Sapientia Egyetem, Műszaki és Humántudományok Tanszék.
|
|
- Gábor Emil Vass
- 7 évvel ezelőtt
- Látták:
Átírás
1 Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia 2017
2 Miről volt szó az elmúlt előadáson? A Crypto++ könyvtárcsomag A OpenSSL könyvtárcsomag Az NTL könyvtárcsomag Nagyszámok kezelése, C# Nagyszámok kezelése, Java Az RSA titkosító rendszer: specifikáció, példa Valószínűségi prímtesztek A kínai maradéktétel Faktorizációhoz kapcsolódó problémák
3 Miről lesz szó? a Rabin titkosító a diszkrét logaritmus probléma, primitív gyök (generátor elem) meghatározása. diszkrét logaritmus problémán alapuló rendszerek: Diffie-Hellman kulcscsere
4 A Rabin titkosító rendszer 1979-ben publikálta Michael O. Rabin, azt a lehetőséget vizsgálja, amikor az RSA titkosítás során az e = 2 értéket választjuk ha e = 2, akkor nem létezik inverz, mert phi mindig páros, ezért lnko(e, phi) 1 a visszafejtést más aritmetikai műveletek határozzák meg Gen, a kulcs-generáló algoritmus: (p, q) R Gen(1 k ), ahol p q 3 (mod 4), n = p q, p k = (n), s k = (p, q), Enc (n) a rejtjelező algoritmus: c m 2 Dec (p,q) a visszafejtő algoritmus: m c 1 2 (mod n), (mod n).
5 A Rabin titkosító, biztonság A visszafejtés nem egyértelmű: 4 lehetséges visszafejtett szöveg közül kell kiválsztani a megfelelőt, a visszafejtés lépéssorozata, alkalmazzuk a kínai maradéktételt: m p = c (p+1)/4 (mod p), m q = c (q+1)/4 (mod q), kiterjesztett Euklideszi algoritmussal meghatározzuk p 1, q 1 -t, jelöljük rendre x, y-al, azaz x p + y q = 1, m 1 = (x p m q + y q m p) (mod n), m 2 = (x p m q y q m p) (mod n) m 1, m 1, m 2, m 2 lesz a 4 megoldás.
6 A Rabin titkosító rendszer, példa legyen p = 11, és q = 31 n = 341, legyen m = 42, a nyílt-szöveg, titkosítás: c = 42 2 = 59 (mod 341), visszafejtés: 11 = 31 = 3 (mod 4) 59 (11+1)/4 = 9 (mod 11), 59 (31+1)/4 = 20 (mod 31), kiterjesztett Euklideszi algoritmussal: 31 1 = 5, 11 1 = 17, azaz = 341, m 1 = ( ) = 20 (mod 341), m 2 = ( ) = 20 (mod 341), m 3 = ( ) = 42 (mod 341), m 4 = ( ) = 42 (mod 341),
7 A Rabin titkosító, biztonság A visszafejtés fenti képletét azért lehet alkalmazni, mert p q 3 (mod 4), sokkal hatékonyabb, mint az RSA, megmutatható, hogy a Rabin rendszer feltörése ugyanolyan nehézségű, mint a fakorizációs probléma, ez nem igaz a textbook RSA-ra, az RSA-nál vett feltörési stratégiák egy része itt is alkalmazható, újabb változata (2001, Boneh) ellenáll a CCA támadásnak (az egyik legerősebb támadási mód), illetve egyértelmű a visszafejtése hasonlóan az RSA-hoz kulcscsere és hitelesítési protokollokban használják.
8 A diszkrét logaritmus (DL) probléma Számos kriptorendszer biztonsága alapszik a DL problémán. Az egész számok Z p multiplikatív csoportja esetében, ahol p prímszám a DL probléma a következő: az A, g-alapú diszkrét logaritmusa (mod p) szerint azt jelenti, hogy megkeressük azt az a pozitív egész számot, melyre fennáll: g a A (mod p), ahol g primitív gyök (generátor elem), és g, A Z p. A g szám primitív gyök (mod p) szerint, ha g hatványai 1-től, φ(p)-ig, azaz g, g 2, g 3,..., g φ(p), különböző maradékot adnak (mod p) szerint. A primitív gyök egy sajátos esetét jelenti a multiplikatív csoportok generátor elemének.
9 Adott primitív gyök meghatározása A p > 2 prímszám és g Z p esetében g akkor és csakis akkor primitív gyök (mod p) szerint, ha g (p 1)/q 1 (mod p), bármely q prímszám esetében, ahol q (p 1). Ha ismert a p 1 prímtényezős felbontása, akkor egyszerű meghatározni a primitív gyököt nem hatékony algoritmus. Ha p = 2 q + 1, ahol p, q páratlan prímszámok, akkor g primitív gyök (mod p) szerint, ahol g ±1 (mod p), akkor és csakis akkor, ha g q = p 1 (mod p) hatékony algoritmus.
10 Adott primitív gyök meghatározása, példa Legyen p = 13, p 1 = 12 = 2 2 3, g = 7 primitív gyök? Igen, mert 7 4 = 9 1 (mod 13) és 7 6 = 12 1 (mod 13). g = 9 primitív gyök? Nem, mert 9 4 = 9 1 (mod 13) és 9 6 = 1 (mod 13). Legyen p = 47, p 1 = 46 = 2 23, g = 13 primitív gyök? Igen, mert = 46 (mod 47). g = 3 primitív gyök? Nem, mert 3 23 = 1 (mod 47).
11 Diffie-Hellman kulcscsere 1976-ban publikálták a szerzők, két távoli egység (számítógép, mobileszköz, stb.) kulcscsere mechanizmusára, hitelesítésére ad megoldást. Feltételezve, hogy a kommunikációban résztvevő két legális fél Alice és Bob, akkor a protokoll a következő: 1. Alice és Bob egy központi szervertől lekéri a p, k-bites prímszámot, és a g primitív gyököt (mod p) szerint, 2. Alice a k, p, g ismeretében meghatározza az a, A értékeket, ahol: a {2,..., p 2} véletlen szám, A = g a (mod p), az a értékét titokban tartja, A-t pedig elküldi Bobnak.
12 Diffie-Hellman kulcscsere 3. Bob a k, p, g ismeretében meghatározza a b, B értékeket, ahol: b {2,..., p 2} véletlen szám, B = g b (mod p), a b értékét titokban tartja, B-t pedig elküldi Alicenak. 4. Alice a közös K kulcsot a kövekezőképpen határozza meg: K = B a (mod p). 5. Bob a közös K kulcsot a kövekezőképpen határozza meg: Helyesség: K = A b (mod p). K = A b = B a = g ab (mod p).
13 Diffie-Hellman kulcscsere, példa Legyen p = 47, g = 13, Alice : választja a = 12-t A = g a (mod p) = 9 (mod 47), elküldi Bobnak az A = 9 értéket. Bob: választja b = 34-t B = g b (mod p) = 21 (mod 47), elküldi Alicenak a B = 21 értéket. Alice: K = B a (mod p) = = 16 (mod 47), Bob: K = A b (mod p) = 9 34 = 16 (mod 47). a közös kulcs: K = 16.
14 Diffie-Hellman kulcscsere, biztonság lassú áttérés a (mod p) aritmetikáról az elliptikus görbékre, nem biztonságos egy aktív támadó esetében (man in the meedle): egy C támadó kiadja magát A-nak, mint B, illetve kiadja magát B-nek, mint A, A irányába, a közös kulcs K 1 = g a ˆb, B irányába, a közös kulcs K 2 = g â b,
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító
Részletesebben2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
RészletesebbenSapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai
RészletesebbenSapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek
Részletesebben2017, Diszkrét matematika
Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,
RészletesebbenData Security: Public key
Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.
RészletesebbenSapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 2 előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@mssapientiaro 2016 Miről volt szó az elmúlt előadáson? Félévi áttekintő
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
RészletesebbenSapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? AES (Advanced
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Részletesebben2018, Diszkre t matematika. 8. elo ada s
Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Részletesebben2016, Diszkrét matematika
Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös
RészletesebbenSapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 2. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Követelmények,
RészletesebbenEmlékeztet! matematikából
Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod
RészletesebbenKészítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens
A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási
Részletesebben2016, Diszkrét matematika
Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat
RészletesebbenSapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 3. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019 Miről volt szó az elmúlt előadáson? Klasszikus kriptográfiai
Részletesebben4. Előadás Titkosítás, RSA algoritmus
4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)
RészletesebbenSapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító
RészletesebbenRSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
RészletesebbenSapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények
Részletesebben1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:
Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,
RészletesebbenMinden egész szám osztója önmagának, azaz a a minden egész a-ra.
1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz
RészletesebbenInformációs társadalom alapismeretek
Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)
RészletesebbenMódszerek és eszközök a kriptográfia oktatásakor
Módszerek és eszközök a kriptográfia oktatásakor Márton Gyöngyvér mgyongyi@ms.sapientia.ro Sapientia Erdélyi Magyar Tudományegyetem, Románia Absztrakt. Digitális világunkban naponta találkozunk olyan alkalmazásokkal
Részletesebbenmegtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
RészletesebbenWaldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
RészletesebbenRSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem
RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok
Részletesebben2015, Diszkrét matematika
Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:
RészletesebbenKriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT
NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek
RészletesebbenKriptográfiai alapfogalmak
Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális
RészletesebbenFábián Zoltán Hálózatok elmélet
Fábián Zoltán Hálózatok elmélet Információ fajtái Analóg az információ folytonos és felvesz minden értéket a minimális és maximális érték között Digitális az információ az idő adott pontjaiban létezik.
RészletesebbenSzámelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
RészletesebbenSzA XIII. gyakorlat, december. 3/5.
SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?
RészletesebbenSapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 1. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016 Követelmények, osztályozás Jelenlét: A laborgyakorlat
Részletesebben2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
RészletesebbenAlgoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
RészletesebbenDr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás
2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális
RészletesebbenBiztonságos kulcscsere-protokollok
Biztonságos kulcscsere-protokollok Összefoglalás (Victor Shoup: On Formal Methods for Secure Key Exchange alapján) II. rész Tóth Gergely 1 Bevezetés A következőkben a Shoup által publikált cikk fő vonulatának
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Részletesebben2016, Diszkrét matematika
Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
Részletesebben2016, Diszkrét matematika
Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,
RészletesebbenTitkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...
Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus
RészletesebbenAdat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA
30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus
RészletesebbenTitkosítási rendszerek CCA-biztonsága
Titkosítási rendszerek CCA-biztonsága Doktori (PhD) értekezés szerző: MÁRTON Gyöngyvér témavezető: Dr. Pethő Attila Debreceni Egyetem Természettudományi Doktori Tanács Informatikai Tudományok Doktori Iskola
RészletesebbenElektronikus aláírás. Gaidosch Tamás. Állami Számvevőszék
Elektronikus aláírás Gaidosch Tamás Állami Számvevőszék 2016.05.24 Tartalom Mit tekintünk elektronikus aláírásnak? Hogyan működik? Kérdések 2 Egyszerű elektronikus aláírás 3 Demo: valódi elektronikus aláírás
RészletesebbenPrímtesztelés, Nyilvános kulcsú titkosítás
Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenKvantumkriptográfia II.
LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket
Részletesebben3. Kriptográfia (Jörg Rothe)
3. Kriptográfia (Jörg Rothe) Ebben a fejezetben a kriptográában használatos protokollokat, valamint alapveto problémákat és algoritmusokat mutatunk be. A kriptográában jellemzo egyik alaphelyzetet láthatjuk
RészletesebbenTANTÁRGYI ADATLAP. 2.7 A tantárgy jellege DI
TANTÁRGYI ADATLAP 1. Programadatok 1.1 Intézmény Sapientia, Erdélyi Magyar Tudományegyetem 1.2 Kar Műszaki és Humántudományok 1.3 Intézet Matematika Informatika 1.4 Szak Informatika 1.5 Tanulmányi típus
Részletesebben2018, Diszkrét matematika
Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenDiszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
RészletesebbenSzámelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
RészletesebbenEgyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
RészletesebbenNyilvános kulcsú titkosítás RSA algoritmus
Nyilvános kulcsú titkosítás RSA algoritmus OpenPGP NYILVÁNOS KULCSÚ TITKOSÍTÁS Legyen D a titkosítandó üzenetek halmaza. Tegyük fel, hogy Bob titkosítottan szeretné elküldeni Aliznak az M D üzenetet. A
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Részletesebben2. Tétel (Az oszthatóság tulajdonságai). : 2. Nullát minden elem osztja, de. 3. a nulla csak a nullának osztója.
Számelmélet és rejtjelezési eljárások. (Számelméleti alapok. RSA és alkalmazásai, Die- Hellman-Merkle kulcscsere.) A számelméletben speciálisan az egész számok, általánosan a egységelemes integritási tartomány
RészletesebbenSSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába
SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record
RészletesebbenA nyilvános kulcsú algoritmusokról. Hálózati biztonság II. A nyilvános kulcsú algoritmusokról (folyt.) Az RSA. Más nyilvános kulcsú algoritmusok
Hálózati biztonság II. Mihalik Gáspár D(E(P))=P A nyilvános kulcsú algoritmusokról A két mővelet (D és E) ezeknél az algoritmusoknál ugyanaz: D(E(P))=P=E(D(P)), viszont más kulcsokkal végzik(!), ami azt
RészletesebbenHírek kriptográfiai algoritmusok biztonságáról
Hírek kriptográfiai algoritmusok biztonságáról Dr. Berta István Zsolt K+F igazgató Microsec Kft. http://www.microsec.hu Mirıl fogok beszélni? Bevezetés Szimmetrikus kulcsú algoritmusok
Részletesebben2018, Diszkrét matematika
Diszkrét matematika 5. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? Python alapfogalmak:
Részletesebbenilletve a n 3 illetve a 2n 5
BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)
RészletesebbenNegatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
Részletesebben2018, Diszkrét matematika
Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenKongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
RészletesebbenBevezetés az Információtechnológiába
Dr. Kovács János Informatika Tanszék Bevezetés az Információtechnológiába MÉRNÖK- ÉS GAZDASÁGINFORMATIKA ALAPSZAK 2016 5. KÓDOLÁS 2. KRIPTOLÓGIA A TITKOSÍTÁS szerepe, módszerek, 2 Hálózatbiztonság alapelvei
RészletesebbenSzámelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenAdatbiztonság 1. KisZH (2010/11 tavaszi félév)
Adatbiztonság 1. KisZH (2010/11 tavaszi félév) Ez a dokumentum a Vajda Tanár úr által közzétett fogalomlista teljes kidolgozása az első kiszárthelyire. A tartalomért felelősséget nem vállalok, mindenki
RészletesebbenMintafeladat az RSA algoritmus szemléltetésére
Mintafeladat az RSA algoritmus szemléltetésére Feladat Adottak a p = 269 és q = 24 prímszámok, továbbá az e = 5320 nyilvános kulcs és az x = 48055 nyílt szöveg. Számolja ki n = p q és ϕ(n) értékét! Igazolja
RészletesebbenInformatikai biztonság alapjai
Informatikai biztonság alapjai 4. Algoritmikus adatvédelem Pethő Attila 2008/9 II. félév A digitális aláírás felfedezői Dr. Whitfield Diffie és Martin E. Hellman (1976) a nyilvános kulcsú titkosítás elvének
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Részletesebben5.1 Környezet. 5.1.1 Hálózati topológia
5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert
RészletesebbenDiszkréció diszkrét logaritmussal
Diszkréció diszkrét logaritmussal Professzor dr. Czédli Gábor. SZTE, Bolyai Intézet 2012. április 28. http://www.math.u-szeged.hu/ czedli/ 1 Számolás modulo p Czédli 2012.04.28 2 /18 Alapok: számolás modulo
RészletesebbenKriptográai protokollok
Eötvös Loránd Tudományegyetem Természettudományi Kar Operációkutatási tanszék Kriptográai protokollok Villányi Viktória Ildikó Egyetemi adjunktus Szabó Zsuzsanna Elemz matematikus BSc Budapest, 2017 Tartalomjegyzék
RészletesebbenEötvös Loránd Tudományegyetem
Eötvös Loránd Tudományegyetem Természettudományi Kar Fejezetek a Bonyolultságelméletből Szakdolgozat Hrubi Nóra Matematika Bsc Matematikai elemző szakirány Konzulens: Korándi József Adjunktus Budapest
RészletesebbenWaldhauser Tamás. Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb.
BEVEZETÉS A SZÁMELMÉLETBE vázlat az előadáshoz (2014 őszi félév) Waldhauser Tamás 1. Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében Az oszthatósági reláció alapvető tulajdonságai
RészletesebbenBevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok 2 H406 2016-09-13,15,18 Wettl Ferenc
RészletesebbenPolinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
RészletesebbenAlapvető polinomalgoritmusok
Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.
RészletesebbenDan Brown Digitális erődje és a nyilvános kulcsú titkosítás
EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Dan Brown Digitális erődje és a nyilvános kulcsú titkosítás BSc Szakdolgozat Készítette: Fekete Ildikó Elemző matematika szakos hallgató Témavezető:
RészletesebbenFelhasználók hitelesítése adatbiztonság szállításkor. Felhasználóknak szeparálása
Szabó Zsolt adatbiztonság tároláskor Felhasználók hitelesítése adatbiztonság szállításkor Felhasználóknak szeparálása jogi és szabályozási kérdések incidens kezelés öntitkosító meghajtókat Hardveres Softveres
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
RészletesebbenModern titkosírások és a matematika
Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások
RészletesebbenSZÁMELMÉLETI FELADATOK
SZÁMELMÉLETI FELADATOK 1. Az 1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4 számokat a pitagoreusok háromszög számoknak nevezték, mert az összeadandóknak megfelelő számú pont szabályos háromszög alakban
RészletesebbenData Security: Protocols Integrity
Integrity Az üzenethitelesítés (integritásvédelem) feladata az, hogy a vételi oldalon detektálhatóvá tegyük azon eseményeket, amelyek során az átviteli úton az üzenet valamilyen módosulást szenvedett el.
RészletesebbenTitkosítás NetWare környezetben
1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt
RészletesebbenKriptográfia I. Kriptorendszerek
Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás
RészletesebbenTUDOMÁNYOS DIÁKKÖRI DOLGOZAT. A nyílt kulcsú titkosítás és a digitális aláírás
Budapesti Műszaki Főiskola Kandó Kálmán Villamosmérnöki Főiskolai Kar Műszertechnikai és Automatizálási Intézet TUDOMÁNYOS DIÁKKÖRI DOLGOZAT A nyílt kulcsú titkosítás és a digitális aláírás Szerző: Fuszenecker
RészletesebbenIP alapú távközlés. Virtuális magánhálózatok (VPN)
IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,
RészletesebbenAhol a kvantum mechanika és az Internet találkozik
Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to
Részletesebben