2015, Diszkrét matematika
|
|
- Márta Faragó
- 9 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét matematika 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia 2015, őszi félév
2 Miről volt szó az elmúlt előadáson? számtani, mértani, harmonikus számsorozatok sajátos számsorozatok: a faktoriális függvény Stirling számok Fibonacci számok Lucas számok Catalan számok algoritmusok Python-ban
3 Miről lesz szó? aranymetszés, aranyarány a Fibonacci, Lucas számokkal való kapcsolat számrendszerek számrendszerek közötti átalakítások számok összeadása, szorzása bináris számrendszerben
4 Aranymetszés, aranyarány (Golden Ratio) két mennyiség, a, b, a > b az aranymetszés szerint aránylik egymáshoz, ha fennáll: a b = a + b def = ϕ a a ϕ meghatározása érdekében feĺırhatjuk: a + b a = a, azaz fennáll: b ϕ = ϕ ϕ2 = ϕ + 1 megoldva a fenti egyenletet kapjuk, hogy ϕ = a ϕ irracionális szám = és ˆϕ = =
5 Aranyarány, alkalmazások építészet: Parthenon homlokzatának arányértékei: logok: Toyota, Mercedesz, stb. Pentagramma (szabályos ötszög): természet: napraforgó spirlajai piros zold = zold kek = kek lila = ϕ
6 Aranyarány, lánctörtek Kiindulva az alábbi összefüggésből: ϕ = 1 + 1, lánctörtek segítségével is ϕ feĺırhatjuk a ϕ értékét: ϕ =
7 A Fibonacci számok, Lucas számok a Fibonacci számsorozat: 0, 1, 1, 2, 3, 5, 8, 13,..., a rekurziós képlet: F 0 = 0, F 1 = 1, F n = F n 1 + F n 2, a Lucas számsorozat: 2, 1, 3, 4, 7, 11, 18, 29, 47,..., a rekurziós képlet: L 0 = 2, L 1 = 1, L n = L n 1 + L n 2, kapcsolat, képletek: L n = F n 1 + F n+1 = F n + 2 F n 1 = F n+1 F n 2 F n = Ln 1 + Ln+1 5 = Ln 3 + Ln+3 10
8 Kapcsolat a Fibonacci sorozattal megállapítható: F n+1 F n + F n 1 lim = lim = 1 + lim n F n n F n n fennáll tehát: x = F n+1, ahol a lim x n F n alkalmaztuk. megoldva a x = x egyenletet kapjuk, hogy F n+1 lim = ϕ n F n = lim n L n+1 hasonlóan: lim = ϕ n L n Binet formula (bizonyítás matematikai indukcióval): F n = ϕn ˆϕ n 5 = (1 + 5) n (1 5) n 2 n 5 1 F n F n 1 F n F n 1 = x jelölést
9 Algoritmusok Pythonban 1. feladat: Fibonacci számok, az aranymetszési képlettel: F n = ( 1+ 5 ) n ( ) n = (1 + 5) n (1 5) n 2 n 5 def fibn (n): return int(( pow(1+math.sqrt(5), n) - pow (1-math.sqrt(5), n))/ (math.sqrt(5) * pow (2, n))) def fibn1 (n): return int(( (1+math.sqrt(5)) ** n - (1-math.sqrt(5)) ** n )/ (math.sqrt(5) * 2 ** n))
10 Számrendszerek egész számok: bármely 1-nél nagyobb számrendszerben ábrázolhatóak, a számítástechnikában gyakran használt számrendszerek: 10, 2, 8, 16, 256, 2-es számrendszer: bináris számrendszer, 8-as számrendszer: oktális számrendszer, 16-os számrendszer: hexadecimális számrendszer, legyen n az a szám, amit átszeretnénk írni b számrendszerbe, ekkor, Z -vel jelölve a nem negatív egész számok halmazát: n = a k b k + a k 1 b k a 1b 1 + a 0b 0, ahol k Z, a i Z, és a i < b, minden i {0,..., k} értékre és a k es számrendszerben 10 szimbólum van: 0, 1, 2,..., 9. 2-es számrendszerben 2 szimbólum van: 0, os számrendszerben 256 szimbólum van
11 Számrendszerek, példák Pl. Mi (215) 10, 2-es számrendszerbeli alakja? fennáll: 215 = = tehát: (215) 10 = ( ) 2. Pl. ( ) 2, melyik 10-es számrendszerbeli számnak felel meg? fennáll: ( ) 2 = = = 370. tehát: ( ) 2 = (370) 10.
12 Számrendszerek, példák 8-as számrendszerben 8 szimbólum van: 0, 1, 2, 3, 4, 5, 6, 7. Pl. Mi (215) 10, 8-as számrendszerbeli alakja? fennáll: 215 = tehát: (215) 10 = (327) 8. Pl. (6702) 8, melyik 10-es számrendszerbeli számnak felel meg? fennáll: 6702 = = = tehát: (6702) 8 = (3522) 10.
13 Számrendszerek, példák 16-as számrendszerben 16 szimbólum van: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Pl. Mi (7432) 10, 16-os számrendszerbeli alakja? fennáll: 7432 = tehát: (7432) 10 = (1D08) 16. Pl. (E2D07) 16, melyik 10-es számrendszerbeli számnak felel meg? fennáll: E2D07 = = tehát: (E2D07) 16 = (929031) 10.
14 Algoritmus: 10-es számrendszerből b számrendszerbe n-et elosztjuk maradékos osztással b-vel: n = b q 0 + a 0, ahol 0 a 0 < b. q 0-ot elosztjuk maradékos osztással b-vel: q 0 = b q 1 + a 1, ahol 0 a 1 < b. addig folytatjuk a maradékos osztást, amíg 0 osztási egészrészt kapunk. Pl. Alakítsuk át 7432-t 16-os számrendszerbe: 7432 = = = =
15 Algoritmus: b számrendszerből 10-es számrendszerbe hatványösszeget számolunk a b számrendszerbeli számjegyekből Pl. Alakítsuk át 1D08-t 10-es számrendszerbe: 1D08 = [1, 13, 0, 8] [8, 0, 13, 1] 8 = = = =
16 Algoritmusok Pythonban 2. feladat: Alakítsunk át egy számot 10-es számrendszerből b számrendszerbe def alakit10_b(nr, b): L = [] while nr > 0: L = [nr % b] + L nr = nr / b return L meghívás: alakit10_b(14, 2) az eredmény: [1, 1, 1, 0] ha oda-vissza átalakítást kell végezni, akkor ajánlatos a fordított sorrendet előálĺıtani, ekkor az L = [nr % b] + L sor helyett az L = L + [nr % b] sor szükséges.
17 Algoritmusok Pythonban 3. feladat: Alakítsunk át egy b számrendszerbeli számot 10-es számrendszerbe def alakitb_10 (L, b): nr = 0 p = 1 for elem in reversed(l): nr += elem * p p *= b return nr meghívás: alakitb_10([1, 1, 1, 0], 2) az eredmény: 14 a reversed(l) megfordítja a bemeneti listát def alakitb_10_1 (L, b): nr = 0 p = 1 l = len(l)-1 for i in range (l, -1, -1): nr += L[i] * p p *= b return nr ha a fordított sorrend lesz a bemenet, akkor nem szükséges reversed függvény használata, illetve az alakitb_10_1 függvényben range(0, l+1) lesz.
18 Kapcsolat a 2, 8, 16 számrendszerek között bináris oktális: hármas csoportokat formálunk: Pl. [1, 1, 1, 1, 0, 1, 1] [1, 1, 1, 1, 0, 1, 1] [1, 7, 3] bináris hexadecimális: négyes csoportokat formálunk Pl. [1, 1, 1, 1, 0, 1, 1] [1, 1, 1, 1, 0, 1, 1] [7, B] bináris 2 k : k-as csoportokat formálunk Pl = 2 8, 8-as csoportokat formálunk: [1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1] [1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1] [57, 107]
19 Algoritmusok Pythonban 4. feladat: Alakítsunk át egy számot 2-es számrendszerből 2 k számrendszerbe def alakit2_2k(l, k): L1 = [] l = len(l) i = l - 1 while i >= 0: nr = 0 p = 1 for j in range (0, k): nr += L[i] * p i -= 1 p *= 2 if i == -1: break L1 = [nr] + L1 return L1
20 Algoritmusok Pythonban 4. feladat: Alakítsunk át egy számot 2-es számrendszerből 8-as számrendszerbe meghívás: alakit2_2k([1, 1, 0, 1, 0, 1], 3) az eredmény: [6, 5] Alakítsunk át egy számot 2-es számrendszerből 256-os számrendszerbe meghívás: alakit2_2k([1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1], 8) az eredmény: [57, 107]
21 Algoritmusok Pythonban 5. feladat: Alakítsunk át egy számot 2 k számrendszerből 2-es számrendszerbe def alakit2k_2(l, k): L1 = [] l = len(l) - 1 for i in range(l, -1, -1): nr = L[i] for j in range (0, k): L1 = [nr % 2] + L1 nr = nr / 2 return L1
22 Algoritmusok Pythonban 5. feladat: Alakítsunk át egy számot 8-as számrendszerből 2-es számrendszerbe meghívás: alakit2k_2([6, 5], 3) az eredmény: [1, 1, 0, 1, 0, 1] Alakítsunk át egy számot 256-os számrendszerből 2-es számrendszerbe meghívás: alakit2k_2([57, 107], 8) az eredmény: [1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1] A két függvényt együtt alkalmazva: meghívás: alakit2_2k(alakit2k_2([217, 107, 28, 142, 55], 8), 8) az eredmény: [217, 107, 28, 142, 55]
23 Két bináris szám összeadása Legyen a két szám és bináris alakjuk: jelöljük c-vel a továbbviteli értéket A = a l 1 a l 2... a 1a 0 B = b l 1 b l 2... b 1b 0, az összeadás szabályát alkalmazva a két leghátsó bitre: ahol c = 0 az első továbbviteli érték a 0 + b 0 + c, az összeadás szabályát alkalmazva általánosan: a i + b i + c i 1, ahol a továbbvitel értéke: c i = (a i + b i + c i 1 )/2, az aktuális bit értéke: r i = (a i + b i + c i 1 ) mod 2, ami ugyanaz mint: r i = (a i + b i + c i 1 2 c i ).
24 Algoritmusok Pythonban 6. feladat: Két bináris szám összeadása: def osszeg (A, B): l1, l2 = len (A), len (B) i, j = l1-1, l2-1 c, R = 0, [] while i >=0 and j >= 0: temp = A[i] + B[j] + c R = [temp % 2] + R c = temp / 2 i, j = i - 1, j - 1 while i >= 0 : temp = A[i] + c R = [(temp) % 2] + R c = temp / 2 i -= 1 while j >= 0: temp = B[j] + c R = [(temp) % 2] + R c = temp / 2 j -= 1 return [c] + R
25 Két bináris szám szorzata Legyen a két szám, és bináris alakjuk: A szorzás szabályát alkalmazva: A = a l 1 a l 2... a 1a 0 B = b l 1 b l 2... b 1b 0, A B = A (b b b l 1 2 l 1 ) = (A b 0) (A b 1) (A b l 1 ) 2 l 1 Ha b i = 1, akkor A b i = A Ha b i = 0, akkor A b i = 0 Minden iterációnál meg kell határozni 2 k -val való szorzás értékét: jobbról kiegészítjük k darab 0-val a bináris alakot. Python, k darab nullásokból álló lista létrehozása: L = k * [0]
2018, Diszkrét matematika
Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális
2016, Diszkrét matematika
Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények
2015, Diszkrét matematika
Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:
2018, Diszkrét matematika
Diszkrét matematika 5. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? Python alapfogalmak:
1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:
Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,
2016, Diszkrét matematika
Diszkrét matematika 3. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? A gyorshatványozás
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
2016, Diszkrét matematika
Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat
2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
2016, Diszkrét matematika
Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,
2017, Diszkrét matematika
Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,
Matematikai alapok. Dr. Iványi Péter
Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1
2016, Diszkrét matematika
Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös
REKURZIÓ. Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát.
1. A REKURZIÓ FOGALMA REKURZIÓ Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát. 1.1 Bevezető példák: 1.1.1 Faktoriális Nemrekurzív
2018, Diszkrét matematika
Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek
TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255
TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika RÉ megoldókulcs 0. január. MTEMTIK RÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. a Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat
PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
2018, Diszkre t matematika. 8. elo ada s
Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
Programozás 3. Dr. Iványi Péter
Programozás 3. Dr. Iványi Péter 1 Egy operandus művelet operandus operandus művelet Operátorok Két operandus operandus1 művelet operandus2 2 Aritmetikai műveletek + : összeadás -: kivonás * : szorzás /
2. Hatványozás, gyökvonás
2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket
2018, Diszkrét matematika
Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,
Mesterséges intelligencia 1 előadások
VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5
Országzászlók (2015. május 27., Sz14)
Országzászlók (2015. május 27., Sz14) Írjon programot, amely a standard bemenetről állományvégjelig soronként egy-egy ország zászlójára vonatkozó adatokat olvas be! Az egyes zászlóknál azt tartjuk nyilván,
PYTHON. Avagy hosszú az út a BioPythonig
PYTHON Avagy hosszú az út a BioPythonig Miért a Python? Mert ez áll a legközelebb az ember által beszélt nyelvhez. Mert ez a leggyorsabb az ismert script nyelvek közül Mert rengeteg modul érhető el hozzá
Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö
ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü
Ű Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á
ű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í
Erdélyi Magyar TudományEgyetem (EMTE
TARTALOM: Általánosságok Algoritmusok ábrázolása: Matematikai-logikai nyelvezet Pszeudokód Függőleges logikai sémák Vízszintes logikai sémák Fastruktúrák Döntési táblák 1 Általánosságok 1. Algoritmizálunk
Síklefedések Erdősné Németh Ágnes, Nagykanizsa
Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen
Programozás alapjai C nyelv 5. gyakorlat. Írjunk ki fordítva! Írjunk ki fordítva! (3)
Programozás alapjai C nyelv 5. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.17. -1- Tömbök Azonos típusú adatok tárolására. Index
Algoritmuselmélet. Király Zoltán ELTE Matematikai Intézet. 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm.
Algoritmuselmélet Király Zoltán ELTE Matematikai Intézet 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm.pdf 1.3. verzió Tartalomjegyzék I. Alapvető algoritmusok 6 1.
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden
Szeminárium-Rekurziók
1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az
C# feladatok gyűjteménye
C# feladatok gyűjteménye Készítette: Fehérvári Károly I6YF6E Informatika tanár ma levelező tagozat 1) Feladat: ALAPMŰVELETEK Készítsünk programot, amely bekér két egész számot. Majd kiszámolja a két szám
Programozás I gyakorlat. 5. Struktúrák
Programozás I gyakorlat 5. Struktúrák Bemelegítés Írj programot, amely beolvassa 5 autó adatait, majd kiírja az adatokat a képernyőre. Egy autóról a következőket tároljuk: maximális sebesség fogyasztás
RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK
RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK 1. EGY SOROZATHOZ EGY SOROZATOT RENDELŐ TÉTELEK 1.1 Rendezések 1.1.1 Kitűzés Adott egy sorozat, és a sorozat elemein értelmezett egy < reláció. Rendezzük a sorozat
Operációs rendszerek 2 3. alkalom - Reguláris kifejezések, grep, sed. Windisch Gergely windisch.gergely@nik.uni-obuda.hu 2010-2011 2.
Operációs rendszerek 2 3. alkalom - Reguláris kifejezések, grep, sed Windisch Gergely windisch.gergely@nik.uni-obuda.hu 2010-2011 2. félév Reguláris kifejezések Reguláris kifejezésekkel lehet keresni egy
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:
Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk
Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Egyetemi tavasz Szeged, SZTE L. Csizmadia (Szeged) Egyetemi tavasz 2013. 2013.04.20.
Véletlenszám generátorok
Véletlenszám generátorok Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^19937 1 periódusú,
Matematikai programozás gyakorlatok
VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................
Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.
Informatika 1 2011 Második előadás, vezérlési szerkezetek Szabó Adrienn 2011. szeptember 14. Tartalom Algoritmusok, vezérlési szerkezetek If - else: elágazás While ciklus For ciklus Egyszerű típusok Összetett
MATEMATIKA A és B variáció
MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy
Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.
INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság
Feladatok és megoldások a 4. hétre
Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint
E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
Programozási alapismeretek :: beadandó feladat. Felhasználói dokumentáció. Molnár Tamás MOTIABT.ELTE motiabt@inf.elte.
Programozási alapismeretek :: beadandó feladat Készítő adatai Név: Molnár Tamás EHA: MOTIABT.ELTE E-mail cím: motiabt@inf.elte.hu Gyakorlatvezető: Horváth László Feladat sorszáma: 23. Felhasználói dokumentáció
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok
Bevezetés a programozásba. 12. Előadás: 8 királynő
Bevezetés a programozásba 12. Előadás: 8 királynő A 8 királynő feladat Egy sakktáblára tennénk 8 királynőt, úgy, hogy ne álljon egyik sem ütésben Ez nem triviális feladat, a lehetséges 64*63*62*61*60*59*58*57/8!=4'426'165'368
2018, Funkcionális programozás
Funkcionális programozás 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? összefésüléses rendezés (merge
Matematikai alapismeretek. Huszti Andrea
Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá
Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu
Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
Indexszámítás Tulajdonságok Alkalmazások Indexsorok Területi indexek Példa
Statisztika I. 6. előadás Érték-, ár-, és volumenindexek http://bmf.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos az összehasonlítás...
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
TANTÁRGYI ADATLAP. 2.7 A tantárgy jellege DI
TANTÁRGYI ADATLAP 1. Programadatok 1.1 Intézmény Sapientia, Erdélyi Magyar Tudományegyetem 1.2 Kar Műszaki és Humántudományok 1.3 Intézet Matematika Informatika 1.4 Szak Informatika 1.5 Tanulmányi típus
10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók
Információ Európa országairól (összetett alkalmazás)
Információ Európa országairól (összetett alkalmazás) Információ Európa osrzágairól Készítsünk webes felületet, melyen Európa térképe klikkelésre érzékeny (szenzitív) képként jelenik meg! Bármelyik országot
9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
3. Gyakorlat Ismerkedés a Java nyelvvel
3. Gyakorlat Ismerkedés a Java nyelvvel Parancssori argumentumok Minden Java programnak adhatunk indításkor paraméterek, ezeket a program egy tömbben tárolja. public static void main( String[] args ) Az
80-as sorozat - Idõrelék 6-8 - 16 A
-as sorozat - Idõrelék 6-8 - A.01.11.21 Egy vagy többfunkciós idõrelék öbbfunkciós irõrelé: 6 mûködési funkcióval öbbfeszültségû kivitel: (12...240) V AC/DC öbb idõzítési funkció: 6 idõzítési tartomány,
23. Fa adatszerkezetek, piros-fekete fa adatszerkezet (forgatások, új elem felvétele, törlés)(shagreen)
1. Funkcionális programozás paradigma (Balázs)(Shagreen) 2. Logikai programozás paradigma(még kidolgozás alatt Shagreen) 3. Strukturált programozás paradigma(shagreen) 4. Alapvető programozási tételek
8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete
8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén
Valószínűségszámítás és statisztika. István Fazekas
Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség
matematikai statisztika 2006. október 24.
Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................
MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. október 15. 2013. október 15. 8:00 MINISZTÉRIUMA EMBERI ERFORRÁSOK
I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 12 51 3. 14 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám
Máté: Számítógép architektúrák
Elágazás jövendölés ok gép megjövendöli, hogy egy ugrást végre kell hajtani vagy sem. Egy triviális jóslás: a visszafelé irányulót végre kell hajtani (ilyen van a ciklusok végén), az előre irányulót nem
Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
7 7, ,22 13,22 13, ,28
Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem
AZ RD-33-AS HAJTÓMŰ CENTRIFUGÁLIS FORDULATSZÁM SZABÁLYZÓJÁNAK MATEMATIKAI MODELLEZÉSE
AZ RD-33-AS HAJTÓMŰ CENTRIFUGÁLIS FORDULATSZÁM SZABÁLYZÓJÁNAK MATEMATIKAI MODELLEZÉSE Ailor Piroska egyetemi hallgató Budapesti Műszaki Egyetem Közlekedésmérnöki Kar Repülőgépek és Hajók Tanszék A szo
Gráfokkal megoldható hétköznapi problémák
Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfokkal megoldható hétköznapi problémák Szakdolgozat Készítette Vincze Ágnes Melitta Konzulens Héger Tamás Budapest, 2015 Tartalomjegyzék Bevezetés
II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }
II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013
TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 1 Kedves Kollégák! Tanmenet javaslatunkkal segítséget kívánunk nyújtani
Bináris keres fák kiegyensúlyozásai. Egyed Boglárka
Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi
Gyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
6. Bizonyítási módszerek
6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.
Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)
Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
2) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 42. Adja meg a háromszög hiányzó adatait!
Szinusztétel 1) Egy háromszög két oldalának hossza 3 és 5 cm. Az 5 cm hosszú oldallal szemközti szög 70. Adja ) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 4.
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n
Országos Középiskolai Tanulmányi Verseny, 2012 13-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító
Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT
NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Multihalmaz típus TÁMOP-4.2.3.-12/1/KONV Értékhalmaz: az alaphalmaz (amely az Elemtípus és egy darabszám által van meghatározva)
Objektumorientált Programozás III.
Objektumorientált Programozás III. Vezérlési szerkezetek ismétlés Matematikai lehetőségek Feladatok 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő
PageRank algoritmus Hubs and Authorities. Adatbányászat. Webbányászat PageRank, Hubs and Authorities. Szegedi Tudományegyetem.
Webbányászat PageRank, Szegedi Tudományegyetem Miért akarjuk rangsorolni a Weboldalakat? Mert tudásra szomjazunk Mert a Google-nak megéri. Pontosan hogy is? Mert állatorvost keresünk, pizzázni akarunk,
2018, Funkcionális programozás
Funkcionális programozás 6. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? Haskell modulok, kompilálás a
Bevezetés a C++ programozásba
Bevezetés a C++ programozásba A program fogalma: A program nem más, mint számítógép által végrehajtható utasítások sorozata. A számítógépes programokat különféle programnyelveken írhatjuk. Ilyen nyelvek
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Komputer statisztika gyakorlatok
Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes