2015, Diszkrét matematika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2015, Diszkrét matematika"

Átírás

1 Diszkrét matematika 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia 2015, őszi félév

2 Miről volt szó az elmúlt előadáson? számtani, mértani, harmonikus számsorozatok sajátos számsorozatok: a faktoriális függvény Stirling számok Fibonacci számok Lucas számok Catalan számok algoritmusok Python-ban

3 Miről lesz szó? aranymetszés, aranyarány a Fibonacci, Lucas számokkal való kapcsolat számrendszerek számrendszerek közötti átalakítások számok összeadása, szorzása bináris számrendszerben

4 Aranymetszés, aranyarány (Golden Ratio) két mennyiség, a, b, a > b az aranymetszés szerint aránylik egymáshoz, ha fennáll: a b = a + b def = ϕ a a ϕ meghatározása érdekében feĺırhatjuk: a + b a = a, azaz fennáll: b ϕ = ϕ ϕ2 = ϕ + 1 megoldva a fenti egyenletet kapjuk, hogy ϕ = a ϕ irracionális szám = és ˆϕ = =

5 Aranyarány, alkalmazások építészet: Parthenon homlokzatának arányértékei: logok: Toyota, Mercedesz, stb. Pentagramma (szabályos ötszög): természet: napraforgó spirlajai piros zold = zold kek = kek lila = ϕ

6 Aranyarány, lánctörtek Kiindulva az alábbi összefüggésből: ϕ = 1 + 1, lánctörtek segítségével is ϕ feĺırhatjuk a ϕ értékét: ϕ =

7 A Fibonacci számok, Lucas számok a Fibonacci számsorozat: 0, 1, 1, 2, 3, 5, 8, 13,..., a rekurziós képlet: F 0 = 0, F 1 = 1, F n = F n 1 + F n 2, a Lucas számsorozat: 2, 1, 3, 4, 7, 11, 18, 29, 47,..., a rekurziós képlet: L 0 = 2, L 1 = 1, L n = L n 1 + L n 2, kapcsolat, képletek: L n = F n 1 + F n+1 = F n + 2 F n 1 = F n+1 F n 2 F n = Ln 1 + Ln+1 5 = Ln 3 + Ln+3 10

8 Kapcsolat a Fibonacci sorozattal megállapítható: F n+1 F n + F n 1 lim = lim = 1 + lim n F n n F n n fennáll tehát: x = F n+1, ahol a lim x n F n alkalmaztuk. megoldva a x = x egyenletet kapjuk, hogy F n+1 lim = ϕ n F n = lim n L n+1 hasonlóan: lim = ϕ n L n Binet formula (bizonyítás matematikai indukcióval): F n = ϕn ˆϕ n 5 = (1 + 5) n (1 5) n 2 n 5 1 F n F n 1 F n F n 1 = x jelölést

9 Algoritmusok Pythonban 1. feladat: Fibonacci számok, az aranymetszési képlettel: F n = ( 1+ 5 ) n ( ) n = (1 + 5) n (1 5) n 2 n 5 def fibn (n): return int(( pow(1+math.sqrt(5), n) - pow (1-math.sqrt(5), n))/ (math.sqrt(5) * pow (2, n))) def fibn1 (n): return int(( (1+math.sqrt(5)) ** n - (1-math.sqrt(5)) ** n )/ (math.sqrt(5) * 2 ** n))

10 Számrendszerek egész számok: bármely 1-nél nagyobb számrendszerben ábrázolhatóak, a számítástechnikában gyakran használt számrendszerek: 10, 2, 8, 16, 256, 2-es számrendszer: bináris számrendszer, 8-as számrendszer: oktális számrendszer, 16-os számrendszer: hexadecimális számrendszer, legyen n az a szám, amit átszeretnénk írni b számrendszerbe, ekkor, Z -vel jelölve a nem negatív egész számok halmazát: n = a k b k + a k 1 b k a 1b 1 + a 0b 0, ahol k Z, a i Z, és a i < b, minden i {0,..., k} értékre és a k es számrendszerben 10 szimbólum van: 0, 1, 2,..., 9. 2-es számrendszerben 2 szimbólum van: 0, os számrendszerben 256 szimbólum van

11 Számrendszerek, példák Pl. Mi (215) 10, 2-es számrendszerbeli alakja? fennáll: 215 = = tehát: (215) 10 = ( ) 2. Pl. ( ) 2, melyik 10-es számrendszerbeli számnak felel meg? fennáll: ( ) 2 = = = 370. tehát: ( ) 2 = (370) 10.

12 Számrendszerek, példák 8-as számrendszerben 8 szimbólum van: 0, 1, 2, 3, 4, 5, 6, 7. Pl. Mi (215) 10, 8-as számrendszerbeli alakja? fennáll: 215 = tehát: (215) 10 = (327) 8. Pl. (6702) 8, melyik 10-es számrendszerbeli számnak felel meg? fennáll: 6702 = = = tehát: (6702) 8 = (3522) 10.

13 Számrendszerek, példák 16-as számrendszerben 16 szimbólum van: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Pl. Mi (7432) 10, 16-os számrendszerbeli alakja? fennáll: 7432 = tehát: (7432) 10 = (1D08) 16. Pl. (E2D07) 16, melyik 10-es számrendszerbeli számnak felel meg? fennáll: E2D07 = = tehát: (E2D07) 16 = (929031) 10.

14 Algoritmus: 10-es számrendszerből b számrendszerbe n-et elosztjuk maradékos osztással b-vel: n = b q 0 + a 0, ahol 0 a 0 < b. q 0-ot elosztjuk maradékos osztással b-vel: q 0 = b q 1 + a 1, ahol 0 a 1 < b. addig folytatjuk a maradékos osztást, amíg 0 osztási egészrészt kapunk. Pl. Alakítsuk át 7432-t 16-os számrendszerbe: 7432 = = = =

15 Algoritmus: b számrendszerből 10-es számrendszerbe hatványösszeget számolunk a b számrendszerbeli számjegyekből Pl. Alakítsuk át 1D08-t 10-es számrendszerbe: 1D08 = [1, 13, 0, 8] [8, 0, 13, 1] 8 = = = =

16 Algoritmusok Pythonban 2. feladat: Alakítsunk át egy számot 10-es számrendszerből b számrendszerbe def alakit10_b(nr, b): L = [] while nr > 0: L = [nr % b] + L nr = nr / b return L meghívás: alakit10_b(14, 2) az eredmény: [1, 1, 1, 0] ha oda-vissza átalakítást kell végezni, akkor ajánlatos a fordított sorrendet előálĺıtani, ekkor az L = [nr % b] + L sor helyett az L = L + [nr % b] sor szükséges.

17 Algoritmusok Pythonban 3. feladat: Alakítsunk át egy b számrendszerbeli számot 10-es számrendszerbe def alakitb_10 (L, b): nr = 0 p = 1 for elem in reversed(l): nr += elem * p p *= b return nr meghívás: alakitb_10([1, 1, 1, 0], 2) az eredmény: 14 a reversed(l) megfordítja a bemeneti listát def alakitb_10_1 (L, b): nr = 0 p = 1 l = len(l)-1 for i in range (l, -1, -1): nr += L[i] * p p *= b return nr ha a fordított sorrend lesz a bemenet, akkor nem szükséges reversed függvény használata, illetve az alakitb_10_1 függvényben range(0, l+1) lesz.

18 Kapcsolat a 2, 8, 16 számrendszerek között bináris oktális: hármas csoportokat formálunk: Pl. [1, 1, 1, 1, 0, 1, 1] [1, 1, 1, 1, 0, 1, 1] [1, 7, 3] bináris hexadecimális: négyes csoportokat formálunk Pl. [1, 1, 1, 1, 0, 1, 1] [1, 1, 1, 1, 0, 1, 1] [7, B] bináris 2 k : k-as csoportokat formálunk Pl = 2 8, 8-as csoportokat formálunk: [1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1] [1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1] [57, 107]

19 Algoritmusok Pythonban 4. feladat: Alakítsunk át egy számot 2-es számrendszerből 2 k számrendszerbe def alakit2_2k(l, k): L1 = [] l = len(l) i = l - 1 while i >= 0: nr = 0 p = 1 for j in range (0, k): nr += L[i] * p i -= 1 p *= 2 if i == -1: break L1 = [nr] + L1 return L1

20 Algoritmusok Pythonban 4. feladat: Alakítsunk át egy számot 2-es számrendszerből 8-as számrendszerbe meghívás: alakit2_2k([1, 1, 0, 1, 0, 1], 3) az eredmény: [6, 5] Alakítsunk át egy számot 2-es számrendszerből 256-os számrendszerbe meghívás: alakit2_2k([1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1], 8) az eredmény: [57, 107]

21 Algoritmusok Pythonban 5. feladat: Alakítsunk át egy számot 2 k számrendszerből 2-es számrendszerbe def alakit2k_2(l, k): L1 = [] l = len(l) - 1 for i in range(l, -1, -1): nr = L[i] for j in range (0, k): L1 = [nr % 2] + L1 nr = nr / 2 return L1

22 Algoritmusok Pythonban 5. feladat: Alakítsunk át egy számot 8-as számrendszerből 2-es számrendszerbe meghívás: alakit2k_2([6, 5], 3) az eredmény: [1, 1, 0, 1, 0, 1] Alakítsunk át egy számot 256-os számrendszerből 2-es számrendszerbe meghívás: alakit2k_2([57, 107], 8) az eredmény: [1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1] A két függvényt együtt alkalmazva: meghívás: alakit2_2k(alakit2k_2([217, 107, 28, 142, 55], 8), 8) az eredmény: [217, 107, 28, 142, 55]

23 Két bináris szám összeadása Legyen a két szám és bináris alakjuk: jelöljük c-vel a továbbviteli értéket A = a l 1 a l 2... a 1a 0 B = b l 1 b l 2... b 1b 0, az összeadás szabályát alkalmazva a két leghátsó bitre: ahol c = 0 az első továbbviteli érték a 0 + b 0 + c, az összeadás szabályát alkalmazva általánosan: a i + b i + c i 1, ahol a továbbvitel értéke: c i = (a i + b i + c i 1 )/2, az aktuális bit értéke: r i = (a i + b i + c i 1 ) mod 2, ami ugyanaz mint: r i = (a i + b i + c i 1 2 c i ).

24 Algoritmusok Pythonban 6. feladat: Két bináris szám összeadása: def osszeg (A, B): l1, l2 = len (A), len (B) i, j = l1-1, l2-1 c, R = 0, [] while i >=0 and j >= 0: temp = A[i] + B[j] + c R = [temp % 2] + R c = temp / 2 i, j = i - 1, j - 1 while i >= 0 : temp = A[i] + c R = [(temp) % 2] + R c = temp / 2 i -= 1 while j >= 0: temp = B[j] + c R = [(temp) % 2] + R c = temp / 2 j -= 1 return [c] + R

25 Két bináris szám szorzata Legyen a két szám, és bináris alakjuk: A szorzás szabályát alkalmazva: A = a l 1 a l 2... a 1a 0 B = b l 1 b l 2... b 1b 0, A B = A (b b b l 1 2 l 1 ) = (A b 0) (A b 1) (A b l 1 ) 2 l 1 Ha b i = 1, akkor A b i = A Ha b i = 0, akkor A b i = 0 Minden iterációnál meg kell határozni 2 k -val való szorzás értékét: jobbról kiegészítjük k darab 0-val a bináris alakot. Python, k darab nullásokból álló lista létrehozása: L = k * [0]

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 5. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? Python alapfogalmak:

Részletesebben

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét: Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 3. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? A gyorshatványozás

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

2017, Diszkrét matematika

2017, Diszkrét matematika Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

REKURZIÓ. Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát.

REKURZIÓ. Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát. 1. A REKURZIÓ FOGALMA REKURZIÓ Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát. 1.1 Bevezető példák: 1.1.1 Faktoriális Nemrekurzív

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek

Részletesebben

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255 TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT Matematika RÉ megoldókulcs 0. január. MTEMTIK RÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. a Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

2018, Diszkre t matematika. 8. elo ada s

2018, Diszkre t matematika. 8. elo ada s Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

Programozás 3. Dr. Iványi Péter

Programozás 3. Dr. Iványi Péter Programozás 3. Dr. Iványi Péter 1 Egy operandus művelet operandus operandus művelet Operátorok Két operandus operandus1 művelet operandus2 2 Aritmetikai műveletek + : összeadás -: kivonás * : szorzás /

Részletesebben

2. Hatványozás, gyökvonás

2. Hatványozás, gyökvonás 2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője

Részletesebben

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,

Részletesebben

Mesterséges intelligencia 1 előadások

Mesterséges intelligencia 1 előadások VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5

Részletesebben

Országzászlók (2015. május 27., Sz14)

Országzászlók (2015. május 27., Sz14) Országzászlók (2015. május 27., Sz14) Írjon programot, amely a standard bemenetről állományvégjelig soronként egy-egy ország zászlójára vonatkozó adatokat olvas be! Az egyes zászlóknál azt tartjuk nyilván,

Részletesebben

PYTHON. Avagy hosszú az út a BioPythonig

PYTHON. Avagy hosszú az út a BioPythonig PYTHON Avagy hosszú az út a BioPythonig Miért a Python? Mert ez áll a legközelebb az ember által beszélt nyelvhez. Mert ez a leggyorsabb az ismert script nyelvek közül Mert rengeteg modul érhető el hozzá

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Ű Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á

Részletesebben

ű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í

Részletesebben

Erdélyi Magyar TudományEgyetem (EMTE

Erdélyi Magyar TudományEgyetem (EMTE TARTALOM: Általánosságok Algoritmusok ábrázolása: Matematikai-logikai nyelvezet Pszeudokód Függőleges logikai sémák Vízszintes logikai sémák Fastruktúrák Döntési táblák 1 Általánosságok 1. Algoritmizálunk

Részletesebben

Síklefedések Erdősné Németh Ágnes, Nagykanizsa

Síklefedések Erdősné Németh Ágnes, Nagykanizsa Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen

Részletesebben

Programozás alapjai C nyelv 5. gyakorlat. Írjunk ki fordítva! Írjunk ki fordítva! (3)

Programozás alapjai C nyelv 5. gyakorlat. Írjunk ki fordítva! Írjunk ki fordítva! (3) Programozás alapjai C nyelv 5. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.17. -1- Tömbök Azonos típusú adatok tárolására. Index

Részletesebben

Algoritmuselmélet. Király Zoltán ELTE Matematikai Intézet. 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm.

Algoritmuselmélet. Király Zoltán ELTE Matematikai Intézet. 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm. Algoritmuselmélet Király Zoltán ELTE Matematikai Intézet 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm.pdf 1.3. verzió Tartalomjegyzék I. Alapvető algoritmusok 6 1.

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden

Részletesebben

Szeminárium-Rekurziók

Szeminárium-Rekurziók 1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az

Részletesebben

C# feladatok gyűjteménye

C# feladatok gyűjteménye C# feladatok gyűjteménye Készítette: Fehérvári Károly I6YF6E Informatika tanár ma levelező tagozat 1) Feladat: ALAPMŰVELETEK Készítsünk programot, amely bekér két egész számot. Majd kiszámolja a két szám

Részletesebben

Programozás I gyakorlat. 5. Struktúrák

Programozás I gyakorlat. 5. Struktúrák Programozás I gyakorlat 5. Struktúrák Bemelegítés Írj programot, amely beolvassa 5 autó adatait, majd kiírja az adatokat a képernyőre. Egy autóról a következőket tároljuk: maximális sebesség fogyasztás

Részletesebben

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK 1. EGY SOROZATHOZ EGY SOROZATOT RENDELŐ TÉTELEK 1.1 Rendezések 1.1.1 Kitűzés Adott egy sorozat, és a sorozat elemein értelmezett egy < reláció. Rendezzük a sorozat

Részletesebben

Operációs rendszerek 2 3. alkalom - Reguláris kifejezések, grep, sed. Windisch Gergely windisch.gergely@nik.uni-obuda.hu 2010-2011 2.

Operációs rendszerek 2 3. alkalom - Reguláris kifejezések, grep, sed. Windisch Gergely windisch.gergely@nik.uni-obuda.hu 2010-2011 2. Operációs rendszerek 2 3. alkalom - Reguláris kifejezések, grep, sed Windisch Gergely windisch.gergely@nik.uni-obuda.hu 2010-2011 2. félév Reguláris kifejezések Reguláris kifejezésekkel lehet keresni egy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:

Részletesebben

Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk

Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Egyetemi tavasz Szeged, SZTE L. Csizmadia (Szeged) Egyetemi tavasz 2013. 2013.04.20.

