Ahol a kvantum mechanika és az Internet találkozik
|
|
- Viktor Bodnár
- 5 évvel ezelőtt
- Látták:
Átírás
1 Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to understand. Neil D. Jones
2 Témák Motivációk Bevezetés a kvantum informatikába Az internet néhány időszerű mérnöki problémája Hasznosnak ígérkező kvantum algoritmusok Összegzés
3 Motivációk Navigare necesse est!
4
5 Moore s Law 1m 1nm Minden 18 hónapban megduplázódik a mikroprocesszorok sebessége KISEBB GYORSABB
6 Moore törvénye When?
7 Bevezetés a kvantum informatikába mérnök szemmel "Anyone who is not shocked by quantum theory has not understood it." Niels Bohr
8 A kvantummechanika Posztulátumai, avagy, ahogy az apró dolgok működnek 1. Posztulátum: állapot Hilbert-tér 2nd Posztulátum: evolúció Unitér transzformáció Elemi kvantum logikai kapuk 3rd Posztulátum: mérés Mérési statisztika Mérés utáni állapot 4th Posztulátum: regiszterek Tenzor szorzás
9 A véletlen természete Isten nem dobókockázik a világgal! Dehogynem! Sőt, volt annyira nagyvonalú, hogy diffegyenletek helyett olykor elegendő feldobni egy kockát!
10 Összefonódás egy meglepő kvantum állapot Mi az alábbi kétbites qregiszter dekompozíciója? ϕ = ϕ ϕ3 11?? Megoldás: nem létezik! Kétféle kvantum állapotunk lehet szorzat összefonódott
11 Kvantum algoritmusok általános modellje Classical input Quantum output Initialization Parallelization Amplitude ampl. Measurement Quantum input Classical output
12 Az internet néhány időszerű mérnöki problémája Biztonság Skálázhatóság stb. " The significant problems we face cannot be solved by the same level of thinking that created them. Útvonalválasztás Keresés Albert Einstein
13 Keresés rendezetlen adatbázisban "Man - a being in search of meaning." Plato
14 A feladat Aki keres, talál! De nem mindegy mennyi idő alatt. Rendezetlen adatbázis N különböző elemmel. Egy adott elem biztonsággal történő megtalálásához klasszikusan N kérés szükséges. x =?
15 A megoldás: Grover-algoritmus Ugyanakkor kvantum módon: O( ( ) O N Nemcsak adott elem, hanem szélsőérték is kereshető (Imre 2007)! Miért örülünk ennek? Mert adatbázis nagyon sok minden lehet: Informatika: pl. adatbázis kezelés, keresés az Interneten Távközlés: pl. útvonalválasztás, jelfeldolgozás
16 Kvantum szélsőérték kereső
17 Optikai alapú Grover implementáció
18 Biztonság veszélyek és megoldások kvantum alapon
19 Az RSA lényege Nyílt kulcsú titkosítás nyilvános titkosítókulcs titkos fejtőkulcs kulcsok előállítása: két nagy prímszám szorzatát felhasználva feltörés: a törzstényezők meghatározása A mai napig nem sikerült bebizonyítani, hogy nincs hatékony algoritmus a feltörésre. Mindenesetre eddig nem sikerült ilyen klasszikus algoritmust találni. EZIDÁIG IG...
20 RSA feltörő kvantum áramkör
21 Kvantum kriptoanalízis elemi művelet/s log 3 3 ( N ) = (# kulcsbitek )
22 Ahogy ma faktorizálunk 15=5 3
23 Kvantum kulcsszétosztás
24 Nem ortogonális állapotok!!!! Ötlet: használjunk szimmetrikus kulcsú titkosítást, de ehhez oldjuk meg a kulcsszétosztás problémáját. A kulcsszétosztás kulcsa a reprodukálhatatlanság (megkülönböztethetetlenség), azaz a nem-ortogonalitás.
25 Ahogy ma kulcsszétosztunk
26 Bécs, október 8.
27 Kvantum módon alkalmazott kommunikációs csatornák
28 Klasszikus-klasszikus-klasszikus kapacitás: Klasszikus-kvantum-klasszikus kapacitás: C=1-H(p) C= A 1 p p U B measurement Probabilistic quantum channel
29 Egy egyszerű csatorna modell és kvantumos megfelelője Klasszikus csatorna C p flip /1 D Csak redundanciával tartható kordában a hibázás valószínűsége Kvantum csatorna A p qflip 0 φ > 0 B Bizonyos esetekben egyszerű kódolással HIBAMENTESSÉ tehető.
30 = Két zéró kapacitású kvantum csatorna kapacitása nem zéró!
31 Összegzés Bármilyen legyen is a jövő Internete, új, kvantummechanikára épülő megoldások támogathatják: Fizikai réteg (MAC) Protokollok: Útvonalválasztás Biztonság Alkalmazások (pl. keresés, böngészés)
32 Kérdések?
Informatika kvantum elveken: a kvantum bittől a kvantum számítógépig
Informatika kvantum elveken: a kvantum bittől a kvantum számítógépig A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT Egy egyszerű kérdés
RészletesebbenKvantum infokommunikáció, a titkosítás új lehetőségei
Kvantum infokommunikáció, a titkosítás új lehetőségei A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT 2016.10.06. 2 Ki tudja, hogy mi ez?
RészletesebbenKvantum mechanikával tunningolt klasszikus kommunikáció. Imre Sándor BME-HIT
Kvantum mechanikával tunningolt klasszikus kommunikáció Imre Sándor BME-HIT A kvantummechanika posztulátumai mérnöki megközelítésben 1. Posztulátum: kvantum bit Hilbert-tér 2. Posztulátum: logikai kapuk
RészletesebbenKvantum informatika és kommunikáció:
Kvantum informatika és kommunikáció: múlt jelen A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT IMRE SÁNDOR imre@hit.bme.hu BME Villamosmérnöki
RészletesebbenSearching in an Unsorted Database
Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching
RészletesebbenThe problem. Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio:
Ismétlés The problem Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio: How to initialize? Quantum Phase Estimator Prob. amplitudes 2017.04.27. 5 Brutális! A H kapuk
RészletesebbenIBM Brings Quantum Computing to the Cloud
IBM Brings Quantum Computing to the Cloud https://www.youtube.com/watch?v=dz2dcilzabm&feature=y outu.be 2016.05.05. 1 Ismétlés The problem Each unitary transform having eigenvector has eigenvalues in the
RészletesebbenBevezetés a kvantum informatikába és kommunikációba 2019 tavasz. Motivációk + Admin
Bevezetés a kvantum informatikába és kommunikációba 2019 tavasz Motivációk + Admin Elérhetőségek Imre Sándor, Bacsárdi László (SoE) BME Hálózati Rendszerek és Szolgáltatások Tanszék IB 121, IB117 quant-course@mcl.hu
RészletesebbenKvantum informatika és kommunikáció 2017 ősz. Motivációk + Admin
Kvantum informatika és kommunikáció 2017 ősz Motivációk + Admin IBM kvantum számítógép hozzáférés! 2016-os újdonság!!! https://quantumexperience.ng.bluemix.net/ 2017.02.13. 2 Elérhetőségek Imre Sándor,
RészletesebbenKvantum informatika és kommunikáció 2018 tavasz. Motivációk + Admin
Kvantum informatika és kommunikáció 2018 tavasz Motivációk + Admin Elérhetőségek Imre Sándor, Bacsárdi László (SoE) BME Hálózati Rendszerek és Szolgáltatások Tanszék IB 121, IB113 quant-course@mcl.hu 463
RészletesebbenBevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz Kvantumkapuk, áramkörök 2016. március 3. A kvantummechanika posztulátumai (1-2) 1. Állapotleírás Zárt fizikai rendszer aktuális állapota
RészletesebbenBevezetés a kvantum-informatikába és kommunikációba 2016/2017 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2016/2017 tavasz Kvantumkapuk, áramkörök 2017. február 23. A kvantummechanika Posztulátumai, avagy, ahogy az apró dolgok működnek 1. Posztulátum: kvantum
RészletesebbenBevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)
Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki
RészletesebbenKvantumszámítógép a munkára fogott kvantummechanika
Kvantumszámítógép a munkára fogott kvantummechanika Széchenyi Gábor ELTE, Anyagfizikai Tanszék Atomoktól a csillagokig, 2019. április 25. Kvantumszámítógép a hírekben Egy új technológia 1940-es 1980-as
RészletesebbenShor kvantum-algoritmusa diszkrét logaritmusra
Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció
RészletesebbenGROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
RészletesebbenValóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise
Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Gyöngyösi László gyongyosi@hit.bme.hu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Motiváció A kvantuminformatikáról
RészletesebbenKvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz)
Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) 1. Ön egy informatikus öregtalálkozón vesz részt, amelyen felkérik, hogy beszéljen az egyik kedvenc területéről. Mutassa be a szakmai
RészletesebbenRSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
RészletesebbenKvantumkriptográfia II.
LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenAz interferométer absztrakt áramköre (5)
Ismétlés Az interferométer absztrakt áramköre (5) Copyright 2005 John Wiley & Sons Ltd. Eredmény: Előállítottunk egy majdnem tetszőleges kvantumállapotot. Az egyedüli feltétel a globális fázishoz kapcsolódik.
RészletesebbenAdat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA
30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus
RészletesebbenSapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek
RészletesebbenSapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++
RészletesebbenKvantum-hibajavítás I.
LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5
RészletesebbenLabormérés tudnivalók
Ismétlés Labormérés tudnivalók X. 30 és XI. 6. A laboron nem kötelező részt venni. A két alkalom közül csak az egyikre kell bejönni. Jelentkezés a tárgy honalpján: http://www.mcl.hu/quantum//hird_t3.html
RészletesebbenInformációs társadalom alapismeretek
Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)
RészletesebbenAndrew S.Tanenbaum. Számítógéphálózatok. Második, bővített, átdolgozott kiadás. Panem
Andrew S.Tanenbaum Számítógéphálózatok Második, bővített, átdolgozott kiadás Panem A mű eredeti címe: Computer Networks. Fourth Edition. Copyright 2003, 1996 Pearson Education, Inc. Publishing as Prentice
RészletesebbenAz összefonódás elemi tárgyalása Benedict Mihály
Az összefonódás elemi tárgyalása Benedict Mihály Elméleti Fizikai Iskola Tihany 2010, augusztus 31 Kétrészű rendszerek, tiszta állapotok, Schmidt fölbontás és az összefonódási mértékek Példák a kvantumoptikából
RészletesebbenKvantum-számítógépek, univerzalitás és véges csoportok
Kvantum-számítógépek, univerzalitás és véges csoportok Ivanyos Gábor MTA SZTAKI BME Matematikai Modellalkotás szeminárium, 2013 szeptember 24. Kvantum bit Kvantum bitek Kvantum kapuk Kvantum-áramkörök
RészletesebbenDr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás
2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális
RészletesebbenSapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai
RészletesebbenKvantumkriptográfia III.
LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia
RészletesebbenA kvantumelmélet és a tulajdonságok metafizikája
A kvantumelmélet és a tulajdonságok metafizikája Szabó Gábor MTA Bölcsészettudományi Központ email: szabo.gabor@btk.mta.hu p. 1 Kvantumelmélet Kialakulása: 1900, Planck: energiakvantum 1905, Einstein:
RészletesebbenTitkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...
Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus
RészletesebbenAlgoritmuselmélet. Hashelés. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Algoritmuselmélet Hashelés Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
RészletesebbenKvantum alapú hálózatok - bevezetés
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Hálózati Rendszerek és Szolgáltatások Tanszék Mobil Kommunikáció és Kvantumtechnológiák Laboratórium Kvantum alapú hálózatok
RészletesebbenKriptográfiai alapfogalmak
Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig
RészletesebbenKvantumkommunikációs kalandozások
Számítógép-hálózatok tehetségápolás 2014. október 16. Kvantumkommunikációs kalandozások Dr. Bacsárdi László NymE Simonyi Károly Kar, Informatikai és Gazdasági Intézet intézetigazgató, egyetemi docens BME
Részletesebben5.1 Környezet. 5.1.1 Hálózati topológia
5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert
RészletesebbenAzonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
RészletesebbenTanúsítási jelentés HUNG-TJ-002-1-2003 amely a HUNG-E-002-1-2003 számí értékelési jelentésen alapul.
Tanúsítási jelentés HUNG-TJ-00-1-003 amely a HUNG-E-00-1-003 számí értékelési jelentésen alapul. 1. A vizsgált eszköz, szoftver meghatározása A vizsgálat az IBM Corp. által előállított és forgalmazott
RészletesebbenAlgoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
RészletesebbenBevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz Kvantumkapuk, áramkörök 2015. február 26. A kvantummechanika posztulátumai (1) 1. Állapotleírás Zárt fizikai rendszer aktuális állapota
RészletesebbenHálózati réteg. WSN topológia. Útvonalválasztás.
Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,
RészletesebbenSzámítógépes Hálózatok
Számítógépes Hálózatok 7a. Előadás: Hálózati réteg ased on slides from Zoltán Ács ELTE and. hoffnes Northeastern U., Philippa Gill from Stonyrook University, Revised Spring 06 by S. Laki Legrövidebb út
RészletesebbenÖsszefonódottság detektálása tanúoperátorokkal
Összefonódottság detektálása tanúoperátorokkal Tóth Géza Max-Plank-Intitute für Quantenoptik, Garching, Németország Budapest, 2005. október 4. Motiváció Miért érdekes a kvantum-informatika? Alapvető problémák
RészletesebbenRejtett részcsoportok és kvantum-számítógépek
Ivanyos Gábor MTA SZTAKI MTA, 2007 május 23. Kvantum bitek Kvantum kapuk Kvantum-ármakörök Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció,
RészletesebbenAdatbiztonság. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013 1 / 22
Adatbiztonság Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013 1 / 22 Tartalomjegyzék 1 Bevezetés 2 Titkosítás 3 Security Tóth Zsolt (Miskolci Egyetem) Adatbiztonság 2013
RészletesebbenWaldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
Részletesebbenaz Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény
RészletesebbenEgy általános iskolai feladat egyetemi megvilágításban
Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.
RészletesebbenData Security: Public key
Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.
RészletesebbenIP alapú távközlés. Virtuális magánhálózatok (VPN)
IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,
RészletesebbenKvantum rendező algoritmusok
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Kvantum rendező algoritmusok TDK dolgozat, 2018 Mogyorósi Bálint Konzulens: Dr. Imre Sándor Hálózati Rendszerek és Szolgáltatások
RészletesebbenKvantum-informatika és kommunikáció 2015/2016 ősz. A kvantuminformatika jelölésrendszere szeptember 11.
Kvantum-informatika és kommunikáció 2015/2016 ősz A kvantuminformatika jelölésrendszere 2015. szeptember 11. Mi lehet kvantumbit? Kvantum eszközök (1) 15=5 3 Bacsárdi Képek forrása: IBM's László, Almaden
RészletesebbenMinden egész szám osztója önmagának, azaz a a minden egész a-ra.
1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz
RészletesebbenSSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába
SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record
RészletesebbenKvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
RészletesebbenSapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító
RészletesebbenActa Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)
Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing
RészletesebbenBevezetés a kvantum informatikába és kommunikációba féléves házi feladat (2015/2016, tavasz)
Bevezetés a kvantum informatikába és kommunikációba féléves házi feladat (2015/2016, tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 5. oktatási hét csütörtöki
RészletesebbenIT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:
IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3
RészletesebbenHálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak
Hálózatok Alapismeretek A hálózatok célja, építőelemei, alapfogalmak A hálózatok célja A korai időkben terminálokat akartak használni a szabad gépidők lekötésére, erre jó lehetőség volt a megbízható és
Részletesebben4. Előadás Titkosítás, RSA algoritmus
4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)
RészletesebbenKriptográfia I. Kriptorendszerek
Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás
RészletesebbenWebalkalmazás-biztonság. Kriptográfiai alapok
Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):
RészletesebbenKészítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens
A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási
RészletesebbenÖnálló laboratórium tárgyak
BME Híradástechnikai Tanszék Önálló laboratórium téma és konzulensválasztás http://www.hit.bme.hu 2012 Önálló laboratórium tárgyak Az alapszak szakirányos és ágazatos, valamint a mesterszak szakirányos
RészletesebbenFizikai mennyiségek, állapotok
Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez
RészletesebbenHitelesítés elektronikus aláírással BME TMIT
Hitelesítés elektronikus aláírással BME TMIT Generátor VIP aláíró Internet Visszavont publikus kulcsok PC Hitelesítő központ Hitelesített publikus kulcsok Aláíró Publikus kulcs és személyes adatok hitelesített
RészletesebbenTakács Gábor mérnök informatikus, okl. mérnöktanár
Takács Gábor mérnök informatikus, okl. mérnöktanár takacsg@sze.hu http://rs1.sze.hu/~takacsg/ Big Data Definition Big Data is data that can t be stored or analyzed using traditional tools. Információ tartalom,
RészletesebbenKevert állapoti anholonómiák vizsgálata
Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
RészletesebbenMINISZTERELNÖKI HIVATAL. Szóbeli vizsgatevékenység
MINISZTERELNÖKI HIVATAL Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: Vizsgarészhez rendelt vizsgafeladat megnevezése: 2270-06/1 Szóbeli vizsgatevékenység Szóbeli vizsgatevékenység időtartama:
RészletesebbenInternet-hozzáférések teljesítményvizsgálata webböngészőben
Internet-hozzáférések teljesítményvizsgálata webböngészőben Orosz Péter BME TMIT SmartCom Lab 4. Magyar Jövő Internet Konferencia 2017. november 8-9. Áttekintés Adatforgalmi trendek és internethozzáférések
RészletesebbenKriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT
NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek
RészletesebbenAZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
RészletesebbenEgy kvantumradír-kísérlet
Egy kvantumradír-kísérlet "Részecske vagyok, vagy hullám, Élek-e vagy ez a hullám? Megmondanám, hogyha tudnám, De mindent én sem tudhatok." Részlet a Fizikus Indulóból Tartalmi kivonat Bevezetés Feynman
RészletesebbenPrímtesztelés, Nyilvános kulcsú titkosítás
Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála
RészletesebbenEgzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
RészletesebbenR5 kutatási feladatok és várható eredmények. RFID future R Király Roland - Eger, EKF TTK MatInf
R5 kutatási feladatok és várható eredmények RFID future R5 2013.06.17 Király Roland - Eger, EKF TTK MatInf RFID future R5 RFID future - tervezett kutatási feladatok R5 feladatok és várható eredmények Résztevékenységek
RészletesebbenKVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
RészletesebbenRÉSZ IPARI TERMELÕ-SZOLGÁLTATÓ TEVÉKENYSÉG ELLENÕRZÉSE...11 1. A
TARTALOM Elõszó..................................................................9 A. RÉSZ IPARI TERMELÕ-SZOLGÁLTATÓ TEVÉKENYSÉG ELLENÕRZÉSE............11 1. A piaci tevékenység ellenõrzése...........................................11
RészletesebbenHatározatlansági relációk származtatása az
az állapottér BME TTK Matematikus MSc. 1. évf. 2012. november 14. Vázlat: Történeti áttekintés Nemkommutatív (kvantum) valószín ségelmélet Az állapottér geometriája: Az állapottér mint Riemann-sokaság
RészletesebbenA modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
RészletesebbenKvantum összefonódás és erősen korrelált rendszerek
Kvantum összefonódás és erősen korrelált rendszerek MaFiHe TDK és Szakdolgozat Hét Szalay Szilárd MTA Wigner Fizikai Kutatóközpont, Szilárdtest Fizikai és Optikai Intézet, Erősen Korrelált Rendszerek Lendület
RészletesebbenAlkalmazásokban. Dezsényi Csaba Ovitas Magyarország kft.
Tudásmodellezés Kereskedelmi Alkalmazásokban Dezsényi Csaba Ovitas Magyarország kft. Tudásmenedzsment Adat -> Információ -> Tudás Intézményi tudásvagyon hatékony kezelése az üzleti célok megvalósításának
RészletesebbenModern szimmetrikus kulcsú rejtjelezők kriptoanalízise
Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise - kimerítő kulcskeresés: határa ma 64 bit számítási teljesítmény költsége feleződik 18 havonta 25 éven belül 80 bit - differenciális kriptoanalízis:
RészletesebbenAlgoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenRSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem
RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok
Részletesebbenprímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar
Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi
RészletesebbenInformatika 10. évf.
Informatika 10. évf. Internet és kommunikáció I. 2013. december 9. Készítette: Gráf Tímea Internet Az Internet egymással összeköttetésben álló, sokszor nem kompatibilis hálózatok összessége. 2 1 WWW World
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A tárgy célja
RészletesebbenFFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.
TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok
RészletesebbenA modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Részletesebben