szám p prímosztóját, hogy p 1 minden prímosztója viszonylag kicsi, pl. kisebb 1 milliónál. Ezért figyelnünk kell arra, hogy (p 1)-nek és (q 1)-nek egyaránt legyen nagy p' és q' prímosztója. Más betartandó (lásd Bressoud, Gathen Gerhard, itt nem részletezzük): φ(φ(p q)) legyen nagy, és osztható legyen nagy prímekkel, azaz: lnko(p 1, q 1) legyen kicsi és (p' 1) ill. (q' 1) mindegyike legyen osztható nagy prímekkel További tipikus feltörést segítő hibák az RSA kódolásnál Kis vagy nagyon speciális e szám választása (ekkor az e-edik gyökvonás E(m) = m e mod N-re nem túl nehezen elvégezhető) p és q túl közel van egymáshoz (ez segíti a brute force feltörést, lásd Fermat alg.) Szöveg karakterenkénti vagy kis blokkonkénti kódolása A karakterenkénti titkosítás itt is minden azonos karakterre ugyanazt a kimenetet adja 13

14 Az RSA titkosítás RSA példa (prímválasztás, d és e, kódolás) Eml. (feltételek): 1. lépés 2. lépés lnko(p 1, q 1) legyen kicsi és (p' 1) ill. (q' 1) mindegyike legyen osztható nagy prímekkel (p 1)-nek és (q 1)-nek egyaránt legyen nagy p' és q' prímosztója p és q ne legyen túl közel egymáshoz, e ne legyen nagyon kicsi Válasszunk két darab 1 milliónál nagyobb prímet p'' = , q'' = (p' 1 és q' 1 prímosztói) A p'' és q'' páros többszörösei + 1 alakú számokat vizsgáljuk, addig, amíg nem teljesítik a jelölt számok a pszeudoprím tesztet, majd ellenőrizzük, hogy a jelöltek valóban prímek (a próbaosztásos algoritmus megfelelő) p' = = , q' = = (p 1 és q 1 prímosztói) 3. lépés Mint az előbb, a p' és q' páros többszörösei + 1 alakú számokat vizsgáljuk p = = q = = n = p q = φ(n) = (p 1) (q 1) =

15 Az RSA titkosítás RSA példa (folyt.) Eml. (eddig): p = = q = = n = p q = φ(n) = (p 1) (q 1) = lépés (e és d) e legyen relatív prím (p 1)-hez és (q 1)-hez: e = 123 (vagy e = ) A kiterjesztett euklideszi algoritmussal kell: e d 1 (modφ(n)) (ha d negatívnak adódna, akkor hozzáadunk φ(n)-et) d = (vagy d = ) 5. lépés (kulcstárolás) Közzétesszük n-et és e-t, biztonságos helyre elzárjuk d-t Biztonsági okokból célszerű törölni p, q és φ(n) értékét 6. lépés (kódolás) Az üzenetet 16 jegyű blokkokra tördeljük (így minden darab < n) Annak esélye, hogy egy tetsz nál kisebb m egész osztható lesz p-vel vagy q-val kb. 1: (elhanyagolható) Elvégezzük a kódolást az ismert módon 15

16 Feladatok Tudjuk, hogy n = és φ(n) = , továbbá azt is, hogy n két prím szorzata. Határozzuk meg a két prímet anélkül, hogy faktorizálni kéne n-t! Minden lenti a, m párra keressük meg az a inverzét modulo m, vagy mutassuk meg, hogy ilyen inverz nem létezik (ha lnko(a, m) > 1): a = 25, m = ; a = 315, m = a = 1001, m = ; a = 2643, m = A bemutatott RSA példa forgatókönyve szerint kódoltuk a Hamlet egy részét (angolul). Állítsuk elő az eredeti szöveget, ha a kód: Találjuk meg a d rejtett kulcsot, ha n = , e = 125. Az Euler-féle φ függvény tulajdonságai alapján határozzuk meg φ(n)-t n következő értékeire: , , , , *Konstruáljunk RSA alapszámokat úgy, hogy (p' 1) ill. (q' 1) mindegyike tartalmaz 1 milliónál nagyobb prímfaktort, és p, q jegyű számok. Közöljük a szomszéddal (többiekkel) n és e értékét, d-t tartsuk titokban. Próbáljuk a többiek kódját feltörni (saját felbontó algoritmussal)! 16

17 Ajánlott irodalom David M. Bressoud: Factorization and Primality Testing, Springer, New York, 1989 Joachim Gathen, Jürgen Gerhard: Modern Computer Algebra (3rd ed.), Cambridge Univ. Press, 2013 Donald E. Knuth: A számítógép-programozás művészete 2. (2. kiadás), Műszaki Könyvkiadó, Budapest, 1994 Katona Gyula, Recski András, Szabó Csaba: A számítástudomány alapjai, Typotex Kiadó, Budapest, 2003 Iványi Antal (szerk.): Informatikai algoritmusok 1., ELTE Eötvös Kiadó, Budapest,

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

6. előadás Faktorizációs technikák közepes méretű osztókra

6. előadás Faktorizációs technikák közepes méretű osztókra 6. előadás Faktorizációs technikák közepes méretű osztókra Dr. Kallós Gábor 2016 2017 1 Tartalom Fermat algoritmusa A Pollard-ró algoritmus Pollard (p 1) algoritmusa Feladatok, megjegyzések Irodalom 2

Részletesebben

6. előadás Faktorizációs technikák közepes méretű osztókra

6. előadás Faktorizációs technikák közepes méretű osztókra 6. előadás Faktorizációs technikák közepes méretű osztókra Dr. Kallós Gábor 2016 2017 1 Tartalom Feladatok, megjegyzések Irodalom 2 Eml.: Próbaosztásos algoritmus (teljes felbontás) 14-18 jegyű számokig

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Prímtesztelés, Nyilvános kulcsú titkosítás

Prímtesztelés, Nyilvános kulcsú titkosítás Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai

Részletesebben

Információs társadalom alapismeretek

Információs társadalom alapismeretek Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)

Részletesebben

Waldhauser Tamás december 1.

Waldhauser Tamás december 1. Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba

Részletesebben

PRÍMSZÁMOK ÉS A TITKOSÍRÁS

PRÍMSZÁMOK ÉS A TITKOSÍRÁS PRÍMSZÁMOK ÉS A TITKOSÍRÁS Meszéna Tamás Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma, Pécs, meszena.tamas@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Úgy tapasztaltam,

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

Kriptográfiai alapfogalmak

Kriptográfiai alapfogalmak Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Elektronikus aláírás. Gaidosch Tamás. Állami Számvevőszék

Elektronikus aláírás. Gaidosch Tamás. Állami Számvevőszék Elektronikus aláírás Gaidosch Tamás Állami Számvevőszék 2016.05.24 Tartalom Mit tekintünk elektronikus aláírásnak? Hogyan működik? Kérdések 2 Egyszerű elektronikus aláírás 3 Demo: valódi elektronikus aláírás

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek

Részletesebben

4. előadás Prímek, tökéletes számok, Fermat-teszt, pszeudoprímek

4. előadás Prímek, tökéletes számok, Fermat-teszt, pszeudoprímek 4. előadás Prímek, tökéletes számok, Fermat-teszt, pszeudoprímek Dr. Kallós Gábor 2016 2017 1 Tartalom A prímek száma és elhelyezkedése A nagy prímszámtétel Reciprokösszegek Eratoszthenész szitája Próbaosztásos

Részletesebben

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét: Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,

Részletesebben

Data Security: Public key

Data Security: Public key Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.

Részletesebben

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális

Részletesebben

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA 30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus

Részletesebben

Emlékeztet! matematikából

Emlékeztet! matematikából Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 2 előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@mssapientiaro 2016 Miről volt szó az elmúlt előadáson? Félévi áttekintő

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Minden egész szám osztója önmagának, azaz a a minden egész a-ra.

Minden egész szám osztója önmagának, azaz a a minden egész a-ra. 1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz

Részletesebben

Modern titkosírások és a matematika

Modern titkosírások és a matematika Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

2017, Diszkrét matematika

2017, Diszkrét matematika Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,

Részletesebben

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette: IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3

Részletesebben

5.1 Környezet. 5.1.1 Hálózati topológia

5.1 Környezet. 5.1.1 Hálózati topológia 5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

Mintafeladat az RSA algoritmus szemléltetésére

Mintafeladat az RSA algoritmus szemléltetésére Mintafeladat az RSA algoritmus szemléltetésére Feladat Adottak a p = 269 és q = 24 prímszámok, továbbá az e = 5320 nyilvános kulcs és az x = 48055 nyílt szöveg. Számolja ki n = p q és ϕ(n) értékét! Igazolja

Részletesebben

Nyilvános kulcsú titkosítás RSA algoritmus

Nyilvános kulcsú titkosítás RSA algoritmus Nyilvános kulcsú titkosítás RSA algoritmus OpenPGP NYILVÁNOS KULCSÚ TITKOSÍTÁS Legyen D a titkosítandó üzenetek halmaza. Tegyük fel, hogy Bob titkosítottan szeretné elküldeni Aliznak az M D üzenetet. A

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2

Részletesebben

Adatvédelem titkosítással

Adatvédelem titkosítással Dr. Kanizsai Viktor Adatvédelem titkosítással Bevezetés A biztonsági rendszereknek mindig nyerniük kell, de a támadónak elég csak egyszer győznie. A számítógépek, rendszerek és informatikai hálózatok korszakában

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A.

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. JOGI INFORMATIKA A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet! 1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? AES (Advanced

Részletesebben

Fábián Zoltán Hálózatok elmélet

Fábián Zoltán Hálózatok elmélet Fábián Zoltán Hálózatok elmélet Információ fajtái Analóg az információ folytonos és felvesz minden értéket a minimális és maximális érték között Digitális az információ az idő adott pontjaiban létezik.

Részletesebben

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak.

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak. A cikkben szereplő eredmények 2008 decemberéből származnak. Bevezetés on vagy felbonthatatlan számokon olyan pozitív egész számokat értünk, amelyeknek csak két pozitív osztójuk van, nevezetesen az 1 és

Részletesebben

1. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek

1. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek . előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek Dr. Kallós Gábor 203 204 Tartalom Prímek és felbonthatatlanok Prímtulajdonság, lnko Kiterjesztett egészek Prímfaktorizáció, a számelmélet

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Kvantumkriptográfia II.

Kvantumkriptográfia II. LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket

Részletesebben

3. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek

3. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek 3. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek Dr. Kallós Gábor 206 207 Tartalom Prímtulajdonság, lnko Kiterjesztett egészek Prímfaktorizáció, a számelmélet alaptétele Euklideszi algoritmus

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

Bevezetés az algebrába az egész számok 2

Bevezetés az algebrába az egész számok 2 Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december

Részletesebben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Verziószám 2.0 Objektum azonosító (OID) Hatálybalépés dátuma 2013. november 6. 1 Változáskövetés Verzió Dátum Változás leírása

Részletesebben

Eötvös Loránd Tudományegyetem

Eötvös Loránd Tudományegyetem Eötvös Loránd Tudományegyetem Természettudományi Kar Fejezetek a Bonyolultságelméletből Szakdolgozat Hrubi Nóra Matematika Bsc Matematikai elemző szakirány Konzulens: Korándi József Adjunktus Budapest

Részletesebben

3. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek

3. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek 3. előadás Prímtulajdonság, lnko, Euklideszi algoritmus, lánctörtek Dr. Kallós Gábor 206 207 Tartalom Prímek és felbonthatatlanok Prímtulajdonság, lnko Kiterjesztett egészek Prímfaktorizáció, a számelmélet

Részletesebben

Windows biztonsági problémák

Windows biztonsági problémák Windows biztonsági problémák Miskolci Egyetem Általános Informatikai Tanszék Miért a Windows? Mivel elterjedt, előszeretettel keresik a védelmi lyukakat könnyen lehet találni ezeket kihasználó programokat

Részletesebben

Alaptechnológiák BCE 2006. E-Business - Internet Mellékszakirány 2006

Alaptechnológiák BCE 2006. E-Business - Internet Mellékszakirány 2006 Alaptechnológiák BCE 2006 Alaptechnológiák Biztonság, titkosítás, hitelesítés RSA algoritmus Digitális aláírás, CA használata PGP SSL kapcsolat Biztonságpolitika - Alapfogalmak Adatvédelem Az adatvédelem

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

Az elektronikus aláírás és gyakorlati alkalmazása

Az elektronikus aláírás és gyakorlati alkalmazása Az elektronikus aláírás és gyakorlati alkalmazása Dr. Berta István Zsolt Microsec Kft. http://www.microsec.hu Elektronikus aláírás (e-szignó) Az elektronikus aláírás a kódolás

Részletesebben

Tartalom. Algebrai és transzcendens számok

Tartalom. Algebrai és transzcendens számok Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Algoritmuselmélet. Hashelés. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Algoritmuselmélet. Hashelés. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Algoritmuselmélet Hashelés Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

IP alapú távközlés. Virtuális magánhálózatok (VPN)

IP alapú távközlés. Virtuális magánhálózatok (VPN) IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom

Részletesebben

Webalkalmazás-biztonság. Kriptográfiai alapok

Webalkalmazás-biztonság. Kriptográfiai alapok Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Egyesíthető prioritási sor

Egyesíthető prioritási sor Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}

Részletesebben

Az Outlook levelező program beállítása tanúsítványok használatához

Az Outlook levelező program beállítása tanúsítványok használatához Az Outlook levelező program beállítása tanúsítványok használatához Windows tanúsítványtárban és kriptográfia eszközökön található tanúsítványok esetén 1(10) Tartalomjegyzék 1. Bevezető... 3 2. Az Outlook

Részletesebben

Dan Brown Digitális erődje és a nyilvános kulcsú titkosítás

Dan Brown Digitális erődje és a nyilvános kulcsú titkosítás EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Dan Brown Digitális erődje és a nyilvános kulcsú titkosítás BSc Szakdolgozat Készítette: Fekete Ildikó Elemző matematika szakos hallgató Témavezető:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Szakács Lili Kata megoldása

Szakács Lili Kata megoldása 1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan

Részletesebben

A TITKOSÍTÁS ALKALMAZOTT MÓDSZEREI HÁLÓZATI ISMERETEK 1 GYAKORLAT BUJDOSÓ GYÖNGYI FEKETE MÁRTON. 2009 Debrecen AZ ELEKTRONIKUS KOMMUNIKÁCIÓBAN

A TITKOSÍTÁS ALKALMAZOTT MÓDSZEREI HÁLÓZATI ISMERETEK 1 GYAKORLAT BUJDOSÓ GYÖNGYI FEKETE MÁRTON. 2009 Debrecen AZ ELEKTRONIKUS KOMMUNIKÁCIÓBAN A TITKOSÍTÁS ALKALMAZOTT MÓDSZEREI AZ ELEKTRONIKUS KOMMUNIKÁCIÓBAN HÁLÓZATI ISMERETEK 1 GYAKORLAT BUJDOSÓ GYÖNGYI FEKETE MÁRTON 2009 Debrecen 2 BEVEZETİ Az Internetben rejtızı óriási lehetıségeket sokan

Részletesebben

Kriptográfiai protokollok

Kriptográfiai protokollok Kriptográfiai protokollok Protokollosztályok - partnerhitelesítés - kulcskiosztás - üzenetintegritás - digitális aláírás - egyéb(titokmegosztás, zero knowledge...) 1 Shamir "háromlépéses" protokollja Titok

Részletesebben

Miller-Rabin prímteszt

Miller-Rabin prímteszt Az RSA titkosítás Nyílt kulcsú titkosításnak nevezünk egy E : A B és D : B A leképezés-párt, ha bármely a A-ra D(E(a)) = a (ekkor E szükségképpen injektív leképezés), E ismeretében E(a) könnyen számítható,

Részletesebben

Informatikai biztonság alapjai

Informatikai biztonság alapjai Informatikai biztonság alapjai 4. Algoritmikus adatvédelem Pethő Attila 2008/9 II. félév A digitális aláírás felfedezői Dr. Whitfield Diffie és Martin E. Hellman (1976) a nyilvános kulcsú titkosítás elvének

Részletesebben

Ahol a kvantum mechanika és az Internet találkozik

Ahol a kvantum mechanika és az Internet találkozik Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to

Részletesebben

Bevezetés az Információtechnológiába

Bevezetés az Információtechnológiába Dr. Kovács János Informatika Tanszék Bevezetés az Információtechnológiába MÉRNÖK- ÉS GAZDASÁGINFORMATIKA ALAPSZAK 2016 5. KÓDOLÁS 2. KRIPTOLÓGIA A TITKOSÍTÁS szerepe, módszerek, 2 Hálózatbiztonság alapelvei

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Algoritmuselmélet 6. előadás

Algoritmuselmélet 6. előadás Algoritmuselmélet 6. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 4. ALGORITMUSELMÉLET 6. ELŐADÁS 1 Hash-elés

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

3. Kriptográfia (Jörg Rothe)

3. Kriptográfia (Jörg Rothe) 3. Kriptográfia (Jörg Rothe) Ebben a fejezetben a kriptográában használatos protokollokat, valamint alapveto problémákat és algoritmusokat mutatunk be. A kriptográában jellemzo egyik alaphelyzetet láthatjuk

Részletesebben

Algoritmuselmélet gyakorlat (MMN111G)

Algoritmuselmélet gyakorlat (MMN111G) Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy

Részletesebben

Titkosítás. Uhlár László

Titkosítás. Uhlár László Titkosítás Uhlár László 1. Miért? Talán egy idős lehet az emberiséggel az igény arra, hogy bizonyos személyes dolgainkat mások elől elrejtsünk. Titkosírások tömkelege alakult ki a történelem során, amelyek

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben

Diszkréció diszkrét logaritmussal

Diszkréció diszkrét logaritmussal Diszkréció diszkrét logaritmussal Professzor dr. Czédli Gábor. SZTE, Bolyai Intézet 2012. április 28. http://www.math.u-szeged.hu/ czedli/ 1 Számolás modulo p Czédli 2012.04.28 2 /18 Alapok: számolás modulo

Részletesebben

CAS implementálása MPEG-2 TS-alapú

CAS implementálása MPEG-2 TS-alapú CAS implementálása MPEG-2 TS-alapú hálózatokon Unger Tamás István ungert@maxwell.sze.hu 2014. április 16. Tartalom 1 Az MPEG-2 TS rövid áttekintése 2 Rendszeradminisztráció 3 A kiválasztott program felépítése

Részletesebben

ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS

ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS B uttyán Levente PhD, egyetemi adjunktus, BME Híradástechnikai Tanszék buttyan@hit.bme.hu G yörfi László az MTA rendes tagja, egyetemi tanár BME

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket?

E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket? E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket? Egy email szövegében elhelyezet információ annyira biztonságos, mintha ugyanazt az információt

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben