Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sapientia Egyetem, Műszaki és Humántudományok Tanszék."

Átírás

1 Kriptográfia és Információbiztonság 2 előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@mssapientiaro 2016

2 Miről volt szó az elmúlt előadáson? Félévi áttekintő Könyvészet Történelmi háttér Klasszikus kriptográfiai rendszerek: Eltolásos rejtjelezések: Caesar-titkosító, Keyword Caesar

3 Miről lesz szó? Klasszikus kriptográfiai rendszerek, matematikai modell Helyettesítéses rejtjelezés: affin-titkosító, Mátrixos rejtjelezés: Hill módszere az NTL könyvtárcsomag

4 A klasszikus titkosítás matematikai modellje Legyen M a nyílt-szövegek egy véges halmaza, C a rejtjelezett-szövegek egy véges halmaza, K a kulcsok egy véges halmaza Három algoritmust értelmezünk: Gen, a kulcs-generáló algoritmus, meghatározza a key kulcsot, Enc key a rejtjelező algoritmus, a key kulcs alapján, meghatározza az m M nyílt-szöveg rejtjelezett értékét: c Enc key (m), Dec key a visszafejtő algoritmus, a key kulcs alapján visszafejti a c rejtjelezett-szöveget: m Dec key (c) A rendszer helyessége érdekében megköveteljük: Dec key (Enc key (m)) m, minden m M esetében Számos klasszikus titkosítási rendszer létezik: Caesar, Vigenere, Palyfair, Hill, stb

5 Az Affin rejtjelezés helyettesítéses, monoalfabetikus rejtjelezés, M C {0, 1,, 25} Z 26, K {(a, b) Z 26, gcd(a, 26) 1}, key (a, b): Enc(m) (a m + b) (mod 26), Dec(c) a 1 (c b) (mod 26) Megjegyzés: 1 a 1, az a multiplikatív inverze (mod 26) szerint: Feltörési módszerek: a a 1 1 (mod 26) 1 gyakoriság vizsgálat, 2 az összes lehetséges kulcs kipróbálása, kulcsok száma: 312, 3 ismert nyílt-szöveg támadás: ha rendelkezünk két betű rejtjelezett értékével

6 Az Affin rejtjelezés - példa Ha a kulcs (5, 2) és a nyílt-szöveg a következő: akkor a titkosított-szöveg: AMATHEMATICIAN, CKCTLWKCTQMQCP, ahol a titkosított-szöveg első 6 karakterét a következőképpen határoztuk meg: A > C : ( ) 2 (mod 26) M > K : ( ) 10 (mod 26) A > C : ( ) 2 (mod 26) T > T : ( ) 19 (mod 26) H > L : ( ) 11 (mod 26) E > W : ( ) 22 (mod 26) A visszafejtéshez szükséges kulcs: (21, 2), mert (mod 26), azaz, 5 multiplikatív inverze (mod 26) szerint 21

7 Az Affin rejtjelezés - ismert nyílt-szöveg támadás Ha ismertek az m 1, m 2, c 1, c 2, akkor a következő kongruencia-rendszer megoldásával, megállapítható a titkosításhoz használt (a, b) kulcs: m 1 a + b c 1 (mod 26) m 2 a + b c 2 (mod 26) (m 1 m 2 ) a (c 1 c 2 ) (mod 26) a (m 1 m 2 ) 1 (c 1 c 2 ) (mod 26) b (c 1 m 1 a) (mod 26) vagy b (c 2 m 2 a) (mod 26) Ha létezik multiplikatív inverz, akkor az meghatározható : a kiterjesztett Euklideszi algoritmussal, az összes érték kipróbálásával (26 szorzás szükséges)

8 Hill módszere, példa, titkosítás 1929-ben publikálta Lester S Hill, polialfabetikus rendszer, az első blokk titkosítók egyike Legyen d 2, az egyszerre titkosítható szimbólumok száma, M C Z 2 26, és ( ) 3 3 key, 2 1 ha a nyílt szöveg: AM AT HE MA TI CI AN, akkor a titkosított szöveg: KM FT HQ KC DW EE NN, az első két betű-tömb titkosítása: ( ) ( ) ( 3 3 A M 2 1 ( ) ( A T ) ( ) ( 0 12 ) ( 0 19 ) ( ) ( 5 19 ) ( K M ) ( F T ), )

9 Hill módszere, példa, visszafejtés a visszafejtéshez meg kell határoznunk a kulcs inverz értékét, azaz a determináns, majd az inverz mátrix értékét ( ) 3 3 key esetében (det key) 1 3 ( 2) 3 9, 2 1 gcd(9, 26) 1 (det key)-nek létezik inverze, ahol (det key) 1 3, mert (mod 26) ( ) 1 3 az adjungált mátrix: (adj key) 2 3 az inverz mátrix: key 1 (det key) 1 (adj key) 3 az első két betű-tömb visszafejtése: ( ) ( ) ( 3 9 K M 6 9 ( ) ( F T ) ( ( ) ( ) ( 5 19 ) ( ) ( 0 12 ) ( 0 19 ) ) ( A M ) ( A T ), )

10 Hill módszere, általános esetben M C Z d 256, a key egy d d-es mátrix, melynek elemei Z 256, jelöljük a mátrix i, j elemét k i,j -vel, legyen m (m 1, m 2, m d ) M a nyílt szöveg egy d hosszúságú blokkja, melyet egy lépésben fogunk titkosítani, a titkosítás során meghatározzuk a nyílt szöveg egy lineáris transzformációját: c (c 1, c 2, c d )-t,

11 Hill módszere Enc key (m) : c key m (c 1, c 2, c d ) k 1,1 k 1,2 k 1,d k 2,1 k 2,2 k 2,d k d,1 k d,2 k d,d m 1 m 2 m d Dec key (c) key 1 c key 1 létezik, ha (det key) (det key) 1 1 (mod 256), key 1 (det key) 1 (adj key) (mod 256), ahol (adj key) az adjungált mátrix ha d 2, akkor egyszerűen meghatározható az inverz mátrix ( ) ( ) k1,1 k key 1,2 és key k 2,1 k 1 (det key) 1 k2,2 k 1,2 2,2 k 2,1 k 1,1 általános esetben több algoritmus is létezik C++ alatt lehet használni Shoup NTL könyvtárcsomagját

12 Az NTL könyvtárcsomag Victor Shoup: NTL könyvtárcsomag (Windows és Linux disztribuciók) A statikus könyvtár létrehozása (Win): töltsük le és csomagoljuk ki a, pl a WinNTL mappába: hozzunk létre egy új projektet: New Project Win32 ConsoleApplication, adjunk egy nevet a projektnek, legyen ez NTLLib, jelöljük be a Static library opciót ne legyen bejelölve a Precompiled header opció, a Source Files-hoz az Add Existing Item menüpont segítségével adjuk hozzá a WinNTL\src mappából az összes állományt, a Project/NTLLib/Properties menüpontnál az Additional Include Directories-nél adjuk meg a header állományok elérési útvonalát: \WinNTL\include a Build\Bulid\Solution parancs megadásával létrejön a NTLLib\Debug mappában a statikus könyvtár

13 Az NTL könyvtárcsomag, használat Hozzunk létre egy új projektet: New Project Win32 Console Application, adjunk egy nevet a projektnek, legyen ez Labor6, jelöljük be a Empty project opciót a Labor6 project-hez az Add Existing Item menüpont segítségével adjuk hozzá az NTLLib Debug mappából a létrehozott statikus könyvtárat, a Project/NTLLib/Properties menüpontnál az Additional Include Directories-nél adjuk meg a header állományok elérési útvonalát: \WinNTL\include

14 Az NTL könyvtárcsomag, használat a forráskódba: #ifndef _ZZ_ #define _ZZ_ #include <NTL/ZZh> #include <NTL/matrixh> #include <NTL/mat_ZZh> #endif NTL_CLIENT ZZ d; a nagy számok kezelésére szolgáló típus, Mat<ZZ> A; mátrix kezelésére alkalmas típus, ASetDims(n, n); az A mátrix méretének a beálĺıtása, ANumRows(); sorméret lekérdezés, ANumCols(); oszlopméret lekérdezés, inv(d, inva, A, 0); meghatározza az A mátrix determinánsát, a d változóba illetve azt az inva mátrixot, amelyre teljesül: (A * inva) / d I

15 Hill módszere - ismert nyílt-szöveg támadás, d 2 Ha ismertek az m, ˆm, c, ĉ, tömb-párok értékei, ahol az m rejtjelezett értéke c és az ˆm) rejtjelezett értéke ĉ), akkor a következő rendszer megoldásával, megállapítható a titkosításhoz használt key kulcs, ( ) ( ) ( ) ( ) m1 c1 ˆm1 ĉ1 legyen m, c, ˆm, ĉ, m 2 c 2 ˆm 2 ĉ 2 feĺırható: ( ) ( ) m1 ˆm key 1 c1 ĉ 1 m 2 ˆm 2 c 2 ĉ 2 ( ) ( ) 1 c1 ĉ key 1 m1 ˆm 1 c 2 ĉ 2 m 2 ˆm 2 hasonló támadási stratégia alkalmazható nagyobb blokk méret esetében

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 2. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? AES (Advanced

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 3. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019 Miről volt szó az elmúlt előadáson? Klasszikus kriptográfiai

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

2016/11/27 08:42 1/11 Kriptográfia. Titkosítás rejtjelezés és adatrejtés. Rejtjelezés, sifrírozás angolosan: cipher, crypt.

2016/11/27 08:42 1/11 Kriptográfia. Titkosítás rejtjelezés és adatrejtés. Rejtjelezés, sifrírozás angolosan: cipher, crypt. 2016/11/27 08:42 1/11 Kriptográfia < Kriptológia Kriptográfia Szerző: Sallai András Copyright Sallai András, 2011, 2014, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés Titkosítás

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

Kriptográfiai alapfogalmak

Kriptográfiai alapfogalmak Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

2017, Diszkrét matematika

2017, Diszkrét matematika Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:

Részletesebben

Modern titkosírások és a matematika

Modern titkosírások és a matematika Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.

Részletesebben

Elemi alkalmazások fejlesztése I.

Elemi alkalmazások fejlesztése I. Steingart Ferenc el adása alapján készítette: Szabóné Nacsa Rozália Integrált fejleszt környezet Linux MS Win* www.kdevelop.org www.bloodshed.net Bevezetés 1 A kdevelop f ablaka Editor és böngész Projektszerkezet

Részletesebben

Hardver modellezés SystemC-vel és SDL grafikus könyvtárral Visual Stúdió alatt

Hardver modellezés SystemC-vel és SDL grafikus könyvtárral Visual Stúdió alatt BME Hardver modellezés SystemC-vel és SDL grafikus könyvtárral Visual Stúdió alatt Visual Studio, SystemC, SDL Tóth Gergely Endre 2013.03.18. 1 Bevezetés Ebben a dokumentumban leírom, hogy hogyan lehet

Részletesebben

4. Előadás Titkosítás, RSA algoritmus

4. Előadás Titkosítás, RSA algoritmus 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

Fábián Zoltán Hálózatok elmélet

Fábián Zoltán Hálózatok elmélet Fábián Zoltán Hálózatok elmélet Információ fajtái Analóg az információ folytonos és felvesz minden értéket a minimális és maximális érték között Digitális az információ az idő adott pontjaiban létezik.

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

3. Kriptográfia (Jörg Rothe)

3. Kriptográfia (Jörg Rothe) 3. Kriptográfia (Jörg Rothe) Ebben a fejezetben a kriptográában használatos protokollokat, valamint alapveto problémákat és algoritmusokat mutatunk be. A kriptográában jellemzo egyik alaphelyzetet láthatjuk

Részletesebben

Adatok titkosítása. Hálózatok biztonsága. IV. mérési utasítás SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

Adatok titkosítása. Hálózatok biztonsága. IV. mérési utasítás SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK Adatok titkosítása Rendszerlemez titkosítása BitLocker segítségével 1. Telepítse fel a Windows 10 pro verzióját. A telepítés közben törölje a meglévő partíciókat, majd az üres diszket válassza ki a telepítésre.

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Emlékeztet! matematikából

Emlékeztet! matematikából Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod

Részletesebben

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:. MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra

Részletesebben

C programozási nyelv

C programozási nyelv C programozási nyelv Előfeldolgozó utasítások Dr Schuster György 2011 május 3 Dr Schuster György () C programozási nyelv Előfeldolgozó utasítások 2011 május 3 1 / 15 A fordítás menete Dr Schuster György

Részletesebben

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39 5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es

Részletesebben

Információs társadalom alapismeretek

Információs társadalom alapismeretek Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)

Részletesebben

Módszerek és eszközök a kriptográfia oktatásakor

Módszerek és eszközök a kriptográfia oktatásakor Módszerek és eszközök a kriptográfia oktatásakor Márton Gyöngyvér mgyongyi@ms.sapientia.ro Sapientia Erdélyi Magyar Tudományegyetem, Románia Absztrakt. Digitális világunkban naponta találkozunk olyan alkalmazásokkal

Részletesebben

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási

Részletesebben

Titkosítási rendszerek CCA-biztonsága

Titkosítási rendszerek CCA-biztonsága Titkosítási rendszerek CCA-biztonsága Doktori (PhD) értekezés szerző: MÁRTON Gyöngyvér témavezető: Dr. Pethő Attila Debreceni Egyetem Természettudományi Doktori Tanács Informatikai Tudományok Doktori Iskola

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

Programozás C nyelven FELÜLNÉZETBŐL elhullatott MORZSÁK. Sapientia EMTE

Programozás C nyelven FELÜLNÉZETBŐL elhullatott MORZSÁK. Sapientia EMTE Programozás C nyelven FELÜLNÉZETBŐL elhullatott MORZSÁK Sapientia EMTE 2015-16 1 Felülnézet 1 Feltételes fordítás #if, #else, #elif, #endif, #ifdef, #ifndef stb. Felülnézet 2 #include: hatására a preprocesszor

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA 30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus

Részletesebben

1. Bevezetés szeptember 9. BME Fizika Intézet. Szám. szim. labor ea. Tőke Csaba. Tudnivalók. feladat. Tematika. Moodle Házi feladatok

1. Bevezetés szeptember 9. BME Fizika Intézet. Szám. szim. labor ea. Tőke Csaba. Tudnivalók. feladat. Tematika. Moodle Házi feladatok Számítógépes szimulációk 1. Bevezetés BME Fizika Intézet 2015. szeptember 9. Bevezetés A félév menete C-ismétlés, 1. rész Oktatók: Nagyfalusi Balázs: nagyfalusi@phy.bme.hu, F3 211. : tcsaba@eik.bme.hu,

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális

Részletesebben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Verziószám 2.0 Objektum azonosító (OID) Hatálybalépés dátuma 2013. november 6. 1 Változáskövetés Verzió Dátum Változás leírása

Részletesebben

Windows hálózati adminisztráció segédlet a gyakorlati órákhoz

Windows hálózati adminisztráció segédlet a gyakorlati órákhoz Windows hálózati adminisztráció segédlet a gyakorlati órákhoz Szerver oldal: Kliens oldal: 6. Tartományi megosztások 1. A belső hálózat konfigurálása Hozzuk létre a virtuális belső hálózatunkat. INTERNET

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 1. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016 Követelmények, osztályozás Jelenlét: A laborgyakorlat

Részletesebben

Windows biztonsági problémák

Windows biztonsági problémák Windows biztonsági problémák Miskolci Egyetem Általános Informatikai Tanszék Miért a Windows? Mivel elterjedt, előszeretettel keresik a védelmi lyukakat könnyen lehet találni ezeket kihasználó programokat

Részletesebben

Oktatási cloud használata

Oktatási cloud használata Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnikai és Információs Rendszerek Tanszék Oktatási cloud használata Készítette: Tóth Áron (BME MIT), 2013. A segédlet célja a tanszéki oktatási cloud

Részletesebben

Algoritmuselmélet gyakorlat (MMN111G)

Algoritmuselmélet gyakorlat (MMN111G) Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

3. Osztályok II. Programozás II

3. Osztályok II. Programozás II 3. Osztályok II. Programozás II Bevezető feladat Írj egy Nevsor osztályt, amely legfeljebb adott mennyiségű nevet képes eltárolni. A maximálisan tárolható nevek számát a konstruktorban adjuk meg. Az osztályt

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Data Security: Public key

Data Security: Public key Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.

Részletesebben

Dr. Pál László, Sapientia EMTE, Csíkszereda WEB PROGRAMOZÁS 6.ELŐADÁS. Fájlkezelés PHP-ben

Dr. Pál László, Sapientia EMTE, Csíkszereda WEB PROGRAMOZÁS 6.ELŐADÁS. Fájlkezelés PHP-ben Dr. Pál László, Sapientia EMTE, Csíkszereda WEB PROGRAMOZÁS 6.ELŐADÁS 2015-2016 Fájlkezelés PHP-ben Fájlok és könyvtárak kezelése 2 A PHP a Javascript-hez hasonlóan, nem képes a felhasználó merevlemezén

Részletesebben

A Microsoft Visual Studio 2005 fejlesztőkörnyezet

A Microsoft Visual Studio 2005 fejlesztőkörnyezet Vizuális és eseményvezérelt programozás BMF NIK A Microsoft Visual Studio 2005 fejlesztőkörnyezet Az integrált fejlesztőkörnyezet (IDE) alapelemei Projektek és megoldások Új projekt indítása, projektek

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Gyökértanúsítványok telepítése Windows Mobile operációs rendszerekre

Gyökértanúsítványok telepítése Windows Mobile operációs rendszerekre Gyökértanúsítványok telepítése Windows Mobile operációs rendszerekre Windows Mobile 2003 / 2003 SE / WM 5 / WM6 rendszerekre 1(8) 1. Tartalomjegyzék 1. Tartalomjegyzék... 2 2. Bevezető... 3 3. A Windows

Részletesebben

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana A MATLAB alapjai Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit >> Futó script leállítása: >> ctrl+c - Változók listásása >> who >> whos - Változók törlése

Részletesebben

Az Outlook levelező program beállítása tanúsítványok használatához

Az Outlook levelező program beállítása tanúsítványok használatához Az Outlook levelező program beállítása tanúsítványok használatához Windows tanúsítványtárban és kriptográfia eszközökön található tanúsítványok esetén 1(10) Tartalomjegyzék 1. Bevezető... 3 2. Az Outlook

Részletesebben

A Code::Blocks fejlesztőkörnyezet

A Code::Blocks fejlesztőkörnyezet A Code::Blocks fejlesztőkörnyezet A Code::Blocks egy keretrendszer, amely sokféle platformon (Windows, Mac, Linux), elsősorban C/C++ programozási nyelvekhez biztosít kényelmes programfejlesztési környezetet.

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

Dr. Schuster György október 14.

Dr. Schuster György október 14. Real-time operációs rendszerek RTOS 2011. október 14. A fordítás vázlata prog.c Előfeldolgozó Átmenti állomány Fordító prog.obj más.obj-tek könyvtárak indító kód Linker futtatható kód Ismétlés Előfeldolgozó

Részletesebben

Nemzeti Közszolgálati Egyetem. Vezető-és Továbbképzési Intézet. Bérczes Attila Pethő Attila. Kriptográfia

Nemzeti Közszolgálati Egyetem. Vezető-és Továbbképzési Intézet. Bérczes Attila Pethő Attila. Kriptográfia Nemzeti Közszolgálati Egyetem Vezető-és Továbbképzési Intézet Bérczes Attila Pethő Attila Kriptográfia Budapest, 2014 A tananyag az ÁROP 2.2.21 Tudásalapú közszolgálati előmenetel című projekt keretében

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

A házifeladatban alkalmazandó XML struktúra

A házifeladatban alkalmazandó XML struktúra A házifeladatban alkalmazandó XML struktúra Absztrakt: A feladat egy fájl, vagy szövegkódoló készítése. Parancssorból indítható (a helyes szintaxis megadása mellett (http://www.linfo.org/standard_input.html)),

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval

Részletesebben

Data Security: Concepts

Data Security: Concepts Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Concepts 1. Hozzáférésvédelem

Részletesebben

KR TITKOSÍTÓ PROGRAM. Felhasználói leírás. v március 12.

