Kvantum infokommunikáció, a titkosítás új lehetőségei
|
|
- Zsófia Dobos
- 8 évvel ezelőtt
- Látták:
Átírás
1 Kvantum infokommunikáció, a titkosítás új lehetőségei A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT
2
3 Ki tudja, hogy mi ez?
4 Moore törvénye De meddig?
5 Kísérletezzünk! "There are two possible outcomes: If the result confirms the hypothesis, then you ve made a measurement. If the result is contrary to the hypothesis, then you ve made a discovery. Enrico Fermi
6 Az elemi részecskék természete részecske hullám elektron spinje foton polarizációja
7 A véletlen természete: tényleg véletlen Isten nem dobókockázik a világgal! Dehogynem! Sőt, volt annyira nagyvonalú, hogy diffegyenletek helyett olykor elegendő feldobni egy kockát!
8 Kvantum bit (qbit) a 0 b 1 a, b C és a 2 b
9 Mit lehet néhány qbittel kezdeni? Szuperpozíció: n=500 hosszú regiszter több állapotot tartalmaz, mint a világegyetem atomjainak száma És számolni is lehet ennyi számmal egyszerre! n 2 1 i 0 i i
10 Összefonódás (entanglement)
11 Sőt, az ölelés (összefonódás) másra is jó!
12
13 Alkalmazás Teleportálás szeptember: 150 km
14 Kvantum infokommunikációs alkalmazások
15 Szimmetrikus titkosítás Szimmetrikus kulcsú titkosítás Egyforma kulcsok mindkét oldalon Abszolút biztonságos, ha bizonyos előírásokat betartunk Gond, hogy a kulcsot miként juttassuk el a túloldalra????
16 Nyílvános kulcsú titkosítás Nyílvános kulcsú titkosítás nyilvános titkosítókulcs, titkos fejtőkulcs kulcsok előállítása: két nagy prímszám szorzatát felhasználva feltörés: a törzstényezők meghatározása A mai napig nem sikerült bebizonyítani, hogy nincs hatékony algoritmus a feltörésre. Mindenesetre eddig nem sikerült ilyen klasszikus algoritmust találni. De kvantumosat IGEN!
17 A lehallgatás
18 RSA feltörő kvantum áramkör
19 Shor-algotitmus és az RSA feltörése O O log 3 ( N ) év 1 sec
20 év
21 Shor-algotitmus és az RSA feltörése O O log 3 ( N ) év 1 sec
22 Ahogy ma faktorizálunk 15=
23 Védekezés kvantumos kulcsszétosztás
24 Első sikeres demonstráció Vienna, October 8, Today, the first commercial communication network using quantum cryptography is demonstrated in Vienna, Austria
25 Ahogy mi kulcsszétosztunk Kvantumkommunikáció az Bacsárdi László, Hálózati 25
26 Ahogy mi kulcsszétosztunk
27 Ahogy mi kulcsszétosztunk / /2
28 Adatbázis-keresés története V1 V2 V
29 Adatbázis keresés története v4: Grover-algoritmus Aki keres, talál! De nem mindegy mennyi idő alatt. Rendezetlen adatbázis N különböző elemmel. Klasszikusan N kérés szükséges. Ugyanakkor kvantum módon: O O N x =?
30 Ahogy ma adatbázis keresünk Miért örülünk ennek? Informatika: pl. adatbázis kezelés Távközlés: pl. útvonalválasztás, jelfeldolgozás
31 Lazításként egy kis infoelmélet
32 Egy egyszerű csatorna modell (mintha már láttuk volna valahol ) Klasszikus csatorna p ij =½ C=1-H(p)=0 0 C flip Csak redundanciával p tartható kordában a D hibázás valószínűsége 000 0/1 Kvantum csatorna p ij =½ C=1 A p qflip 0 φ > 0 B Bizonyos esetekben egyszerű kódolással HIBAMENTESSÉ tehető
33 Teleportálás
34 Copyright 2005 John Wiley & Sons Ltd. Szupersűrűségű tömörítés
35 OK, ezt még lenyeltük, de ilyen állat nincs: 2 db. külön-külön C = 0 kapacitású csatorna ügyesen összekapcsolva mégis képes információt átvinni!