Részletesebben

Véletlenszám generátorok

Véletlenszám generátorok Véletlenszám generátorok Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^19937 1 periódusú,

Részletesebben

Matematikai programozás gyakorlatok

Matematikai programozás gyakorlatok VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................

Részletesebben

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14. Informatika 1 2011 Második előadás, vezérlési szerkezetek Szabó Adrienn 2011. szeptember 14. Tartalom Algoritmusok, vezérlési szerkezetek If - else: elágazás While ciklus For ciklus Egyszerű típusok Összetett

Részletesebben

MATEMATIKA A és B variáció

MATEMATIKA A és B variáció MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

Feladatok és megoldások a 4. hétre

Feladatok és megoldások a 4. hétre Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint

Részletesebben

E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Programozási alapismeretek :: beadandó feladat. Felhasználói dokumentáció. Molnár Tamás MOTIABT.ELTE motiabt@inf.elte.

Programozási alapismeretek :: beadandó feladat. Felhasználói dokumentáció. Molnár Tamás MOTIABT.ELTE motiabt@inf.elte. Programozási alapismeretek :: beadandó feladat Készítő adatai Név: Molnár Tamás EHA: MOTIABT.ELTE E-mail cím: motiabt@inf.elte.hu Gyakorlatvezető: Horváth László Feladat sorszáma: 23. Felhasználói dokumentáció

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok

Részletesebben

Bevezetés a programozásba. 12. Előadás: 8 királynő

Bevezetés a programozásba. 12. Előadás: 8 királynő Bevezetés a programozásba 12. Előadás: 8 királynő A 8 királynő feladat Egy sakktáblára tennénk 8 királynőt, úgy, hogy ne álljon egyik sem ütésben Ez nem triviális feladat, a lehetséges 64*63*62*61*60*59*58*57/8!=4'426'165'368

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? összefésüléses rendezés (merge

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Indexszámítás Tulajdonságok Alkalmazások Indexsorok Területi indexek Példa

Indexszámítás Tulajdonságok Alkalmazások Indexsorok Területi indexek Példa Statisztika I. 6. előadás Érték-, ár-, és volumenindexek http://bmf.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos az összehasonlítás...

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

TANTÁRGYI ADATLAP. 2.7 A tantárgy jellege DI

TANTÁRGYI ADATLAP. 2.7 A tantárgy jellege DI TANTÁRGYI ADATLAP 1. Programadatok 1.1 Intézmény Sapientia, Erdélyi Magyar Tudományegyetem 1.2 Kar Műszaki és Humántudományok 1.3 Intézet Matematika Informatika 1.4 Szak Informatika 1.5 Tanulmányi típus

Részletesebben

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M 10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók

Részletesebben

Információ Európa országairól (összetett alkalmazás)

Információ Európa országairól (összetett alkalmazás) Információ Európa országairól (összetett alkalmazás) Információ Európa osrzágairól Készítsünk webes felületet, melyen Európa térképe klikkelésre érzékeny (szenzitív) képként jelenik meg! Bármelyik országot

Részletesebben

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes 9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime? Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf

Részletesebben

3. Gyakorlat Ismerkedés a Java nyelvvel

3. Gyakorlat Ismerkedés a Java nyelvvel 3. Gyakorlat Ismerkedés a Java nyelvvel Parancssori argumentumok Minden Java programnak adhatunk indításkor paraméterek, ezeket a program egy tömbben tárolja. public static void main( String[] args ) Az

Részletesebben

80-as sorozat - Idõrelék 6-8 - 16 A

80-as sorozat - Idõrelék 6-8 - 16 A -as sorozat - Idõrelék 6-8 - A.01.11.21 Egy vagy többfunkciós idõrelék öbbfunkciós irõrelé: 6 mûködési funkcióval öbbfeszültségû kivitel: (12...240) V AC/DC öbb idõzítési funkció: 6 idõzítési tartomány,

Részletesebben

23. Fa adatszerkezetek, piros-fekete fa adatszerkezet (forgatások, új elem felvétele, törlés)(shagreen)

23. Fa adatszerkezetek, piros-fekete fa adatszerkezet (forgatások, új elem felvétele, törlés)(shagreen) 1. Funkcionális programozás paradigma (Balázs)(Shagreen) 2. Logikai programozás paradigma(még kidolgozás alatt Shagreen) 3. Strukturált programozás paradigma(shagreen) 4. Alapvető programozási tételek

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

Valószínűségszámítás és statisztika. István Fazekas

Valószínűségszámítás és statisztika. István Fazekas Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. október 15. 2013. október 15. 8:00 MINISZTÉRIUMA EMBERI ERFORRÁSOK

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. október 15. 2013. október 15. 8:00 MINISZTÉRIUMA EMBERI ERFORRÁSOK I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 12 51 3. 14 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Elágazás jövendölés ok gép megjövendöli, hogy egy ugrást végre kell hajtani vagy sem. Egy triviális jóslás: a visszafelé irányulót végre kell hajtani (ilyen van a ciklusok végén), az előre irányulót nem

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

7 7, ,22 13,22 13, ,28

7 7, ,22 13,22 13, ,28 Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem

Részletesebben

AZ RD-33-AS HAJTÓMŰ CENTRIFUGÁLIS FORDULATSZÁM SZABÁLYZÓJÁNAK MATEMATIKAI MODELLEZÉSE

AZ RD-33-AS HAJTÓMŰ CENTRIFUGÁLIS FORDULATSZÁM SZABÁLYZÓJÁNAK MATEMATIKAI MODELLEZÉSE AZ RD-33-AS HAJTÓMŰ CENTRIFUGÁLIS FORDULATSZÁM SZABÁLYZÓJÁNAK MATEMATIKAI MODELLEZÉSE Ailor Piroska egyetemi hallgató Budapesti Műszaki Egyetem Közlekedésmérnöki Kar Repülőgépek és Hajók Tanszék A szo

Részletesebben

Gráfokkal megoldható hétköznapi problémák

Gráfokkal megoldható hétköznapi problémák Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfokkal megoldható hétköznapi problémák Szakdolgozat Készítette Vincze Ágnes Melitta Konzulens Héger Tamás Budapest, 2015 Tartalomjegyzék Bevezetés

Részletesebben

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { } II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013

TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 1 Kedves Kollégák! Tanmenet javaslatunkkal segítséget kívánunk nyújtani

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

2) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 42. Adja meg a háromszög hiányzó adatait!

2) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 42. Adja meg a háromszög hiányzó adatait! Szinusztétel 1) Egy háromszög két oldalának hossza 3 és 5 cm. Az 5 cm hosszú oldallal szemközti szög 70. Adja ) Egy háromszög két oldalának hossza 9 és 14 cm. A 14 cm hosszú oldallal szemközti szög 4.

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n Országos Középiskolai Tanulmányi Verseny, 2012 13-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító

Részletesebben

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Multihalmaz típus TÁMOP-4.2.3.-12/1/KONV Értékhalmaz: az alaphalmaz (amely az Elemtípus és egy darabszám által van meghatározva)

Részletesebben

Objektumorientált Programozás III.

Objektumorientált Programozás III. Objektumorientált Programozás III. Vezérlési szerkezetek ismétlés Matematikai lehetőségek Feladatok 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő

Részletesebben

PageRank algoritmus Hubs and Authorities. Adatbányászat. Webbányászat PageRank, Hubs and Authorities. Szegedi Tudományegyetem.

PageRank algoritmus Hubs and Authorities. Adatbányászat. Webbányászat PageRank, Hubs and Authorities. Szegedi Tudományegyetem. Webbányászat PageRank, Szegedi Tudományegyetem Miért akarjuk rangsorolni a Weboldalakat? Mert tudásra szomjazunk Mert a Google-nak megéri. Pontosan hogy is? Mert állatorvost keresünk, pizzázni akarunk,

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 6. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? Haskell modulok, kompilálás a

Részletesebben

Bevezetés a C++ programozásba

Bevezetés a C++ programozásba Bevezetés a C++ programozásba A program fogalma: A program nem más, mint számítógép által végrehajtható utasítások sorozata. A számítógépes programokat különféle programnyelveken írhatjuk. Ilyen nyelvek

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben