Véletlenszám generátorok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Véletlenszám generátorok"

Átírás

1 Véletlenszám generátorok

2 Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^ periódusú, 623 dimenzióban még egyenletesen szór 2

3 Bevezetés Sok megbízható algoritmus, de bonyolult elmélet Pszeudovéletlenség definíciója helyett inkább dogmák Definíció1: Egy sorozat pszeudovéletlen, ha a determinisztikus algoritmusok számára véletlennek tűnik 3

4 Követelmények Nagy periódus Ismételhetőség Eloszlás egyenletessége 4

5 Lineáris generátor a, c, N, x(0) adottak, innen a következő rekurzió: x(n+1):=a*x(n)+c mod N Periódusa nyilván legfeljebb N Így aztán nagy N a kívánatos (általában 2^32, 2^48) Még ez sem garantálja, hogy N-hez közeli lesz a periódus A mod N műveletek drágák nagy N-re Manapság 2^40 darab szám is kellhet, így ez mára már nem elég 5

6 Lineáris generátor Ha N-et 2 hatványnak választjuk: Minden s-re az alsó s bit periódusa lf. 2^s Hiszen annyi kböző bitsorozat lehet Tehát az alsó bit periódusa 2, vagyis felváltva kapunk páros és páratlan számokat Egy ideig ANSI C-ben ez volt az alapértelmezett, de ott csak a rand specifikációja van megadva 6

7 GFSR Tf.: a CPU w bites szavakkal operál Adott x(0), x(1),, x(n-1) valamilyen n- re, m x(j+n):=x(j+m) XOR x(j) Bitenkénti kizáró vagy Belátható, hogy ha n>m>0 olyan, hogy t n +t m +1 primitív polinom a kételemű test felett, akkor a periódus eléri (2^n)-1-et. 60<=n<=1000 használatos a gyakorlatban 7

8 GFSR tesztje Rögzítve egy N-et vegyük az összes egymás utáni N hosszú szót Számoljuk meg az 1-eseket az egyes szavakban Ha ezek eloszlása Binom(N,1/2), a véletlenszerűség elég jó Ám N>n-re nagy az eltérés ettől az eloszlástól Oka: A kizáró vagy természete, ha sok azonos jegy követi egymást, akkor a következő jegy nagyobb eséllyel lesz 0. 8

9 GFSR Khi-négyzet próba is visszautasítja azt, hogy ez valóban Binom(N,1/2) Ez a hiba sok hamis szimulációs eredményt okozott Főleg ott, ahol a modell állapota erősen függött a megelőző állapotoktól Mégis széleskörben használt, pedig a hibát már vagy 25 éve kimutatták 9

10 Pszeudovéletlenség Definíció2 (Kolmogorov): Egy sorozat pszeudovéletlen, ha lehető legrövidebb leírása maga a sorozat. Hatékony algoritmushoz ez már túl nagy megszorítás így pl.: lineáris generátor és GFSR azonnal kiesik 10

11 Pszeudovéletlenség Definíció3 (kriptográfiai előzmény): Egy sorozat kiszámíthatóságban pszeudovéletlen, ha minden lépésben polinomidőben generálható a következő eleme, de azt megjósolni nem lehet polinomidejű algoritmussal. Kevesebb megszorítás, és ezen algoritmusokat már vizsgálni is tudjuk (pl.: NP-teljes problémák) 11

12 Pszeudovéletlenség Van-e a 3-mas definíciót kielégítő sorozat? A prímfaktorizációra építve sikerült találni egy ilyen generátort BBS 1986 (Blum készítette) Belátható: Ha lenne polinomidejű algoritmus a következő output megjósolására, akkor prímfaktorizációra is lenne. 12

13 Sorozatok generálása Automatával: Adott S az állapotok véges halmaza, és f: S->S átmenetifüggvény. s(0) a kezdeti állapot, s(n+1)=f(s(n)), a kimenetet egy o:s->o függvény szolgáltatja Periódus felső korlátja: S elemszáma Az automata elég általános, az implementációs kérdéseket nyitva hagyja Káoszelméletre is építhető, de ott a kontinuum számosság döntő, pl.: ranlux nevű generátor esetén: erős korreláció a kezdeti értékekkel 13

14 Véges testekre épülő automata Általában a kételemű testet használjuk (azaz mod 2 maradékosztályok) Az automata állapotai: Az F 2 fölötti d- dimenziós vektortérből valók Átmenetifüggvény: d d mátrix Partícionáljuk a vektort n darab w számú komponensre 14

15 Véges testekre épülő automata Twisted GFSR: f: (x 0,x 1,,x n-1 ) -> (x 1,,x d-1,x 0 +x m ) Periódusa beláthatóan maximum 2 n -1, 1-esek eloszlása nagyjából egyenletes Kis módosítás: Matsumoto és Kurita speciális A mátrixával: x j+n =x j+m XOR x j A Vektor-mátrix szorzás kioptimalizálható shiftelésekre 15

16 Twisted GFSR Periódusa így már 2 nw -1, és elég sok paraméterrel el is éri ezt Matsumoto és Kurita másik mátrixa: d d méretű T mátrix (tempering matrix) xt a kimeneti sorozat, így a magasabb dimenziós eloszlást segítik Hátránya: Célszerű nagy n-et választani, viszont 2 nw -1 faktorizációja sokáig tart és ez kell ehhez. C-ben tt800 nevű eljárás (rand-ban hívható) 16

17 Mersenne Twister Twisted GFSR egy változata Periódusa: Algoritmus: lásd.: tábla Változatai: 64 és 128 bites verziók 64 bitesnek 2 változata: Egyik a klasszikus Másik kicsit mélyebbre nyúlik le a képletben 128 bitesnek vannak párhuzamos változatai is (SIMD) 17

18 Mersenne Twister Gyengeségei: Kezdőértékeket nagyon jól meg kell választani Ha sok 0 van benne, akkor maga a sorozat is inkább 0-kal lesz teli Ennek ellenére egyik legjobb generátor Statisztikai tesztek legtöbbjén átmegy 18

19 Véletlenszerűség metrikái Első ötlet: Statisztikai minták és eloszlások vizsgálata hipotézisekkel Egy-egy próba csak kevés tulajdonságot vizsgál Más-más mögöttes matematikai struktúra esetén mást kell tesztelni Bizonytalansági tényező: 100%-os teszt nincs (?) Paraméterektől függő eredmények 19

20 Higher dimensional equidsitribution property Tegyük fel, hogy az automata minden kezdőállapothoz m darab véletlenszámot rendel Azaz ezen vektorok sorozatát vizsgáljuk Def.: Ha ezen vektorsorozat periódusa maximális, és O m -ben egyenletes eloszlású s 0 véletlenszerű választása esetén Legfeljebb m változós generátorokra, ha ez teljesül, akkor a legtöbb statisztikai teszten is átmennek (tapasztalatok alapján) 20

21 Higher dimensional equidsitribution property Def.: Ha a fenti definíció teljesül a fenti sorozatra úgy, hogy előtte a felső v bitre csonkítunk (azaz csak azt hagyjuk meg), akkor azt mondjuk, hogy v-bit pontossággal teljesül a ~ Adott v-re a legnagyobb dimenziót, amire még teljesül k(v)-vel jelöljük. k(v)<=[dim(s)/v] (alsó egészrész) Ha minden v-re 1..w-ig teljesül, akkor a generátort optimálisan equidistributedben mondjuk 21

22 Véletlenszerűség metrikái GFSR-re nem teljesül e tulajdonság, de Twisted GFSR és MT kielégíti ezt MT például 623 dimenzióig teljesíti 22

23 Inicializáció Nem mindegy persze, hogy milyen kezdőértéket adunk generátorunknak Sokszor a 32 bites számok sem elegendőek (pl.: fizikai szimulációknál) Ha véletlenszerűen választunk számokat, nagy (1/2-hez tartó) eséllyel kaphatjuk kétszer ugyanazt (ld.: születésnap paradoxon) Szisztematikus kezdőérték választás esetén a kapott értékek is korrelálhatnak hozzá 23

24 Párhuzamosítás Első ötlet: Minden processzor más generáló eljárást kap Reprodukálhatóság sérül, ki tudja melyik utasítás mikor fut éppen egymáshoz képest Javítás: Minden véletlen számot felhasználó objektum kap egy egyedi azonosítót Ezen keresztül azonosíthatjuk a megfelelő generátor, azaz mindenki meghatározott generátort kap A kezdőértéket az ID segítségével generáljuk, ám óvatosan kell eljárni, hogy ne jelenjen meg korreláció Kompromisszum: Egy generátor, különböző kezdőérték (parameterization) 24

25 Összefoglalás Véletlenszám generálásnál fontos szempontok: Jó eloszláskövetés Equidistribution prop Reprodukálhatóság Hatékony legyen a köv. elem kiszámítása, de a jóslás lehetőleg ne Algoritmusok: Lineáris (Twisted) GFSR Mersenne Twister 25

26 Kérdés?

27 Köszönöm a figyelmet!

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Véletlenített algoritmusok. 4. előadás

Véletlenített algoritmusok. 4. előadás Véletlenített algoritmusok 4. előadás Tartalomjegyzék: elfoglalási probléma, születésnap probléma, kupongyűjtő probléma, stabil házassági feladat, Chernoff korlát (példák), forgalomirányítási probléma.

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

REKURZIÓ. Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát.

REKURZIÓ. Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát. 1. A REKURZIÓ FOGALMA REKURZIÓ Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát. 1.1 Bevezető példák: 1.1.1 Faktoriális Nemrekurzív

Részletesebben

Szeminárium-Rekurziók

Szeminárium-Rekurziók 1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az

Részletesebben

AES kriptográfiai algoritmus

AES kriptográfiai algoritmus AES kriptográfiai algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 2. 28. Smidla József (RSZT) AES 2012. 2. 28. 1 / 65 Tartalom 1 Bevezetés 2 Alapműveletek Összeadás,

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? számtani, mértani,

Részletesebben

XXI. Országos Ajtonyi István Irányítástechnikai Programozó Verseny

XXI. Országos Ajtonyi István Irányítástechnikai Programozó Verseny evopro systems engineering kft. H-1116 Budapest, Hauszmann A. u. 2. XXI. Országos Ajtonyi István Dokumentum státusza Közétett Dokumentum verziószáma v1.0 Felelős személy Kocsi Tamás / Tarr László Jóváhagyta

Részletesebben

Load-flow jellegű feladat a villamos rendszerirányításban

Load-flow jellegű feladat a villamos rendszerirányításban NASZVADI PÉTER Load-flow jellegű feladat a villamos rendszerirányításban TDK dolgozat 2006 Előszó: Adott egy (villamosenergiaellátást biztosító) villamoshálózat, és ezen hálózathoz csatlakozó energiatermelők

Részletesebben

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002 Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet

Részletesebben

Véletlenszám generátorok. 5. előadás

Véletlenszám generátorok. 5. előadás Véletlenszám generátorok 5. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

Nemetz O.H. Tibor emlékére. 2011 május 9.

Nemetz O.H. Tibor emlékére. 2011 május 9. Adatbiztonság és valószínűségszámítás 1 / 22 Adatbiztonság és valószínűségszámítás Nemetz O.H. Tibor emlékére Csirmaz László Közép Európai Egyetem Rényi Intézet 2011 május 9. Adatbiztonság és valószínűségszámítás

Részletesebben

GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR KOMPETENCIA FELMÉRÉSÉNEK KIÉRTÉKELÉSE TÁMOP 4.1.1.-08/1

GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR KOMPETENCIA FELMÉRÉSÉNEK KIÉRTÉKELÉSE TÁMOP 4.1.1.-08/1 GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR KOMPETENCIA FELMÉRÉSÉNEK KIÉRTÉKELÉSE TÁMOP 4.1.1.-8/1 211-212 A kompetenciamérések célja annak feltárása, hogy a tanulók képesek-e az elsajátított tudásukat és készségüket

Részletesebben

Geoinformatika I. (vizsgakérdések)

Geoinformatika I. (vizsgakérdések) Geoinformatika I. (vizsgakérdések) 1.1. Kinek a munkásságához köthető a matematikai információelmélet kialakulása? 1.2. Határozza meg a földtani kutatás információértékét egy terület tektonizáltságának

Részletesebben

Előadás_#06. Előadás_06-1 -

Előadás_#06. Előadás_06-1 - Előadás_#06. 1. Holtpont, Éheztetés [OR_04_Holtpont_zs.ppt az 1-48. diáig / nem minden diát érintve] A holtpont részletes tárgyalása előtt nagyon fontos leszögezni a következőt: Az éheztetés folyamat szintű

Részletesebben

12. tétel. Lemezkezelés

12. tétel. Lemezkezelés 12. tétel 12_12a_1.5 Lemezkezelés (Particionálás, formázás, RAID rendszerek) A partíció a merevlemez egy önálló logikai egysége, amely fájlrendszer tárolására alkalmas. Alapvetően két esetben hozunk létre

Részletesebben

Számítógép összeszerelése

Számítógép összeszerelése 3. tétel Távmunka végzésre van lehetősége. Munkahelye biztosít Önnek egy számítógépes munkaállomást, amelyet gyorspostán le is szállítottak. Feladata a munkaállomás és tartozékainak üzembe helyezése. Ismertesse

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat

Részletesebben

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet).

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet). Vektortér A vektortér (lineáris tér, lineáris vektortér) két, már tanult algebrai struktúrát kapcsol össze. Def.: Legyen V nemüres halmaz, amelyben egy összeadásnak nevezett művelet van definiálva, és

Részletesebben

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA A PC FIZIKAI KIÉPÍTÉSÉNEK ALAPELEMEI Chip (lapka) Mikroprocesszor (CPU) Integrált áramköri lapok: alaplap, bővítőkártyák SZÁMÍTÓGÉP FELÉPÍTÉSE

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben

Részletesebben

0 0 1 Dekódolás. Az órajel hatására a beolvasott utasítás kód tárolódik az IC regiszterben, valamint a PC értéke növekszik.

0 0 1 Dekódolás. Az órajel hatására a beolvasott utasítás kód tárolódik az IC regiszterben, valamint a PC értéke növekszik. Teszt áramkör A CPU ból és kiegészítő áramkörökből kialakított számítógépet összekötjük az FPGA kártyán lévő ki és bemeneti eszközökkel, hogy az áramkör működése tesztelhető legyen. Eszközök A kártyán

Részletesebben

Objektum Orientált Szoftverfejlesztés (jegyzet)

Objektum Orientált Szoftverfejlesztés (jegyzet) Objektum Orientált Szoftverfejlesztés (jegyzet) 1. Kialakulás Kísérletek a szoftverkrízisből való kilábalásra: 1.1 Strukturált programozás Ötlet (E. W. Dijkstra): 1. Elkészítendő programot elgondolhatjuk

Részletesebben

AJÁNLÓ... 1 1. évfolyam... 2. Számtan, algebra... 24

AJÁNLÓ... 1 1. évfolyam... 2. Számtan, algebra... 24 AJÁNLÓ A számítógéppel támogatott oktatás megszünteti a tantárgyak közti éles határokat, integrálni képes szinte valamennyi taneszközt, így az információk több érzékszervünkön jutnak el hozzánk, a képességfejlesztés

Részletesebben

Bevezetés. A protokollok összehasonlítása. Célpontválasztás

Bevezetés. A protokollok összehasonlítása. Célpontválasztás Bevezetés Gyakran felmerül a kérdés, vajon az IPv6 protokoll hoz-e újat az informatikai biztonság területén. Korábban erre a kérdésre szinte azonnali igen volt a válasz: az IPv6 sokkal biztonságosabb,

Részletesebben

7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák

7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák 7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák A TMS320C50 processzor Ez a DSP processzor az 1.3. fejezetben lett bemutatva. A TMS320C50 ##LINK: http://www.ti.com/product/tms320c50## egy

Részletesebben

ADATBÁZISKEZELÉS ADATBÁZIS

ADATBÁZISKEZELÉS ADATBÁZIS ADATBÁZISKEZELÉS 1 ADATBÁZIS Az adatbázis adott (meghatározott) témakörre vagy célra vonatkozó adatok gyűjteménye. - Pl. A megrendelések nyomon követése kereskedelemben. Könyvek nyilvántartása egy könyvtárban.

Részletesebben

Bánsághi Anna anna.bansaghi@mamikon.net. 1 of 67

Bánsághi Anna anna.bansaghi@mamikon.net. 1 of 67 SZOFTVERTECHNOLÓGIA Bánsághi Anna anna.bansaghi@mamikon.net 5. ELŐADÁS - RENDSZERTERVEZÉS 1 1 of 67 TEMATIKA I. SZOFTVERTECHNOLÓGIA ALTERÜLETEI II. KÖVETELMÉNY MENEDZSMENT III. RENDSZERMODELLEK IV. RENDSZERARCHITEKTÚRÁK

Részletesebben

Számítógépes Hálózatok. 6. gyakorlat

Számítógépes Hálózatok. 6. gyakorlat Számítógépes Hálózatok 6. gyakorlat Feladat 0 Tízezer repülőjegy-foglaló állomás egyetlen "slotted ALOHA"-csatorna használatáért verseng. Egy átlagos állomás 24 kérést ad ki óránként. Egy slot hossza 250

Részletesebben

A lineáris tér. Készítette: Dr. Ábrahám István

A lineáris tér. Készítette: Dr. Ábrahám István A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos

Részletesebben

Az 5-2. ábra két folyamatos jel (A és B) azonos gyakoriságú mintavételezését mutatja. 5-2. ábra

Az 5-2. ábra két folyamatos jel (A és B) azonos gyakoriságú mintavételezését mutatja. 5-2. ábra Az analóg folyamatjeleken - mielőtt azok további feldolgozás (hasznosítás) céljából bekerülnének a rendszer adatbázisába - az alábbi műveleteket kell elvégezni: mintavételezés, átkódolás, méréskorrekció,

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Cache, Cache és harmadszor is Cache

Cache, Cache és harmadszor is Cache Cache, Cache és harmadszor is Cache Napjainkban, a XXI. században bátran kijelenthetjük, hogy a számítógépek korát éljük. A digitális rendszerek mára a modern ember életének meghatározó szereplőjévé váltak.

Részletesebben

Probabilisztikus modellek V: Struktúra tanulás. Nagy Dávid

Probabilisztikus modellek V: Struktúra tanulás. Nagy Dávid Probabilisztikus modellek V: Struktúra tanulás Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 volt szó a normatív megközelítésről ezen belül a probabilisztikus modellekről láttatok példákat az

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

A kereslet elırejelzésének módszerei ÚTMUTATÓ 1

A kereslet elırejelzésének módszerei ÚTMUTATÓ 1 A kereslet elırejelzésének módszerei ÚTMUTATÓ 1 A programozást elvégezték és a hozzá tartozó útmutatót készítették: dr. Gelei Andrea és dr. Dobos Imre, egyetemi docensek, Budapesti Corvinus Egyetem, Logisztika

Részletesebben

A PÁLYÁZAT LEFOLYÁSA, SZEMÉLYI, TARTALMI VÁLTOZÁSAI

A PÁLYÁZAT LEFOLYÁSA, SZEMÉLYI, TARTALMI VÁLTOZÁSAI Z Á R Ó J E L E N T É S OTKA nyilvántartási szám: K69018 Témavezető: Gingl Zoltán A téma címe: Fluktuációk és zajok alap- és interdiszciplináris kutatása fizikai, neurocardiológiai és nanotechnologiai

Részletesebben

Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag

Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag Életkor: Fogalmak, eljárások: 15 18 év összeszámolási módszerek (permutáció, variáció, kombináció) sorozatok rekurzív megadása

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

Mintavételezés: Kvantálás:

Mintavételezés: Kvantálás: Mintavételezés: Időbeli diszkretizálást jelent. Mintavételezési törvény: Ha a jel nem tartalmaz B-nél magasabb frekvenciájú komponenseket, akkor a jel egyértelműen visszaállítható a legalább 2B frekvenciával

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

SZOLGÁLTATÁSI FOLYAMATOK LOGISZTIFIKÁLÁSÁNAK MATEMATIKAI MODELLJE MATHEMATICAL MODELL OF THE LOGISTIFICATION OF SERVICE FLOWS

SZOLGÁLTATÁSI FOLYAMATOK LOGISZTIFIKÁLÁSÁNAK MATEMATIKAI MODELLJE MATHEMATICAL MODELL OF THE LOGISTIFICATION OF SERVICE FLOWS SZOLGÁLTATÁSI FOLYAMATOK LOGISZTIFIKÁLÁSÁNAK MATEMATIKAI MODELLJE MATHEMATICAL MODELL OF THE LOGISTIFICATION OF SERVICE FLOWS Dr Gubán Ákos 1 -Dr Kása Richárd 2- Sándor Ágnes 3 1 tanszékvezető főiskolai

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van

Részletesebben

Rejtett részcsoportok és kvantum-számítógépek

Rejtett részcsoportok és kvantum-számítógépek Ivanyos Gábor MTA SZTAKI MTA, 2007 május 23. Kvantum bitek Kvantum kapuk Kvantum-ármakörök Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció,

Részletesebben

Titkosítási rendszerek CCA-biztonsága

Titkosítási rendszerek CCA-biztonsága Titkosítási rendszerek CCA-biztonsága Doktori (PhD) értekezés szerző: MÁRTON Gyöngyvér témavezető: Dr. Pethő Attila Debreceni Egyetem Természettudományi Doktori Tanács Informatikai Tudományok Doktori Iskola

Részletesebben

19. Hasításos technikák (hash-elés)

19. Hasításos technikák (hash-elés) 19. Hasításos technikák (hash-elés) Példák: 1. Ha egy telefon előfizetőket a telefonszámaikkal azonosítjuk, mint kulcsokkal, akkor egy ritkán kitöltött kulcstartományhoz jutunk. A telefonszám tehát nem

Részletesebben

Számítástudomány matematikai alapjai segédlet táv és levelező

Számítástudomány matematikai alapjai segédlet táv és levelező Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

4.4 Gázellátó rendszer szerelvényeinek mû sza ki adatlapjai GÁZELLÁTÓ RENDSZEREK ÉS GÁZHÁLÓZATOK

4.4 Gázellátó rendszer szerelvényeinek mû sza ki adatlapjai GÁZELLÁTÓ RENDSZEREK ÉS GÁZHÁLÓZATOK GÁZELLÁTÓ RENDSZEREK ÉS GÁZHÁLÓZATOK. Gázellátó rendszer szerelvényeinek mû sza ki adatlapjai Az egyedi iparigáz ellátás fontosabb eszközeinek és a központi gázellátó rendszerek szerelvényeinek részletesebb

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

Analízis lépésről - lépésre

Analízis lépésről - lépésre Analízis lépésről - lépésre interaktív tananyag Dr. Stettner Eleonóra Klingné Takács Anna Analízis lépésről - lépésre: interaktív tananyag írta Dr. Stettner Eleonóra és Klingné Takács Anna Tartalom Előszó...

Részletesebben

SZÍNES KÉPEK FELDOLGOZÁSA

SZÍNES KÉPEK FELDOLGOZÁSA SZÍNES KÉPEK FELDOLGOZÁSA Színes képek feldolgozása Az emberi szem többezer színt képes megkülönböztetni, de csupán 20-30 különböző szürkeárnyalatot A színes kép feldolgozása két csoportba sorolható -

Részletesebben

3. Az ítéletlogika szemantikája

3. Az ítéletlogika szemantikája 3. Az ítéletlogika szemantikája (4.2) 3.1 Formula és jelentése minden ítéletváltozó ( V v ) ha A JFF akkor A JFF ha A,B JFF akkor (A B) JFF minden formula előáll az előző három eset véges sokszori alkalmazásával.

Részletesebben

Boundary Scan. Új digitális áramkör-vizsgálati módszer alkalmazásának indokoltsága

Boundary Scan. Új digitális áramkör-vizsgálati módszer alkalmazásának indokoltsága Boundary Scan Elméleti alapok Új digitális áramkör-vizsgálati módszer alkalmazásának indokoltsága A peremfigyelés alapelve, alapfogalmai Néhány alapvetõ részlet bemutatása A peremfigyeléses áramkörök vezérlése

Részletesebben

11.2.1. Joint Test Action Group (JTAG)

11.2.1. Joint Test Action Group (JTAG) 11.2.1. Joint Test Action Group (JTAG) A JTAG (IEEE 1149.1) protokolt fejlesztették a PC-nyák tesztelő iapri képviselők. Ezzel az eljárással az addigiaktól eltérő teszt eljárás. Az integrált áramkörök

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I.

SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I. SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I. Minden jog fenntartva, beleértve a sokszorosítás és a mű bővített, vagy rövidített változatának kiadási jogát is. A Szerző előzetes írásbeli

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Óbudai Egyetem. Doktori (PhD) értekezés. Adatpárhuzamos sejtmagkeresési eljárás fejlesztése és paramétereinek optimalizálása Szénási Sándor

Óbudai Egyetem. Doktori (PhD) értekezés. Adatpárhuzamos sejtmagkeresési eljárás fejlesztése és paramétereinek optimalizálása Szénási Sándor Óbudai Egyetem Doktori (PhD) értekezés Adatpárhuzamos sejtmagkeresési eljárás fejlesztése és paramétereinek optimalizálása Szénási Sándor Témavezető: Vámossy Zoltán, PhD Alkalmazott Informatikai Doktori

Részletesebben

Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz

Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Fazekas István 2011 R1 Tartalomjegyzék 1. Hangtani alapok...5 1.1 Periodikus jelek...5 1.1.1 Időben periodikus jelek...5 1.1.2 Térben periodikus

Részletesebben

Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal

Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal Arató Miklós, Prokaj Vilmos és Zempléni András 2013.05.07 Tartalom Tartalom 1 1. Bevezetés, véletlen kísérletek 4 1.1 Bevezetés...................................

Részletesebben

9. előadás Környezetfüggetlen nyelvek

9. előadás Környezetfüggetlen nyelvek 9. előadás Környezetfüggetlen nyelvek Dr. Kallós Gábor 2015 2016 1 Tartalom Bevezetés CF nyelv példák Nyelvek és nyelvtanok egy- és többértelműsége Bal- és jobboldali levezetések A fák magassága és határa

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

A szem a fény hullámhossz szerinti összetételét a szem színérzet formájában érzékeli.

A szem a fény hullámhossz szerinti összetételét a szem színérzet formájában érzékeli. Érzékelés ULátás Az elektromágneses sugárzás intenzitását a szem fényerősség formájában érzékeli. A fényerősség növekedésekor a szem pupillája összehúzódik, emiatt a szem rendkívüli dinamikával rendelkezik.

Részletesebben

A programozás alapfogalmai

A programozás alapfogalmai A programozás alapfogalmai Ahhoz, hogy a programozásról beszélhessünk, definiálnunk kell, hogy mit értünk a programozás egyes fogalmain. Ha belegondolunk, nem is olyan könnyű megfogalmazni, mi is az a

Részletesebben

Dr. Illés Zoltán zoltan.illes@elte.hu

Dr. Illés Zoltán zoltan.illes@elte.hu Dr. Illés Zoltán zoltan.illes@elte.hu Operációs rendszerek kialakulása Op. Rendszer fogalmak, struktúrák Fájlok, könyvtárak, fájlrendszerek Folyamatok Folyamatok kommunikációja Kritikus szekciók, szemaforok.

Részletesebben

3 Hogyan határozzuk meg az innováció szükségszerűségét egy üzleti probléma esetén

3 Hogyan határozzuk meg az innováció szükségszerűségét egy üzleti probléma esetén 3 Hogyan határozzuk meg az innováció szükségszerűségét egy üzleti probléma esetén 3.1 A Black Box eljárás Kulcsszavak: Black Box, Kísérleti stratégia, Elosztás, Határérték, A döntéshozatali tábla tesztje

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév

Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév 1. oldal, összesen: 6 Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév NÉV:... 1. Legyenek,Q,M páronként diszjunkt halmazok; /= Ř, Q > 2, M = 3. Egyszalagos, determinisztikus Turing gépnek

Részletesebben

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat Térinformatika Elemzék 2. Az informáci ciós s rendszerek funkciói adatnyerés s (input) adatkezelés s (management) adatelemzés s (analysis) adatmegjelenítés s (prentation) Összeállította: Dr. Szűcs LászlL

Részletesebben

1 Rendszer alapok. 1.1 Alapfogalmak

1 Rendszer alapok. 1.1 Alapfogalmak ÉRTÉKTEREMTŐ FOLYAM ATOK MENEDZSMENTJE II. RENDSZEREK ÉS FOLYAMATOK TARTALOMJEGYZÉK 1 Rendszer alapok 1.1 Alapfogalmak 1.2 A rendszerek csoportosítása 1.3 Rendszerek működése 1.4 Rendszerek leírása, modellezése,

Részletesebben

Virtualizációs Technológiák Bevezetés Kovács Ákos Forrás, BME-VIK Virtualizációs technológiák https://www.vik.bme.hu/kepzes/targyak/vimiav89/

Virtualizációs Technológiák Bevezetés Kovács Ákos Forrás, BME-VIK Virtualizációs technológiák https://www.vik.bme.hu/kepzes/targyak/vimiav89/ Virtualizációs Technológiák Bevezetés Kovács Ákos Forrás, BME-VIK Virtualizációs technológiák https://www.vik.bme.hu/kepzes/targyak/vimiav89/ Mi is az a Virtualizáció? Az erőforrások elvonatkoztatása az

Részletesebben

Valószínűségszámítás és statisztika. István Fazekas

Valószínűségszámítás és statisztika. István Fazekas Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i )

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i ) 6. A láncszabály, a teljes valószínűség tétele és Bayes-tétel Egy (Ω, A, P ) valószín ségi mez n értelmezett A 1,..., A n A események metszetének valószín sége felírható feltételes valószín ségek segítségével

Részletesebben

Az INTEL D-2920 analóg mikroprocesszor alkalmazása

Az INTEL D-2920 analóg mikroprocesszor alkalmazása Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan

Részletesebben

Mára új helyzet alakult ki: a korábbiakhoz képest nagyságrendekkel komplexebb

Mára új helyzet alakult ki: a korábbiakhoz képest nagyságrendekkel komplexebb Iskolakultúra 2004/8 Nagy József ny. egyetemi tanár, Szegedi Tudományegyetem, Szeged Az elemi kombinatív képesség kialakulásának kritériumorientált diagnosztikus feltárása tanulmány Ha beírjuk a számítógép

Részletesebben

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján. Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,

Részletesebben

Alkalmazott modul: Programozás

Alkalmazott modul: Programozás Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Feladatgyűjtemény Összeállította: Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Frissítve: 2015.

Részletesebben

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Adataink biztonságos tárolása és mentése

Adataink biztonságos tárolása és mentése Adataink biztonságos tárolása és mentése Akivel már megtörtént, hogy fontos adatot veszített bármilyen okból kifolyólag, az egészen biztosan kínosan ügyel arra, hogy még egyszer ilyen elõ ne fordulhasson

Részletesebben

MOSAIC Bér exportálása az ABEVJava programba

MOSAIC Bér exportálása az ABEVJava programba MOSAIC Bér exportálása az ABEVJava programba A nyomtatványok importálása során keletkező hibákat alaposan nézzék át és akkor jelezzék felénk, ha ez nem adatkitöltési hiányosságok miatt adódik. A leírás

Részletesebben

Kombinatorikus kerese si proble ma k

Kombinatorikus kerese si proble ma k Eo tvo s Lora nd Tudoma nyegyetem Terme szettudoma nyi Kar Lenger Da niel Antal Matematikus MSc Kombinatorikus kerese si proble ma k Szakdolgozat Te mavezeto : Katona Gyula egyetemi tana r Sza mı to ge

Részletesebben

Egyszerű tábla. Nagy Zsófia: A mi táblánk

Egyszerű tábla. Nagy Zsófia: A mi táblánk Nagy Zsófia: A mi táblánk 2011 decemberében, karácsonyi meglepetésként, egyik diákom családjának közbenjárása révén került osztálytermünkbe egy Mimio interaktív tábla. Persze nagy volt az öröm a gyerekek

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek

Részletesebben

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

A Szekszárdi I. Béla Gimnázium Helyi Tanterve A Szekszárdi I. Béla Gimnázium Helyi Tanterve Négy évfolyamos gimnázium Informatika Készítette: a gimnázium reál munkaközössége 2015. Tartalomjegyzék Alapvetés...3 Egyéb kötelező direktívák:...6 Informatika

Részletesebben

2. DIGITÁLIS ÁRAMKÖRÖK TESZTJEINEK SZÁMÍTÁSA (Dr. Sziray József, 2001.)

2. DIGITÁLIS ÁRAMKÖRÖK TESZTJEINEK SZÁMÍTÁSA (Dr. Sziray József, 2001.) 2. DIGITÁLIS ÁRAMKÖRÖK TESZTJEINEK SZÁMÍTÁSA (Dr. Sziray József, 2001.) 2.1 A digitális tesztelés alapjai A következőkben a digitális áramköröket elvont formában, vagyis digitális vagy logikai hálózatokként

Részletesebben

MITISZK Miskolc-Térségi Integrált Szakképző Központ

MITISZK Miskolc-Térségi Integrált Szakképző Központ MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0

Részletesebben

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium)

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium) 2005/db közép 2005/db emelt 2005/db összes 2005/jegy közép 2005/jegy emelt 2005/jegy összes 2005/% közép 2005/% emelt 2005/% összes 51 119 170 3,53 5,00 4,42 59,90 99,17 84,27 22 17 39 4,45 4,94 4,7 75,68

Részletesebben

Adatstruktúrák és algoritmusok

Adatstruktúrák és algoritmusok Adatstruktúrák és algoritmusok Attila Házy, Ferenc Nagy 2011. április 6. 2 Tartalomjegyzék 1. Bevezetés 7 1.1. A tárgyról............................. 7 1.2. Alapvető fogalmak, definíciók..................

Részletesebben