36 Hol tart ma a világ?
37 Optikai szálon Az orosz medve: 225 km 2016 A svájci óra: 307 km
38 Biztató jelek - szabadtér 1991 első megvalósítás, 30 cm-es távon laboratóriumi körülmények között: 205 méter külső körülmények között: 75 méter 1998 Los Alamos National Laboratory, 950 méteres táv, éjszakai körülmények 2002 ugyanez a kutatólaboratórium demonstrálta 10 kilométeres távon (9,81 km), nappali és éjjeli időszakban is km nemzetközi kutatócsoport 2016 Kínai-osztrák műhold pályára állítása, várjuk az eredményeket! 38
39 2007 Orion Systems, 16 kvantumbites gép bemutatója három alkalmazással: Adatbázis keresés Ülésrend tervezés Sudoku fejtés 2009 Neural Information Processing Systems Conference Képfelismerő rendszer betanítása
40 2011: D-Wave One 128 qubit $ 2013: D-Wave Two 512 qubit 2016: D-Wave s flagship product, the 1000-qubit D-Wave 2X quantum computer, is the most advanced quantum computer in the world. It is based on a novel type of superconducting processor that uses quantum mechanics to massively accelerate computation
41 IBM kvantum számítógép hozzáférés! 2016-os újdonság!!!
42 Tanulságok Ígéretes algoritmusok, Ígéretes kísérletek és demonstrációk. Sőt egyes alkalmazások már ki is férnek a gyárkapun. De akad még néhány APRÓBB probléma: árnyékolás Az asztali kvantum PC-re még néhány évet bizonyosan várni kell. Viszont a kvantum kommunikáció előtt szabad az út!
43 Ne éljetek klasszikusan! Az élet kerek mivoltához nélkülözhetetlen a szuperpozíció. Imre Sándor
44 További információk Aki a kvantumos világra kíváncsi: Aki esetleg rám kíváncsi:
45 Akik a mozgóképet szeretik Bevezetés a kvantum-informatikába (12 publikus felvétel) um-informatikaba
Informatika kvantum elveken: a kvantum bittől a kvantum számítógépig
Informatika kvantum elveken: a kvantum bittől a kvantum számítógépig A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT Egy egyszerű kérdés
Kvantum informatika és kommunikáció:
Kvantum informatika és kommunikáció: múlt jelen A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT IMRE SÁNDOR imre@hit.bme.hu BME Villamosmérnöki
Ahol a kvantum mechanika és az Internet találkozik
Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to
Kvantum mechanikával tunningolt klasszikus kommunikáció. Imre Sándor BME-HIT
Kvantum mechanikával tunningolt klasszikus kommunikáció Imre Sándor BME-HIT A kvantummechanika posztulátumai mérnöki megközelítésben 1. Posztulátum: kvantum bit Hilbert-tér 2. Posztulátum: logikai kapuk
Bevezetés a kvantum informatikába és kommunikációba 2019 tavasz. Motivációk + Admin
Bevezetés a kvantum informatikába és kommunikációba 2019 tavasz Motivációk + Admin Elérhetőségek Imre Sándor, Bacsárdi László (SoE) BME Hálózati Rendszerek és Szolgáltatások Tanszék IB 121, IB117 quant-course@mcl.hu
Kvantum informatika és kommunikáció 2017 ősz. Motivációk + Admin
Kvantum informatika és kommunikáció 2017 ősz Motivációk + Admin IBM kvantum számítógép hozzáférés! 2016-os újdonság!!! https://quantumexperience.ng.bluemix.net/ 2017.02.13. 2 Elérhetőségek Imre Sándor,
Az interferométer absztrakt áramköre (5)
Ismétlés Az interferométer absztrakt áramköre (5) Copyright 2005 John Wiley & Sons Ltd. Eredmény: Előállítottunk egy majdnem tetszőleges kvantumállapotot. Az egyedüli feltétel a globális fázishoz kapcsolódik.
Kvantum informatika és kommunikáció 2018 tavasz. Motivációk + Admin
Kvantum informatika és kommunikáció 2018 tavasz Motivációk + Admin Elérhetőségek Imre Sándor, Bacsárdi László (SoE) BME Hálózati Rendszerek és Szolgáltatások Tanszék IB 121, IB113 quant-course@mcl.hu 463
Labormérés tudnivalók
Ismétlés Labormérés tudnivalók X. 30 és XI. 6. A laboron nem kötelező részt venni. A két alkalom közül csak az egyikre kell bejönni. Jelentkezés a tárgy honalpján: http://www.mcl.hu/quantum//hird_t3.html
Bevezetés a kvantum-informatikába és kommunikációba 2016/2017 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2016/2017 tavasz Kvantumkapuk, áramkörök 2017. február 23. A kvantummechanika Posztulátumai, avagy, ahogy az apró dolgok működnek 1. Posztulátum: kvantum
Kvantum kommunikáció használata az őrtávközlésben
Budapesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Híradástechnikai Tanszék Kvantum kommunikáció használata az őrtávközlésben Bacsárdi László bacsardi@hit.bme.hu 2009. április
Kvantumkommunikációs kalandozások
Számítógép-hálózatok tehetségápolás 2014. október 16. Kvantumkommunikációs kalandozások Dr. Bacsárdi László NymE Simonyi Károly Kar, Informatikai és Gazdasági Intézet intézetigazgató, egyetemi docens BME
Kvantum-informatika és kommunikáció 2015/2016 ősz. A kvantuminformatika jelölésrendszere szeptember 11.
Kvantum-informatika és kommunikáció 2015/2016 ősz A kvantuminformatika jelölésrendszere 2015. szeptember 11. Mi lehet kvantumbit? Kvantum eszközök (1) 15=5 3 Bacsárdi Képek forrása: IBM's László, Almaden
Kvantumszámítógép a munkára fogott kvantummechanika
Kvantumszámítógép a munkára fogott kvantummechanika Széchenyi Gábor ELTE, Anyagfizikai Tanszék Atomoktól a csillagokig, 2019. április 25. Kvantumszámítógép a hírekben Egy új technológia 1940-es 1980-as
Gondolatok az űrkorszakról
Gondolatok az űrkorszakról Képtelenség a Holdra lőni, mert a leghevesebb robbanóanyag sem tud akkorát lőni, hogy eljusson a Holdra KVANTUMKOMMUNIKÁCIÓ AZ ŰRTÁVKÖZLÉSBEN Kvantum-informatika és kommunikáció
Bevezetés a kvantuminformatikába. kommunikációba 2015 tavasz. Első lépések a kvantuminformatikában február 19.
Bevezetés a kvantuminformatikába és kommunikációba 2015 tavasz Első lépések a kvantuminformatikában 2015. február 19. Mi lehet kvantumbit? Kvantum eszközök (1) 15=5 3 Bacsárdi Képek forrása: IBM's László,
KVANTUMKOMMUNIKÁCIÓ AZ ŰRTÁVKÖZLÉSBEN
KVANTUMKOMMUNIKÁCIÓ AZ ŰRTÁVKÖZLÉSBEN Kvantum-informatika és kommunikáció 2011. április 1., Budapest Bacsárdi László doktorjelölt BME Híradástechnikai Tanszék bacsardi@hit.bme.hu Gondolatok az űrkorszakról
Searching in an Unsorted Database
Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching
Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz Kvantumkapuk, áramkörök 2016. március 3. A kvantummechanika posztulátumai (1-2) 1. Állapotleírás Zárt fizikai rendszer aktuális állapota
A kvantumelmélet és a tulajdonságok metafizikája
A kvantumelmélet és a tulajdonságok metafizikája Szabó Gábor MTA Bölcsészettudományi Központ email: szabo.gabor@btk.mta.hu p. 1 Kvantumelmélet Kialakulása: 1900, Planck: energiakvantum 1905, Einstein:
Kvantum Kommunikáció Használata az Űrtávközlésben
Kvantum Kommunikáció Használata az Űrtávközlésben Bacsárdi László Budapesti Műszaki és Gazdaságtudományi Egyetem Híradástechnikai Tanszék Gondolatok az űrkorszakról Képtelenség a Holdra lőni, mert a leghevesebb
Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz)
Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) 1. Ön egy informatikus öregtalálkozón vesz részt, amelyen felkérik, hogy beszéljen az egyik kedvenc területéről. Mutassa be a szakmai
Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise
Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Gyöngyösi László gyongyosi@hit.bme.hu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Motiváció A kvantuminformatikáról
Bevezetés a kvantum-informatikába és kommunikációba 2016/2017 tavasz. Kvantumkommunikáció az űrtávközlésben május 4.
Bevezetés a kvantum-informatikába és kommunikációba 2016/2017 tavasz 2017. május 4. Biztató jelek - szabadtér 1991 első megvalósítás, 30 cm-es távon laboratóriumi körülmények között: 205 méter külső körülmények
2. kiszh április 19-én!
Ismétlés 2. kiszh április 19-én! Quantum Key Distribution Biztonsági kockázat Interea autem Gebarth episcopus venit in Geurinum (Iaurinum) et mittens epistolam ad Henricum caesarem, sciscitabatur ab eo,
Kvantumkommunikáció az űrtávközlésben május 10.
Kvantumkommunikáció az űrtávközlésben 2018. május 10. Bevezetés a kvantum-informatikába és kommunikációba, 2018 tavasz Dr. Bacsárdi László BME Hálózati Rendszerek és bacsardi@hit.bme.hu Hálózati Rendszerek
The problem. Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio:
Ismétlés The problem Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio: How to initialize? Quantum Phase Estimator Prob. amplitudes 2017.04.27. 5 Brutális! A H kapuk
IBM Brings Quantum Computing to the Cloud
IBM Brings Quantum Computing to the Cloud https://www.youtube.com/watch?v=dz2dcilzabm&feature=y outu.be 2016.05.05. 1 Ismétlés The problem Each unitary transform having eigenvector has eigenvalues in the
5.1 Környezet. 5.1.1 Hálózati topológia
5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
KVANTUMKOMMUNIKÁCIÓ AZ ŰRTÁVKÖZLÉSBEN
KVANTUMKOMMUNIKÁCIÓ AZ ŰRTÁVKÖZLÉSBEN Bevezetés a kvantum informatikába és kommunikációba 2014. április 3. Budapest Bacsárdi László óraadó BME Hálózati Rendszerek és bacsardi@hit.bme.hu Gondolatok az űrkorszakról
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai
Kvantumkriptográfia II.
LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket
Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)
Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Biztonságos kommunikáció kvantumalapú hálózatokban
BACSÁRDI LÁSZLÓ Biztonságos kommunikáció kvantumalapú hálózatokban Egy lassú folyamat Pár évtizeddel ezelőtt a technika területén izgalmas folyamat indult el: az analóg rendszerekről fokozatosan átálltunk
Kvantumkriptográfia III.
LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia
prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar
Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi
Rejtett részcsoportok és kvantum-számítógépek
Ivanyos Gábor MTA SZTAKI MTA, 2007 május 23. Kvantum bitek Kvantum kapuk Kvantum-ármakörök Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció,
Kvantum alapú hálózatok - bevezetés
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Hálózati Rendszerek és Szolgáltatások Tanszék Mobil Kommunikáció és Kvantumtechnológiák Laboratórium Kvantum alapú hálózatok
IP alapú távközlés. Virtuális magánhálózatok (VPN)
IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,
1. Fejezet: Számítógép rendszerek
1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
Bevezetés a kvantum informatikába és kommunikációba féléves házi feladat (2015/2016, tavasz)
Bevezetés a kvantum informatikába és kommunikációba féléves házi feladat (2015/2016, tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 5. oktatási hét csütörtöki
Shor kvantum-algoritmusa diszkrét logaritmusra
Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció
Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA
30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus
Bevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz Kvantumkapuk, áramkörök 2015. február 26. A kvantummechanika posztulátumai (1) 1. Állapotleírás Zárt fizikai rendszer aktuális állapota
Információs társadalom alapismeretek
Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)
Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás
2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális
Egy kvantumradír-kísérlet
Egy kvantumradír-kísérlet "Részecske vagyok, vagy hullám, Élek-e vagy ez a hullám? Megmondanám, hogyha tudnám, De mindent én sem tudhatok." Részlet a Fizikus Indulóból Tartalmi kivonat Bevezetés Feynman
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
Sapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++
Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens
A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási
A kvantumos összefonódás
A kvantumos összefonódás Asbóth János MTA Wigner Fizikai Kutatóközpont, Kvantumoptikai és Kvantuminformatikai Osztály Supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences Budapest,
Waldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
Utazások alagúteffektussal
Utazások alagúteffektussal Márk Géza István MTA Műszaki Fizikai és Anyagtudományi Kutatóintézet, Budapest http://www.nanotechnology.hu www.nanotechnology.hu Click into image to start animation www.nanotechnology.hu
Data Security: Public key
Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító
Mi is volt ez? és hogy is volt ez?
Mi is volt ez? és hogy is volt ez? El zmények: 60-as évek kutatási iránya: matematikai logika a programfejlesztésben 70-es évek, francia és angol kutatók: logikai programozás, Prolog nyelv 1975: Szeredi
2008.04.17. SZÁMÍTÁSTCHNIKA. Facskó Ferenc http://ffacsko.emk.nyme.hu/ Számítástechnika Informatika
SZÁMÍTÁSTCHNIKA INFORMÁCIÓS RENDSZEREK INFORMATIKA Facskó Ferenc http://ffacsko.emk.nyme.hu/ Számítástechnika Informatika 1 Információs rendszerek A technológiák befogadásának Nolan modellje Gibsonlappangás
KVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
Prímtesztelés, Nyilvános kulcsú titkosítás
Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények
3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
Útmutató a Computer Setup (F10) segédprogram használatához dx2300 minitorony
Útmutató a Computer Setup (F10) segédprogram használatához dx2300 minitorony HP Compaq üzleti célú számítógép Copyright 2007 Hewlett-Packard Development Company, L.P. Az itt közölt információ értesítés
IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:
IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3
Összefonódottság detektálása tanúoperátorokkal
Összefonódottság detektálása tanúoperátorokkal Tóth Géza Max-Plank-Intitute für Quantenoptik, Garching, Németország Budapest, 2005. október 4. Motiváció Miért érdekes a kvantum-informatika? Alapvető problémák
Kvantum-kommunikáció komplexitása I.
LOGO Kvantum-kommunikáció komplexitása I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Klasszikus információ n kvantumbitben Hány klasszikus bitnyi információ nyerhető ki n kvantumbitből? Egy
Hitelesítés elektronikus aláírással BME TMIT
Hitelesítés elektronikus aláírással BME TMIT Generátor VIP aláíró Internet Visszavont publikus kulcsok PC Hitelesítő központ Hitelesített publikus kulcsok Aláíró Publikus kulcs és személyes adatok hitelesített
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek
Kriptográfia házi használatra Szeptember 26
Kriptográfia házi használatra 1 / 16 Kriptográfia házi használatra Csirmaz László CEU Rényi ELTE 2018 Szeptember 26 Kriptográfia házi használatra 2 / 16 A fagylaltos kocsik hová álljanak? Szomszédos sarkokon
A fény és az igazi véletlen
A fény és az igazi véletlen Kiss Tamás Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont Kvantummérés Lendület csoport Fény A világ teremtése 1 Kezdetben teremtette Isten a mennyet és a földet. 2
Kvantum összefonódás és erősen korrelált rendszerek
Kvantum összefonódás és erősen korrelált rendszerek MaFiHe TDK és Szakdolgozat Hét Szalay Szilárd MTA Wigner Fizikai Kutatóközpont, Szilárdtest Fizikai és Optikai Intézet, Erősen Korrelált Rendszerek Lendület
Kvantumparadoxonoktól a kvantumtechnikáig. A munkára fogott kísérteties hatás
Kvantumparadoxonoktól a kvantumtechnikáig A munkára fogott kísérteties hatás I. Mi egy részecske? Mérhető tulajdonságok halmaza 1 foton: [k=hullámszám, Ԧe= haladási irány, Ԧε=polarizáció] ԦeԦε = 0 polarizáció
Kriptográfia I. Kriptorendszerek
Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás
Adat és információvédelem Informatikai biztonság. Dr. Beinschróth József CISA
Adat és információvédelem Informatikai biztonság Dr. Beinschróth József CISA Tematika Hol tartunk? Alapfogalmak, az IT biztonság problematikái Nemzetközi és hazai ajánlások Az IT rendszerek fenyegetettsége
Az NMR és a bizonytalansági elv rejtélyes találkozása
Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT
Kognitív Infokommunikáció: egy ébredő interdiszciplína. Baranyi Péter DSc
Kognitív Infokommunikáció: egy ébredő interdiszciplína Baranyi Péter DSc Távközlési és Médiainformatika Tanszék, Budapesti Műszaki és Gazdaságtudományi Egyetem *** 3D Internet alapú Kontrol és Kommunikáció
Kvantum-hibajavítás II.
LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba
Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT
NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek
Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41
Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
ÓBUDAI EGYETEM KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR. Villamosmérnök szak
2018/2019. tanév 2. félév 1. Matematika II. 42438 Valószínűség számítás és Mat. statisztika 2.500,- 2. Informatika labor I. Nincs kötelezően előírt jegyzet 3. Villamosipari Nincs kötelezően előírt jegyzet
A nyilvános kulcsú infrastruktúra önálló kialakításának szükségessége
A nyilvános kulcsú infrastruktúra önálló kialakításának szükségessége Spisák Andor Bármely szervezet esetében, amely PKI szolgáltatásokat kíván igénybe venni, felmerül a kérdés, önálló PKI létrehozásánál
Dr. Illés Zoltán zoltan.illes@elte.hu
Dr. Illés Zoltán zoltan.illes@elte.hu Operációs rendszerek kialakulása Op. Rendszer fogalmak, struktúrák Fájlok, könyvtárak, fájlrendszerek Folyamatok Folyamatok kommunikációja Kritikus szekciók, szemaforok.
Alacsony fogyasztású IoT rádiós technológiák
Alacsony fogyasztású IoT rádiós technológiák Fehér Gábor - BME Távközlési és Médiainformatikai Tanszék 4. Magyar Jövő Internet Konferencia és Okos Város Kiállítás 2017. november 8. Miről is lesz szó? Miért
megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Információs társadalom
SZÓBELI TÉMAKÖRÖK INFORMATIKÁBÓL 2015. Információs társadalom Kommunikáció fogalma, fajtái, általános modellje. Példák. A jel, adat, információ, zaj és a redundancia fogalma. Példák. Különbség a zaj és
RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem
RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok
Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise
Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise - kimerítő kulcskeresés: határa ma 64 bit számítási teljesítmény költsége feleződik 18 havonta 25 éven belül 80 bit - differenciális kriptoanalízis:
OKJ 54 523 02 Elektronikai technikus Központi előírás szerint az elmélet/gyakorlat aránya 40/60%
OKJ 54 523 02 Elektronikai technikus Központi előírás szerint az elmélet/gyakorlat aránya 40/60% 11500-12 Munkahelyi egészség és biztonság Munkahelyi egészség és biztonság 0,5 0,5 0,5 11499-12 Foglalkoztatás
Emlékeztet! matematikából
Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod
1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:
Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,
Néhány kockadobással kapcsolatos feladat 1 P 6
Néhány kockadobással kapcsolatos feladat Feldobunk egy kockát. Az eseménytér: ; 2; ; ; ; Az összes esetek száma:. Feldobunk egy kockát. Mi a valószínűsége, hogy hatost dobunk? A kedvező esetek száma: (hatost
Szakdolgozat, diplomamunka és TDK témák (2008. 09. 01-2012. 01. 04.)
Szakdolgozat, diplomamunka és TDK témák (2008. 09. 01-2012. 01. 04.) Felvehető szakdolgozat, diplomamunka és TDK témák (2012. 01. 04.) 1. Vezérlés, számolás és képfeldolgozás FPGA-n és/vagy GPU-val (BsC,
12-13. Informatika E FAKT 2013-12-05 , = ±
2-3. Informatika E FAKT 203-2-05 if (feltétel) then todo todo if ( == ) //elágazás case (érték) todo case (érték2) todo2 todo switch () case : Console.WriteLine("nem, nem 2");. Írjuk meg a fenti folyamatábrán
FELHŐ és a MAINFRAME. Irmes Sándor
FELHŐ és a MAINFRAME Irmes Sándor Változik az üzleti környezet Zavaró tényezők viharában Gartner: nexus of forces (összehangolt erőterek) Social: Mindenhol elérhető kapcsolattartás, egyre gazdagabb tartalommal