KR TITKOSÍTÓ PROGRAM. Felhasználói leírás. v március 12. KR TITKOSÍTÓ PROGRAM Felhasználói leírás v1.3 2008. március 12. TARTALOMJEGYZÉK 1 BEVEZETÉS...3 1.1 FELHASZNÁLÓI DOKUMENTÁCIÓRA VONATKOZÓ ÁLTALÁNOS LEÍRÁSOK... 3 1.2 PROGRAMMŰKÖDÉSHEZ SZÜKSÉGES JAVA KÖRNYEZET...

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Programozás. (GKxB_INTM021) Dr. Hatwágner F. Miklós március 31. Széchenyi István Egyetem, Gy r

Programozás. (GKxB_INTM021) Dr. Hatwágner F. Miklós március 31. Széchenyi István Egyetem, Gy r Programozás (GKxB_INTM021) Széchenyi István Egyetem, Gy r 2018. március 31. Városok közötti távolság Feladat: két város nevének beolvasása, városok közötti távolság megjelenítése. Kilépés azonos városok

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

HÁLÓZATBIZTONSÁG II. rész. Összeállította: Huszár István

HÁLÓZATBIZTONSÁG II. rész. Összeállította: Huszár István HÁLÓZATBIZTONSÁG II. rész Összeállította: Huszár István 1. Védelmi alapmegoldások Felhasználói név + jelszó. Kiszolgáló esetén fokozottabb követelmények a jelszóval kapcsolatban. Belépés után az erőforrásokhoz

Részletesebben

Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel. dr. Siki Zoltán

Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel. dr. Siki Zoltán Pontfelhő létrehozás és használat Regard3D és CloudCompare nyílt forráskódú szoftverekkel dr. Siki Zoltán siki.zoltan@epito.bme.hu Regard3D Nyílt forráskódú SfM (Structure from Motion) Fényképekből 3D

Részletesebben

1. Alapok. Programozás II

1. Alapok. Programozás II 1. Alapok Programozás II Elérhetőség Név: Smidla József Elérhetőség: smidla dcs.uni-pannon.hu Szoba: I916 2 Irodalom Bjarne Stroustrup: A C++ programozási nyelv 3 Irodalom Erich Gamma, Richard Helm, Ralph

Részletesebben

BASH SCRIPT SHELL JEGYZETEK

BASH SCRIPT SHELL JEGYZETEK BASH SCRIPT SHELL JEGYZETEK 1 TARTALOM Paraméterek... 4 Változók... 4 Környezeti változók... 4 Szűrők... 4 grep... 4 sed... 5 cut... 5 head, tail... 5 Reguláris kifejezések... 6 *... 6 +... 6?... 6 {m,n}...

Részletesebben

Algoritmusok Tervezése. 1. Előadás MATLAB 1. Dr. Bécsi Tamás

Algoritmusok Tervezése. 1. Előadás MATLAB 1. Dr. Bécsi Tamás Algoritmusok Tervezése 1. Előadás MATLAB 1. Dr. Bécsi Tamás Tárgy adatok Előadó: Bécsi Tamás, St 106, becsi.tamas@mail.bme.hu Előadás:2, Labor:2 Kredit:5 Félévközi jegy 2 db Zh 1 hallgatói feladat A félév

Részletesebben

C programozás. 6 óra Függvények, függvényszerű makrók, globális és

C programozás. 6 óra Függvények, függvényszerű makrók, globális és C programozás 6 óra Függvények, függvényszerű makrók, globális és lokális változók 1.Azonosítók A program bizonyos összetevőire névvel (azonosító) hivatkozunk Első karakter: _ vagy betű (csak ez lehet,

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek

Részletesebben

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét: Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben