Alkalmazott modul: Programozás
|
|
- Nóra Kerekesné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Feladatgyűjtemény Összeállította: Giachetta Roberto Frissítve: szeptember 3.
2 I. Procedurális programozás 1. Kifejezések 1. Döntsd el egy egész számról, hogy páros-e. 2. Döntsd el egy tetszőleges számról, hogy egy adott intervallumba esik-e. 3. a) Döntsd el egy koordinátákkal adott pontról, hogy az origó-e. b) Döntsd el, hogy az egyik koordinátatengelyre esik-e. 4. Számítsd ki egy adott sugarú gömb térfogatát. 5. a) Döntsd el két egész számról, hogy az első osztója-e a másodiknak. b) Döntsd el, hogy bármelyik osztója-e a másiknak. 6. Döntsd el három számról, hogy lehetnek-e egy háromszög oldalhosszai. 7. Döntsd el két számról, hogy megegyezik-e az előjelük. 8. a) Add meg egy számtani sorozat első két elemének ismeretében a harmadik elemét. b) Add meg az N-edik elemét. c) Mértani sorozatra is add meg az N-edik elemet. 9. Számítsd ki egy háromszög területét az oldalhosszaiból. 10. Számítsd ki két térvektor vektoriális szorzatát (koordináták használatával). 11. a) Add meg egy koordinátákkal adott pont távolságát az origótól. b) Két tetszőleges, koordinátáival adott pont távolságát add meg. 12. Add meg egy másodfokú egyenlet megoldásait. 13. Számítsd ki egy síkbeli koordinátákkal megadott háromszög szögeit. 14. Döntsd el egy szövegről, hogy nagybetűvel kezdődik-e. 15. Döntsd el egy szövegről, hogy számjegyre végződik-e. 16. a) Add meg egy tetszőleges szöveg első szavát. b) Egy tetszőleges szövegnek töröld le az első szavát. c) Egy tetszőleges szöveg első szavát cseréld le egy másik, adott szóra. 2
3 2. Vezérlési szerkezetek 17. a) Írj ki N darab *-ot. b) "Rajzolj" ki egy NxN-es négyzetet *-okból. c) Rajzolj ki egy N hosszú befogójú, egyenlő szárú derékszögű háromszöget *- okból. d) Rajzolj ki egy N oldalhosszúságú, csúcsára állított rombuszt *-okból. e) Rajzolj ki egy NxN-es sakktáblát, a sötét mezőket **, a világosakat szóközök jelöljék. 18. Sorold fel két pozitív egész szám közös osztóit. 19. Sorold fel az első N négyzetszámot. 20. Sorold fel a K-nál kisebb négyzetszámokat. 21. Állíts elő N darab véletlen számot. 22. Add meg az N. Fibonacci-számot. A Fibonacci sorozat egész számokból áll, az első két tagja 0 és 1, és minden további tagja az előző két tag összege. 23. Egész számhármasok tetszőleges sorozatát módosítsd úgy, hogy minden hármas növekvő sorrendben legyen. 24. Sorold fel azokat a másodfokú egyenleteket, amelyek minden együtthatója 0 és 10 közötti egész szám, és pontosan egy megoldása van. 25. Add meg a Pascal-háromszög első N sorát. 26. Add meg egy tetszőleges számsorban az ismétlődő számokat. 27. a) Egy olyan szövegből, amiben van pontosan egy zárójelpár, add meg a zárójelben levő részt. b) Ismerd fel, ha nincs zárójel a szövegben. c) Ismerd fel, ha hibás a zárójelezés. d) Több zárójelpár esetén add meg mindegyik tartalmát. e) Ha a zárójelen belül újabb zárójelpár van, akkor is a teljes külső zárójelpár taralmát add meg. 28. Egy tetszőleges szövegben alakítsd át a kisbetűket nagybetűkké, a nagybetűket pedig kisbetűkké. 29. a) Fordíts meg egy tetszőleges egész számsort. b) Fordíts meg egy tetszőleges szöveget. 30. Sorold fel egy tetszőleges egész számsor összes részsorozatát. 31. Add meg két tetszőleges szövegről, hogy mely pozíciókon vannak azonos karaktereik. 3
4 32. Add meg egy tetszőleges szöveg karaktereinek az összes permutációját. 33. Egy tetszőleges szöveget módosíts úgy, hogy a sorai elé írod az adott sor sorszámát. 34. Add meg egy tetszőleges szövegnek minden szavát külön-külön. 35. a) Add meg egy természetes szám prímtényezős felbontását. b) Az első N természetes szám felbontását add meg. 36. Adott egy szöveg, ami minden sorában szóközzel elválasztott egész számokat tartalmaz. Add meg minden sorhoz a benne található legnagyobb páros számot. (Vigyázz! Nem biztos, hogy minden sorban van páros szám!) 37. Számítsd ki a következő iterációs eljárás nn. lépésének eredményét (az xx pozitív valós szám négyzetgyökének az értékét közelíti): aa 0 = 1, aa ii+1 = 0.5 (aa ii + xx/aa ii ) 38. Adott egy tetszőleges számsorozat. Állítsd növekvő sorrendbe az elemeit. 39. Fésülj össze két monoton számsorozatot. 40. Permutált egy számsorozat elemeit véletlenszerűen. 3. Alrogramok 41. Valósítsd meg az int kozos(int a, int b) függvényt, ami a közös osztók számát adja vissza. 42. Valósítsd meg az bool tokeletes(int a) függvényt, ami visszaadja, hogy a paraméterül kapott érték tökéletes szám-e. 43. Valósítsd meg az bool baratsagos(int a, int b) függvényt, ami visszaadja, hogy a paraméterül kapott értékek barátságos számpárt alkotnak-e. 44. Valósítsd meg az int max(vector<int> v) függvényt, ami a paraméterül kapott vektor elemei közül a legnagyobbat adja vissza. 45. Valósítsd meg az bool vane(vector<int> v, int ez) függvényt, ami eldönti, hogy a paraméterül kapott vektor elemei között van-e "ez". 46. Valósítsd meg a double atlag(vector<double> v) függvényt, ami a paraméterül kapott vektor átlagát adja vissza. 47. Valósítsd meg az int hany(vector<double> v, double ez) függvényt, ami a paraméterül kapott vektorban megszámolja, hogy hány "ez" van benne. 4
5 48. Valósítsd meg az int hanysor(ifstream &f) függvényt, ami egy paraméterül kapott fájlban levő maradék sorok számát adja vissza. 49. Valósítsd meg az int hanysor(string fajlnev) függvényt, ami a paraméterként megkapott fájlnévhez tartozó fájlt megpróbálja megnyitni, ha nem létezik a fájl, akkor -1-et ad vissza, egyébként pedig a fájlban található sorok számát. a) Valósítsd meg a void alahuzvakiir(string s) függvényt, ami a paraméterül kapott szöveget új sorba kiírja, és "=" karakterekkel aláhúzza. 50. Valósítsd meg a void szamparbeolvas(ifstream &f, int &a, int &b) függvényt, ami a kapott fájlból számpárt olvas be. 51. Valósíts meg függvényt, ami a kapott három egész szám, mint háromszög három magasságának hosszait adja meg. 52. Valósíts meg függvényt, amely egy szöveget átalakít úgy, hogy ha több whitespace karakter (szóköz, tabulátor, újsor) van benne egymás után, azt egyetlen szóközzé alakítja. 53. Valósíts meg függvényt, ami egész számból szöveges változót csinál, ami előjelet és a megfelelő számjegyeket tartalmazza, felesleges karakterek nélkül. 54. Valósíts meg függvényt, ami szöveges változóból egész számot próbál csinálni, visszaadja az eredményt, és visszaadja azt is, hogy zökkenőmentes volt-e az átalakítás. Ez utóbbi érték legyen 0, ha sikeres volt, különben hogy hányadik karakter (1-től indexelve) nem volt számjegy, illetve előjel megfelelő helyen. 4. Programozási tételek egyszerű alkalmazása 55. Számítsd ki egy szám faktoriálisát. 56. Számítsd ki egy tetszőleges számsorozat átlagát. 57. Számítsd ki egy tetszőleges számsorozat szórását. 58. Add meg egy természetes szám valódi osztóinak összegét. 59. Add meg egy tetszőleges egész szám valódi osztóinak a számát. 60. Add meg egy természetes szám legnagyobb valódi osztóját. 61. Add meg két természetes szám legnagyobb közös osztóját. 62. a) Sorold fel az első N tökéletes számot (olyan természetes számot, ami megegyezik a valódi osztóinak összegével). b) Sorold fel a K-nál kisebb tökéletes számokat. 5
6 63. Add meg egy tetszőleges egész számsorról, hogy hány eleme nagyobb, ill. kisebb az átlagánál. 64. Egy pozitív egész számokból álló számsorban add meg, hogy hány páros szám van. 65. Egy tetszőleges számsorban add meg a legkisebb és a legnagyobb számot. 66. Add meg egy tetszőleges pozitív számsorozat elemeinek a négyzetgyök-összegét. 67. Számítsd ki két N dimenziós vektor skaláris szorzatát. 68. a) Egy szigorúan növő egész számsorban add meg a legnagyobb ugrást (szomszédos elemek közötti legnagyobb előforduló különbséget). b) Nem monoton számsorra is adj helyes eredményt. 69. Add meg egy tetszőleges egész számsorban a szomszédos elemek átlagos különbségét. 70. Tetszőleges sok számról döntsd el, hogy növekvő sorrendben vannak-e. 71. Egy egész számról döntsd el, hogy prímszám-e. 72. a) Sorold fel az első N prímszámot. b) Sorold fel a K-nál kisebb prímszámokat. c) Sorold fel az A és B közé eső prímszámokat. 73. Egy tetszőleges szövegről add meg, hány kis "a" betű van benne. 74. Egy tetszőleges szövegről add meg, hány számjegy, hány nagybetű és hány kisbetű van benne. 75. Add meg egy tetszőleges szövegben, hogy melyik karakter fordul elő benne a legtöbbször. 76. Add meg egy tetszőleges szövegből a leghosszabb sort. 77. Döntsd el egy tetszőleges szövegről, hogy a sorai ABC sorrendben vannak-e. 78. a) Egy tetszőleges szövegben add meg a sorok számát. b) Add meg a karakterek számát is. c) Add meg a szavak számát is. 79. Add meg egy tetszőleges szöveg leghosszabb szavát. 80. a) Egy tetszőleges szövegben számold meg, hány sor kezdődik azzal a betűvel, amivel az előző végződött. b) Azt is számold meg, hogy hány szó kezdődik a megelőző szó utolsó betűjével. 6
7 81. a) Egy tetszőleges szövegről add meg, hány mondat található benne. Mondatnak tekintünk minden olyan sort, ami nagybetűvel kezdődik, és ponttal, felkiáltójellel vagy kérdőjellel végződik. b) A több mondatot tartalmazó sorokat és a többsoros mondatokat is kezeld helyesen. 82. a) Egy tetszőleges szövegről add meg, hány szóból áll. Felteheted, hogy két szót mindig pontosan egy szóköz választ el. b) Akkor is működjön, ha két szó között több szóköz is lehet. 83. Egész számhármasok tetszőleges sorozatáról add meg, hogy a hármasok közül hánynak vannak növekvő sorrendben az elemei. 84. a) Háromszögek oldalhosszainak egy tetszőleges sorozatában (pozitív számhármasok sorozata) add meg a legnagyobb kerületű háromszöget. b) Add meg a legnagyobb területű háromszöget is. c) A hibás háromszögeket szűrd ki a sorozatból. 85. Tetszőleges, a csúcsai koordinátáival adott sokszögnek add meg a kerületét. 86. Tetszőleges, koordinátákkal adott pontsorozatból add meg, hogy mennyi esik az origó körüli R sugarú körön belülre. 87. Tetszőleges, koordinátákkal adott pontsorozatban add meg az origótól legtávolabb eső pontot. 5. Programozási tételek összetett alkalmazása 88. Add meg egy tetszőleges egész számsorban a prímszámok számát. 89. Add meg, hogy az A és B közötti egész számok közül melyiknek van a legtöbb valódi osztója. 90. Adott egy szöveg, ami minden sorában egész számokat tartalmaz. Add meg, hogy melyik sorban a legnagyobb a sor legkisebb száma (és azt is, hogy mi ez a szám). 91. a) Egy több soros szövegben add meg, hány sorában található meg az "alma" szó. b) Az "alma" helyett tetszőleges szöveget lehessen megadni. c) A szó összes előfordulásának a számát add meg. 92. Mátrixban tároljuk egy osztály adatait, minden sora egy diák, minden oszlopa egy tantárgy, a mátrix értékei a jegyek. Add meg a következőket: a) Osztályátlag. b) Legjobb tanuló (átlag alapján). c) Legnehezebb tantárgy (legtöbb bukás). d) Van-e két hallgató, akiknek egyforma az átlaguk? e) Hányan nem buktak meg semmiből? 7
8 f) A legjobb tanuló legrosszabb jegye. g) Ki a legrosszabb átlagú hallgató azok közül, akik nem buktak meg semmiből? h) Melyik hallgató jegyeinek a legnagyobb a szórása? 93. Egy vonalban szabályos távolságonként megmértük a tengerszint feletti magasságot egyik szárazföldi ponttól a másikig. Add meg a következőket: a) Található-e hegycsúcs a területen (olyan pont, amely az előtte és utána lévőnél is magasabb). b) Hány sziget található a területen (sziget azon tengerszint feletti magasságok sorozata, amely előtt és után is tengerszint alatti magasság van). c) Milyen hosszú a legnagyobb (legtöbb mérésből álló) sziget. d) Van-e olyan sziget, amelyben völgy található. e) Hány hegycsúcs található a legnagyobb szigeten. f) Hány hegycsúcs alakú sziget van (ahol a hegycsúcs előtt monoton nőnek, utána monoton csökkenek az értékek). 94. Egy szöveges fájl minden sora egy mondatot tartalmaz, amelyek tetszőleges számú szóból állhatnak. Minden mondatnak van egy írásjel a végén, de ezen kívül nincs más írásjel a mondatban. a) Hányadik mondatban található a legtöbb szó? b) Melyik a leghosszabb szó a teljes szövegben? c) Van-e olyan mondat a szövegben, amely legalább 10 szavat tartalmaz? d) Hányadik mondatban található a legtöbb s betű? e) Van-e olyan mondat, amely évszámot (4 jegyű pozitív számot) tartalmaz? f) Mennyi a szavak hosszának átlaga a legtöbb szót tartalmaz mondatban? g) Hányadik mondatban található a legtöbb határozott névelő (a, az)? 95. Egy szöveges fájl minden sora egy egész számsorozatot tartalmaz (mindegyik sor tetszőleges hosszú, akár üres is lehet). Add meg a következőket: a) Melyik sor összege a legnagyobb. b) Melyik sorban lévő számok abszolút értékeinek összege a legnagyobb. c) Melyik sorban található páros sok szám. d) Melyik sorban található a legnagyobb páros szám. e) Van-e olyan sor, amelyben csak egyféle érték fordul elő. f) Hány olyan sor van, amelyben a számok átlaga pont nulla. g) Hányadik sorban van a legnagyobb szám. 8
9 II. Strukturált programozás 1. Rekordok 1. Adott egy szövegfájl, ami egy recept hozzávalóit tartalmazza. A fájl minden sora egy számmal kezdődik, ami egy összetevőből szükséges mennyiség, majd vesszővel elválasztva tőle az összetevő neve jön. a) Add meg azt az összetevőt, amiből a legtöbb, és amiből a legkevesebb kell. b) Add meg, hány olyan összetevő van, amiből kevesebb, mint egy egységnyi kell. c) Add meg egy tetszőleges összetevőről, hogy mennyi kell belőle. 2. Adott egy telefonkönyv egy szövegfájlban, aminek a sorai vesszővel elválasztott neveket és telefonszámokat tartalmaznak. a) Egy tetszőleges névhez add meg a telefonszámot. b) Egy tetszőleges telefonszámhoz add meg a nevet. 3. Adott egy szövegfájl, aminek a sorai neveket és születési adatokat tartalmaznak (név, év.hó.nap. alakban). a) Add meg egy ember születési adatait a neve alapján. b) Add meg a legöregebb és legfiatalabb embert a listában. c) Add meg, hány januári születésnap van a listában. 4. Adott egy szövegfájl, ami egy hónap minden napjának hőmérsékleti adatait tartalmazza: minden sorban három szám van, egy napon mért reggeli, déli és esti hőmérsékletet. a) Add meg a havi átlaghőmérsékletet. b) Add meg a legalacsonyabb napi középhőmérsékletet (és azt is, hogy hányadik napon volt). c) Add meg, hány reggel volt fagy. d) Add meg, melyik napon volt a legnagyobb hőmérséklet-ingadozás. 2. Típusok 5. Valósítsuk meg a komplex számok típusát úgy, hogy a komplex számot az algebrai alakkal ábrázoljuk (xx + iiii). Implementáljuk az összeadás, kivonás, szorzás, osztás, konjugálás, beolvasás és kiírás műveleteit (operátorok segítségével). 6. Valósítsuk meg a polinomok típusát, ahol a polinomot együtthatói sorozatával ábrázoljuk (amelyeket egy tömbben tárolunk). Implementáljuk az összeadás, kivonás, szorzás, beolvasás és kiírás műveleteit (operátorok segítségével), adott ponton történő helyettesítési érték kiszámítását, valamint adott fokszámú együttható lekérdezését, vagy módosítását. 9
10 7. Valósítsuk meg a valós értékű diagonális mátrixok típusát. A hatékony ábrázolás érdekében csak a nem nulla elemeket tároljuk el. Legyen lehetőség mátrixok összeadására, szorzására, beolvasására és kiírására (operátorok segítségével), a determináns lekérdezésére, továbbá tetszőleges soron és oszlopon lévő érték beállítására, valamint lekérdezésére. 8. Valósítsuk meg a valós értékű tridiagonális mátrixok típusát, ahol az elemek csak a főátlóban, illetve alatta és felette helyezkedhetnek el. A hatékony megvalósítás érdekében csak a nem nulla adatokat tároljuk el. Legyen lehetőség mátrixok összeadására, szorzására, beolvasására és kiírására (operátorok segítségével), a determináns lekérdezésére, továbbá tetszőleges soron és oszlopon lévő érték beállítására, valamint lekérdezésére. 9. Valósítsuk meg a 2 2-es egész értékű mátrixok típusát. Legyen lehetőség mátrixok összeadására, szorzására, beolvasására és kiírására (operátorok segítségével), a determináns lekérdezésére, inverz számítására, továbbá tetszőleges soron és oszlopon lévő érték beállítására, valamint lekérdezésére. 10. Valósítsuk meg a nagyon nagy természetes számok típusát, ahol a számokat számjegyeik sorozatával ábrázoljuk (amelyeket tömbben tárolunk). Implementáljuk nagy számok összeadását, szorzását, beolvasását és kiírását operátorok segítségével. A főprogram töltsön fel egy tömböt nagyon nagy számokkal, amelynek ezután ki kell számolni az összegét és szorzatát. 11. Valósítsuk meg a karakterlánc típust, ahol a karakterlánc egy karakterekből álló tömb. A karakterlánc bővíthető, azaz hozzáfűzhető tetszőleges sok karakter. Emellett lehetőség van két karrakterlánc konkatenálására, kiírására, illetve beolvasására operátorok segítségével. A főprogram olvasson be két karakterláncot, majd konkatenálja őket össze, és utána biztosítson lehetőséget annak bővítésére tetszőleges sokszor tetszőleges karakterrel. 3. Sablonok 12. Valósítsuk meg a sablonos verem adattípust, amelyet tömb segítségével reprezentálunk. Legyen lehetőség elem behelyezésére (push), kivételére (pop), valamint a tetőelem lekérdezésére (top). A veremnek létrehozáskor adjuk meg a maximális méretét. A verem jelezzen hibát, ha valamely művelet sikertelen volt. 13. Valósítsuk meg a sablonos verem adattípust, amelyet láncolt adatszerkezet segítségével reprezentálunk. Legyen lehetőség elem behelyezésére (push), kivételére (pop), valamint a tetőelem lekérdezésére (top). A verem jelezzen hibát, ha valamely művelet sikertelen volt. 14. Valósítsuk meg a sablonos sor adattípust, amelyet tömb segítségével reprezentálunk. Legyen lehetőség elem behelyezésére (in), kivételére (out), 10
11 valamint az első elem lekérdezésére (first). A sornak létrehozáskor adjuk meg a maximális méretét. A sor jelezzen hibát, ha valamely művelet sikertelen volt. 15. Valósítsuk meg a sablonos halmaz típust, amelyet tömb segítségével reprezentálunk. Implementáljuk elem behelyezését, kivételét, a tartalmazás lekérdezését, halmaz kiírását, valamint halmazok unióját, metszetét, különbségét és szimmetrikus differenciáját. 16. Valósítsuk meg a sablonos halmaz típust, amelyet láncolt adatszerkezet segítségével reprezentálunk. Implementáljuk elem behelyezését, kivételét, a tartalmazás lekérdezését, halmaz kiírását, valamint halmazok unióját, metszetét, különbségét és szimmetrikus differenciáját. 17. Valósítsuk meg a sablonos zsák adatszerkezetet, amelyet tömb segítségével reprezentálunk. Implementáljuk elem behelyezését, kivételét, a számosság lekérdezését, zsák kiírását, valamint zsákok unióját és metszetét. 11
12 III. Objektumorientált programozás 1. Készítsünk el egy geometriai alakzatokat megvalósító alkalmazást, amelybe feltölthetünk különböző típusú alakzatokat (vízszintes vonal, függőleges vonal, kör, négyzet), és azt közös adatszerkezetben tudjuk kezelni. Az alakzatokra lehessen együttesen területet és kerültet lekérdezni, valamint meghatározni, mely alakzatok tartalmaznak pontot, illetve eltolni őket egy vektorral. Minden alakzatot reprezentáljuk egy középpont és egy sugár segítségével, és ennek megfelelően a műveletek a típusnak megfelelő értékeket állítsák elő. 2. Készítsünk el egy alkalmazást, amelyben vonatokat állíthatunk össze. A vonatok kocsikból állnak, melyek lehetnek mozdonyok, személykocsik, teherkocsik, és egy speciális a bicikliszállító. Minden kocsiról ismert az azonosítószáma valamint a hossza. Mozdony esetén ismert a meghajtás típusa (gőz, elektromos, ), valamint a szállítható vagonok száma. Személykocsik esetén ismert az ülések száma és az osztály, teherkocsik esetén ismert a kapacitás és az áru típusa. A bicikliszállító személy- és teherkocsi egyben, mindig másodosztályú és mindig kerékpárt szállít. A vonatoknak lehessen lekérdezni a teljes hosszát, az összes ülésszámot és árukapacitást, lehessen vagonokat csatolni és leválasztani, valamint elindítani a vonatot egy megadott célállomásra (persze csak akkor, ha a mozdonyok elbírják a szerelvényt). Mozdony csatolásánál ügyeljünk arra, hogy mindig a vonat elejére kapcsoljuk, és csak olyan mozdony engedélyezett, amelynek meghajtása megegyezik a már a vonathoz csatolt mozdonyokéval (ha van olyan). 3. Készítsünk programot, amely alkalmas egy szerelőműhelyben rendelkezésre álló és felhasznált alkatrészek adatainak nyilvántartására. Az alkatrészek a következők lehetnek: Csavar: adott a mérete (átmérője), a típusa (fa/fém), kiszerelés, illetve a nettó egységára. Csapágy: adott a mérete (átmérője), kiszerelés, illetve a nettó egységára. Gerenda: adott a hossza, a szélessége, illetve a négyzetméterenkénti nettó egységára. A program olvassa be a fájlt és biztosítson lehetőséget a méret és a bruttó ár kiszámítására. A kiszerelés megadja, hogy az adott csomagban hány alkatrész található. Gerenda esetén a méret a szélesség és a hossz szorzata. A bruttó egységár 27% ÁFA-t tartalmaz. 12
13 4. Készítsünk programot, amely segítségével matematikai műveleteket tudunk elvégezni és azok eredményét kiírni a képernyőre. A program négyféle műveletet támogat, amelyek kódjai és operandusai egy szöveges fájlban találhatóak: Faktoriális számítás (0-ás kód), 1 operandusú Legkisebb közös többszörös számítása (1-es kód), 2 operandusú Fibonacci sorozat n-edik tagja (2-es kód), 1 operandusú Vektorok skaláris szorzata (3-as kód), 2 operandusú Vektorok esetén a vektor hossza nem adott előre, így azt a sorban található számok számából kell kikövetkeztetni. A program olvassa be a fájlt, majd írja ki a képernyőre a műveletek nevét, operandusait, valamint eredményét soronként. Amennyiben egy sorban nincs elég operandus, vagy hibás a sor szerkezete, úgy a hibát jelezze, de a többi műveletet a fájlból végezze el. A megvalósításnál a műveleteket készítsük el osztályok formájában, amelyek az alábbi interfészt valósítják meg: class Muvelet { public: std::string nev() = 0; std::string[] operandusok() = 0; double kiszamol() = 0; } 5. Egy szöveges állomány egy lakás helységeinek adatait (lakószobáknál az oldalhosszakat, az ajtók számát és az ablakok számát, terasz esetén az alapterületet, egyéb helységek esetén az alapterületet, az ajtók számát és az ablakok számát) tartalmazza. Minden sorban egy-egy helység adatai találhatók. A sor első számjegye a helység fajtájára utal (1, ha szoba; 2, ha terasz, 3 ha egyéb helység), ezután szóközökkel elválasztva a helység fajtájától függően egy vagy két valós szám, majd (a terasz kivételével) az ajtók és ablakok számát megadó két egész. Definiáljuk külön-külön az egyes helység-típusok osztályait, amelyek az alábbi interfész leszármazottai. class Helyiseg { public: virtual std::string nev() = 0; virtual double terulet() = 0; virtual int ablakokszama() = 0; virtual int ajtokszama() = 0; }; Készítsünk olyan programot, amely a szöveges állomány alapján létrehozza a megfelelő helyiség-objektumokat. A felhasználónak legyen lehetősége megadni a fájlnevet, valamint lekérdezni a következő adatokat: teljes terület, teljes belterület (terasz nélkül), 13
14 adott helyiség összes adatainak listája, összes helyiség listája terület szerint növekvő sorrendben rendezve (ehhez alkalmas rendező algoritmust kell megvalósítani). 6. Készítsünk programot, amely különböző típusú testek tömegét tudjuk kiszámítani. A program háromféle test adatait tudja kezelni: Hengeres márványoszlop (0): sűrűség, magasság, átmérő; Tölgyfa egészben, gyökér nélkül (1): sűrűség, törzs hossza, törzs sugara, fa kora, zsugorodási tényező; Raktári polc (2): sűrűség, teljes magasság, hosszúság, mélység, polcok száma, polcok vastagsága. A program az adatokat szöveged fájlból olvassa be, ahol az első sor a testek száma, majd ezt követik soronként egy test kódja (0,1, vagy 2) és az adatai a megadott sorrendben. Amennyiben egy sor szerkezete nem megfelelő, akkor ezt a program jelezze, de a további sorokat dolgozza fel. A testeket osztályok segítségével valósítsuk meg a következő absztrakt osztályból származtatva: abstract class Test { public: virtual std::string nev() = 0; virtual double terfogat() = 0; virtual double suruseg() = 0; double tomeg() { return terfogat() * suruseg(); } } A tömeg kiszámításához használjuk a következő képleteket: tömeg: mm = VV ρρ (VV: térfogat, ρρ: sűrűség) henger térfogata: VV = ππ rr 2 h (rr: henger sugara, h: henger magassága) fa térfogata: VV = VV 1, ahol VV nn = ππ rr2 h dd nn + 1 dd+nn VV nn+1, haa nn < kk ππ rr 2 h dd nn, haa nn = kk (rr: törzs sugara, h: törzs magassága, kk: fa kora, dd: zsugorodási tényező) polc térfogata: VV = ll dd tt nn (ll: hossz, dd: mélység, tt: vastagság, nn: polcok száma) 7. Egy szöveges állomány háromféle síkidom adatait (négyzetnél az alapot, téglalapnál az alapot és az oldalt, rombusznál az alapot és az alapok által bezárt szöget) tartalmazza. Minden sorban egy-egy síkidom adatai találhatók. A sor első számjegye a síkidom fajtájára utal (0, ha négyzet; 1, ha téglalap; 2, ha rombusz), 14
15 ezután szóközökkel elválasztva a síkidom fajtájától függően egy vagy két valós szám. Definiáljuk külön-külön az egyes síkidomok-típusok osztályait úgy, hogy a négyzetét az alább megadott absztrakt osztályból származtatjuk, a másik kettőt pedig a négyzet osztályából. class Alakzat { public: virtual std::string nev() = 0; double terulet() { return alap() * magassag(); } double kerulet() { return 2 * (alap() + oldal()); } virtual double alap() = 0; virtual double oldal() { return alap(); } virtual double magassag() { return oldal(); } }; Készítsünk olyan programot, amely a szöveges állomány alapján létrehozza a megfelelő síkidom-objektumokat, és eltárolja őket. Lehessen kilistázni a megadott tartalmat, valamint rendezni azt terület, illetve kerület szerint növekvő sorrendbe, ehhez valósítsunk meg alkalmas rendező eljárást. 8. Készítsünk programot, amely elősegíti termek foglalását az oktatók számára. A rendszer háromféle termet tart nyilván, amelyek a következő adatokkal rendelkeznek: Előadó terem (0-s kód): terem neve, az ülőhelyek száma, van-e beépített projektor (0: nincs, 1: van) Szeminárium terem (1-es kód): terem neve, az ülőhelyek száma, valamint a tábla típusa (0: krétás, 1: filces). Gépterem (2-es kód): terem neve, az ülőhelyek száma, számítógépek száma. Ezen felül minden teremre kiszámolható a kapacitása a következőeknek megfelelően: Előadó terem: ha van projektor, és azt igénybe veszik, akkor az ülőhelyek számának 115%-a, mivel ekkor úgyse fognak bejönni a hallgatók órára, különben a ülőhelyek száma. Szeminárium terem: ha filces a tábla, az ülőhelyek száma, ha krétás, akkor az ülőhelyek száma -6 fő, mert az első sorba senki sem ül a szálló krétapor miatt. 15
16 Gépterem: a számítógépek számának 90%-a (mert a többi biztos rossz) +10 fő (akik úgyis laptoppal járnak), de maximálisan az ülőhelyek száma. A program az adatokat szöveges fájlból olvassa be, amelynek minden sora egy terem adatait tartalmazza a megadott sorrendben. Legyen lehetőség a felhasználónak megadni, mekkora kapacitású termet akar foglalni, géptermet szeretne-e, legyen-e projektor (gépteremben mindig van, szeminárium teremben nincs), illetve filces táblát szeretne-e (gépteremben mindig filces a tábla, előadóban sosem), és a program ekkor listázza ki azokat a termeket, amelyek az igénynek eleget tesznek, vagy írja ki, hogy nincs a keresésnek megfelelő terem. 16
Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu
Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma
Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,
4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!
) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a
TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69
TARTALOMJEGYZÉK ELŐSZÓ............................................................ 7 1. GONDOLKOZZ ÉS SZÁMOLJ!............................. 9 Mit tanultunk a számokról?............................................
Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.
Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés
- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez
1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok
1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt?
skombinatorika 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot írhatunk föl 2 db 1-es, 1 db 2-es és 1 db 3-as
1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik
1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van
Szeminárium-Rekurziók
1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az
MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?
148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei
117. AA Megoldó Alfréd AA 117.
Programozás alapjai 2. (inf.) pót-pótzárthelyi 2011.05.26. gyak. hiányzás: kzhpont: MEG123 IB.028/117. NZH:0 PZH:n Minden beadandó megoldását a feladatlapra, a feladat után írja! A megoldások során feltételezheti,
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
Síklefedések Erdősné Németh Ágnes, Nagykanizsa
Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen
2. Hatványozás, gyökvonás
2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője
Készítette: niethammer@freemail.hu
VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy
Lineáris Algebra gyakorlatok
A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot
1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik
Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
Bevezetés a Programozásba II 11. előadás. Adatszerkezetek megvalósítása. Adatszerkezetek megvalósítása Adatszerkezetek
Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Bevezetés a Programozásba II 11. előadás 2014.05.12. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Adatszerkezetek
A továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
Matematikai alapismeretek. Huszti Andrea
Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá
1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket!
ELTE IK, Programozás, Gyakorló feladatok a 3. zárthelyihez. Mátrix elemeinek felsorolása: 1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket! 2. Igaz-e, hogy sorfolytonosan végigolvasva
Számítástudomány matematikai alapjai segédlet táv és levelező
Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:
9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET
BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott
OAF Gregorics Tibor: Minta dokumentáció a 3. házi feladathoz 1.
OAF Gregorics Tibor: Minta dokumentáció a 3. házi feladathoz 1. Feladat Szimuláljuk különféle élőlények túlélési versenyét. A lények egy pályán haladnak végig, ahol váltakozó viszonyok vannak. Egy lénynek
Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013
UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS
INFORMATIKAI ALAPISMERETEK
Informatikai alapismeretek középszint 1321 ÉRETTSÉGI VIZSGA 2014. október 13. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
5. MODUL ADATBÁZIS-KEZELÉS
Európai Számítógép-használói Jogosítvány ECDL 5. MODUL ADATBÁZIS-KEZELÉS Az ötödik modul tartalma Az ötödik modul 79 feladatlapot tartalmaz. A vizsgaközpont ezek közül egyet jelöl ki a vizsgázónak. Minden
Három dimenziós barlangtérkép elkészítésének matematikai problémái
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Három dimenziós barlangtérkép elkészítésének matematikai problémái Szakdolgozat Írta: Pásztor Péter Matematika
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
KR TITKOSÍTÓ PROGRAM. Felhasználói leírás. v1.3 2008. március 12.
KR TITKOSÍTÓ PROGRAM Felhasználói leírás v1.3 2008. március 12. TARTALOMJEGYZÉK 1 BEVEZETÉS...3 1.1 FELHASZNÁLÓI DOKUMENTÁCIÓRA VONATKOZÓ ÁLTALÁNOS LEÍRÁSOK... 3 2 ALAPFOGALMAK...4 Programban használt
Nemzeti versenyek 11 12. évfolyam
Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó
Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc
Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,
MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt
Tanmenetjavaslat 5. osztály
Tanmenetjavaslat 5. osztály 1. A természetes számok A tanmenetjavaslatokban dőlt betűvel szedtük a tananyag legjellemzőbb részét (amelyet a naplóba írunk). Kisebb betűvel jelezzük a folyamatos ismétléssel
Gyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
MATEMATIKA A 10. évfolyam
MATEMATIKA A 10. évfolyam 8. modul Hasonlóság és alkalmazásai Készítették: Vidra Gábor, Lénárt István Matematika A 10. évfolyam 8. modul: Hasonlóság és alkalmazásai A modul célja Időkeret Ajánlott korosztály
Nyitott mondatok Bennfoglalás maradékkal
Matematika A 2. évfolyam Nyitott mondatok Bennfoglalás maradékkal 35. modul Készítette: Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés
ADATBÁZISKEZELÉS ADATBÁZIS
ADATBÁZISKEZELÉS 1 ADATBÁZIS Az adatbázis adott (meghatározott) témakörre vagy célra vonatkozó adatok gyűjteménye. - Pl. A megrendelések nyomon követése kereskedelemben. Könyvek nyilvántartása egy könyvtárban.
Lineáris algebra I. Vektorok és szorzataik
Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere
Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai
A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy
1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
A lineáris tér. Készítette: Dr. Ábrahám István
A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos
C# feladatgyűjtemény Kovács Emőd, Radványi Tibor, Király Roland, Hernyák Zoltán
C# feladatgyűjtemény Kovács Emőd, Radványi Tibor, Király Roland, Hernyák Zoltán C# feladatgyűjtemény Kovács Emőd, Radványi Tibor, Király Roland, Hernyák Zoltán Publication date 2011 A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046
MATEMATIKA FELADATGYŰJTEMÉNY
Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
Országos kompetenciamérés 2007 Feladatok és jellemzőik. matematika 10. évfolyam
2007 Országos kompetenciamérés 2007 Feladatok és jellemzőik matematika 10. évfolyam Oktatási Hivatal Budapest, 2008 10. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 2007 májusában immár ötödik alkalommal került
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
Alkalmazott Modul III 6. gyakorlat. Objektumorientált programozás: öröklődés és polimorfizmus
Eötvös Loránd Tudományegyetem Természettudományi Kar Alkalmazott Modul III 6. gyakorlat : öröklődés és polimorfizmus 2011.10.25. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
Egy irányított szakasz egyértelműen meghatároz egy vektort.
VEKTOROK VEKTOROK FOGALMA Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon, hogy az egyik pont a kezdőpont, a másik pont a végpont, akkor irányított szakaszt kapunk. Egy irányított szakasz
1. beadandó feladat: objektumorientált konzol felületű alkalmazás
1. beadandó feladat: objektumorientált konzol felületű alkalmazás Közös követelmények: A program az adatokat szöveges fájlból olvassa be, ahol a fájlnevet kérje be a felhasználótól. Az eredményt írja a
TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013
TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 1 Kedves Kollégák! Tanmenet javaslatunkkal segítséget kívánunk nyújtani
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege
MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.
1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x
Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet).
Vektortér A vektortér (lineáris tér, lineáris vektortér) két, már tanult algebrai struktúrát kapcsol össze. Def.: Legyen V nemüres halmaz, amelyben egy összeadásnak nevezett művelet van definiálva, és
Geometriai alapfogalmak
Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.
Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =
Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
ÉS TESZTEK A DEFINITSÉG
MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001
AutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február
AutoN cr Automatikus Kihajlási Hossz számítás AxisVM-ben elméleti háttér és szemléltető példák 2016. február Tartalomjegyzék 1 Bevezető... 3 2 Célkitűzések és alkalmazási korlátok... 4 3 Módszertan...
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Próba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
Széchenyi István Egyetem, 2005
Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását
Matematika helyi tanterv,5 8. évfolyam
Matematika helyi tanterv - bevezetés Matematika helyi tanterv,5 8. évfolyam A kerettanterv B változatának évfolyamonkénti bontása Bevezető Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot
6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.)
Lineáris algebra I. Kovács Zoltán Előadásvázlat (2006. február 22.) 2 3 Erdős Jenő emlékének. 4 Tartalomjegyzék 1. A szabadvektorok vektortere 7 1. Szabadvektorok összeadása és skalárral való szorzása...............
Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.